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บทคัดย่อ 
การศึกษากลไกการเร่งปฏิกิริยาการย่อยสลายคาร์โบไฮเดรตของเอนไซม์ไกลโคสิเดส ในช่วงไม่กี่ปีที่ผ่าน

มา สะท้อนให้เห็นว่าเอนไซม์ไกลโคสิเดสหลายชนิด มีกลไกการเร่งปฏิกิริยาที่มีความน่าสนใจและแตกต่างไปจาก
กลไกแบบเดิมที่เคยรู้จัก ได้แก่ กลไกท่ีมีสับสเตรทเป็นตัวช่วย กลไกท่ีใช้เบสจากภายนอก กลไกท่ีอาศัยนิวคลีโอไฟล์
ชนิดอื่น และกลไกที่อาศัยโคแฟคเตอร์  เหตุผลหลักของการเกิดรูปแบบพิเศษของกลไกดังกล่าว คือความ
หลากหลายของกรดอะมิโนต าแหน่งส าคัญที่ท าหน้าที่เป็นเบสหรือตัวนิวคลีโอไฟล์ของปฏิกิริยา และเมื่อต าแหน่งนี้
เกิดการกลายพันธุ์ จะส่งผลอย่างชัดเจนต่อความสามารถในการยึดจับกับสับสเตรท จนสามารถท าให้ได้เอนไซม์สาย
พันธุ์ใหม่ที่ให้กัมมันตภาพดีขึ้น หลักการนี้เมื่อน ามาประยุกต์ใช้กับงานด้านวิศวกรรมโปรตีน จะสามารถออกแบบ
และสร้างโปรตีนให้มีคุณสมบัติเฉพาะ และมีประสิทธิภาพสูงได้ ดังนั้นความเข้าใจในกลไกการท างานของเอนไซม์
กลุ่มนี้ โดยเฉพาะความหลากหลายของกลไกการเร่งปฏิกิริยารูปแบบต่าง ๆ จึงมีความส าคัญอย่างยิ่งและได้ทบทวน
ไว้ในรายงานครั้งนี ้

 
 
 
 
 
 
 
 
 
 
 
 
 

 
1สาขาวิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยพะเยา อ.เมือง จ.พะเยา 56000 
E-mail: jitrayut.018@gmail.com 



วารสารวิทยาศาสตร์ มข. ปีที่ 41 ฉบับที่ 3 583บทความบทความ วารสารวิทยาศาสตร์ มข. ปีท่ี 41 ฉบับท่ี 3 583 
 

 

ABSTRACT 
Recent studies of the carbohydrate hydrolysis by glycosidase (GH) have shown that a 

number of GH families undergo various unusual mechanisms, which differ from the known 
classical mechanisms, including substrate-assisted catalysis, exogenous bases, alternative 
nucleophiles and NAD-dependent hydrolysis. The main reason for such specific mechanisms is 
the diversity of key amino acids, which function as a catalytic base/nucleophile. Mutation of the 
catalytic base/nucleophile can have a profound impact on substrate specificity, producing 
enzymes with new function roles and better activity. This principle can be applied in protein 
engineering for the design and synthesis of proteins with specific properties and high efficiency. 
Gaining the knowledge of GH mechanism, especially the catalytic diversity, is thus crucial and 
has been updated in this review. 
 

ค าส าคัญ: ไกลโคสิเดส  กลไกการเร่งปฏิกิริยาของเอนไซม์  ตัวเร่งชนิดเบส  ตัวนิวคลีโอไฟล์  การย่อยสลาย
คาร์โบไฮเดรต 

Keywords: Glycosidase, Enzyme mechanism, Catalytic base, Nucleophile, Carbohydrate 
degradation 

 

บทน า 
สารประกอบคาร์โบไฮเดรตจัดเป็นชีวโมเลกุล

ที่มี ปริ มาณมากที่ สุ ด ในธรรมชาติ  ซึ่ ง ได้ มาจาก
กระบวนการสังเคราะห์ด้วยแสง ในสิ่งมีชีวิตบางจ าพวก 
(เช่น พืช) สามารถเปลี่ยนพลังงานในรูปของแสงอาทิตย์
มาเป็นพลังงานเคมีได้ โดยการน าก๊าซคาร์บอนได- 
ออกไซด์ในบรรยากาศมาสังเคราะห์เป็นโมเลกุลของ
คาร์โบไฮเดรต คาร์โบไฮเดรตนั้น มีบทบาทส าคัญอย่าง
ยิ่งต่อสิ่งมีชีวิต เป็นสารชีวโมเลกุลที่เก็บพลังงาน เป็น
ส่วนประกอบของผนังเซลล์ หรือสารที่เคลือบอยู่บน
เซลล์ นอกจากนี้อนุพันธ์ของคาร์โบไฮเดรตยังพบ
ร่วมกับสารชีวโมเลกุลชนิดอื่น ๆ เช่น โคเอนไซม์ กรด
นิวคลีอิค เป็นต้น กล่าวคือ พลังงานจะถูกสะสมไว้ในรูป
ของแป้งและน้ าตาล เมื่อถูกออกซิไดซ์จะให้พลังงาน
ออกมา เพื่อไปขับเคลื่อนเมแทบอลิซึมต่าง ๆ ในสัตว์ 
และพืช รวมทั้งในร่างกายของมนุษย์ ปกติคาร์โบ- 

ไฮเดรตจัดเป็นหนึ่งในสารอาหารหลัก 5 หมู่ ที่จ าเป็น
ต่อร่างกายในแต่ละวัน โดยเมื่อรับประทานอาหาร
จ าพวกแป้งเข้าไป แป้งจะถูกย่อยครั้งแรกในปาก โดย
เอนไซม์ที่มีช่ือว่า อะไมเลส ในขั้นตอนการนี้ การย่อย
ยังไม่สมบูรณ์ เป็นเพียงการลดขนาดของโมเลกุลแป้ง
เท่านั้น การย่อยแป้งยังคงด าเนินต่อไปที่กระเพาะ
อาหารและล าไส้ โดยมีเอนไซม์หลายชนิดเข้ามาช่วย
ย่อยแป้งให้มีขนาดของโมเลกุลเล็กลงจนสามารถดูดซึม
ได้ ถึงแม้ว่ากระบวนการนี้เป็นที่รู้จักกันดีโดยทั่วไป แต่
มีค าถามที่หลายคนไม่เคยรู้มาก่อนว่า  “เอนไซม์มี
กระบวนการอย่างไรในการเปลี่ยนแป้งให้เป็นน ้าตาลใน
ระดับโมเลกุล” ซึ่งเป็นค าถามที่นักวิทยาศาสตร์
พยายามหาค าตอบ โดยเฉพาะการอธิบายถึงที่มาว่า
ท าไมเอนไซม์ ถึงมีประสิทธิภาพในการเร่งปฏิกิริยาเคมี
อย่างจ าเพาะเจาะจง หลายคนอาจจะยังไม่ทราบถึง
เบื้องหลังการท างานของเอนไซม์ ซึ่งมีวิธีการอันชาญ-
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ฉลาดในการจัดการกับโมเลกุลของแป้งและน้ าตาล 
รวมถึงความซับซ้อนทางโครงสร้างของน้ าตาลเองที่มีผล
ต่อกลไกการเกิดปฏิกิริยาที่แตกต่างกัน เอนไซม์ที่ท า
หน้าที่หลักในการย่อยสลายคาร์โบไฮเดรต คือเอนไซม์
ไกลโคสิเดส (glycosidase, GH) เป็นเอนไซม์ที่มีความ
หลากหลายในล าดับกรดอะมิโน และพบได้ทั่วไปใน
ทุกๆสิ่งมีชีวิต งานวิจัยที่ศึกษาเกี่ยวกับเคมีของเอนไซม์
ไกลโคสิเดส (glycosidase chemistry) ส่วนใหญ่จะให้
ความส าคัญกับการหาโครงสร้างทางเคมีของสาร
เชิงซ้อน oxocarbenium ion ที่สภาวะทรานซิชัน 
(Vocadlo and Davies, 2008) และกลไกการเร่ง
ปฏิกิริยาที่เกิดผ่านโครงสร้างดังกล่าว 

 

เอนไซม์ไกลโคสิเดส 
เอนไซม์ไกลโคสิเดส ย่อยสลายโมเลกุลน้ าตาล

ด้วยปฏิกิริยาไฮโดรลิซิส (hydrolysis) ดังรูปที่ 1 โดย
การท าลายพันธะไกลโคสิดิก (glycosidic bond) ซึ่ง
เช่ือมน้ าตาลสองหน่วยโมเลกุลให้หลุดออกจากกัน 
พันธะไกลโคสิดิกดังกล่าว จัดเป็นพันธะโควาเลนต์ที่มี
ความแข็งแรงมากในธรรมชาติ  โดยหากปล่อยให้
โมเลกุลคาร์โบไฮเดรตสลายด้วยตัวเอง พบว่าอาจต้อง

ใช้เวลานับล้านปี แต่เอนไซม์ไกลโคสิเดส สามารถเร่ง
ปฏิกิริยานี้ได้ถึง 1017 เท่า (Wolfenden et al., 1998) ด้วย
เหตุนี้เองท าใหเ้อนไซม์ไกลโคสิเดส จัดเป็นหนึ่งในตัวเร่ง
ปฏิกิริยาทางชีวภาพที่มีประสิทธิภาพมากที่สุด ปัจจุบัน
เอนไซม์ไกลโคสิเดส สามารถจ าแนกออกได้มากกว่า 
130 ชนิดด้วยกัน ตามลักษณะความคล้ายคลึงกันของ
ล าดับกรดอะมิโน (sequence-based classification) 
(Henrissat, 1991; Henrissat and Davies, 1997) ดังปรากฎใน
ฐานข้อมูล carbohydrate active enzymes (CAZy) 
(http://www.cazy.org/) (Cantarel et al., 2009) 

การเร่งปฏิกิริยาของเอนไซม์ไกลโคสิเดส จะ
เริ่มจากการเข้ายึดจับกับสับสเตรทอย่างจ าเพาะเจาะจง 
โดยเอนไซม์แต่ละชนิดจะมีลักษณะของต าแหน่งยึดจับ
ที่แตกต่างกันท าให้มีความจ าเพาะต่อสับสเตรทที่
ต่างกัน ส าหรับเอนไซม์ไกลโคสิเดสนั้น พบว่ามีลักษณะ
ทางโครงสร้างแตกต่างกันอยู่ 3 แบบ ได้แก่ pocket 
cleft และ tunnel (ดังรูปที่ 2) หลังจากท่ีเอนไซม์และ
สับสเตรทเข้าจับกันอย่างเหมาะสมแล้ว กลไกการเร่ง
ปฏิกิริยาเคมีจึงเริ่มท างาน 

 

 
รูปที่ 1 ปฏิกิริยาไฮโดรไลซิสที่เกดิขึ้นในเอนไซม์ GH เมื่อ R แทนหมู ่leaving group 

 

 
รูปที่ 2 แสดงโครงสร้างของเอนไซม์ GH ซึ่งมีลักษณะของต าแหน่งยึดจับที่แตกต่างกัน ได้แก่ pocket (ก)  

cleft (ข) และ tunnel (ค) (ที่มา: Davies and Henrissat, 1995) 
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รูปที่ 3 แสดงกลไกการเร่งปฏิกิริยาแบบ inverting (ก) และ retaining (ข) ของเอนไซม์ GH (ดัดแปลงจาก 

Gloster et al., 2008) 
 

ลักษณะทั่วไปของกลไกการเร่งปฏิกิริยาใน
เอนไซม์ไกลโคสิเดส 

ถึงแม้ว่า เอนไซม์ไกลโคสิ เดส จะมีความ
หลากหลายมากถึง 130 ชนิด แต่กลับพบเพียง 2 กลไก
เท่านั้น ที่เอนไซม์ชนิดนี้ใช้ในการเร่งปฏิกิริยาเคมี นั่น
คือกลไกการเร่งปฏิกิริยาแบบ inverting และ 
retaining (ดังรูปที่ 3) โดยกลไกทั้งสองนี้ต่างกันที ่
สเตอริโอเคมี (stereochemistry) ของปฏิกิริยา ซึ่ง
ค้นพบโดย Dan Koshland (Koshland, 1953) โดย
จะพิจารณาจากต าแหน่ง anomeric configuration 
ของสารผลิตภัณฑ์ เทียบกับสารตั้งต้น โดยทั่วไปพบว่า
มีกรดอะมิโนเพียง 2 ตัวเท่านั้น ที่มีหมู่คาร์บอกซีเลต 
(ได้แก่ Asp หรือ Glu) ท าหน้าที่ช่วยเร่งปฏิกิริยาตัว
หนึ่งจะให้และรับโปรตอน อีกตัวหนึ่งจะเป็นตัวนิวคลีโอ
ไฟล์ โดยรายละเอียดกลไกการเร่งปฏิกิริยาของแต่ละ
แบบมีดังนี ้
กลไกการเร่งปฏิกิริยาแบบ inverting 

เป็นปฏิกิริยาขั้นตอนเดียวที่ เกิดผ่านสาร
ก่อกัมมันต์  เรียกว่า oxocarbenium ion-like 
transition states และจะไม่ปรากฏสารมัธยันตร์ใด ๆ 
ในปฏิกิริยา ขณะเกิดปฏิกิริยาจะมีกรดอะมิโนสองตัวที่
มีหมู่คาร์บอกซีเลต ซึ่งอยู่ห่างกันประมาณ 10 Å ท า

หน้าที่เป็นตัวเร่งปฏิกิริยา โดยกรดอะมิโนตัวที่หนึ่งจะ
ท าหน้าที่เป็นกรด (general acid) คอยให้โปรตอนแก่
ออกซิเจนอะตอมของหมู่ leaving group (HOR) 
ขณะที่กรดอะมิโนตัวท่ีสองซึ่งมีหน้าท่ีเป็นเบส (general 
base) จะรับโปรตอนหนึ่งตัวจากโมเลกุลน้ าที่อยู่ใกล้ 
ท าให้ได้โมเลกุลน้ านี้ ในรูปไอออนไฮดรอกไซด์ (OH–) ที่
มีสมบัติเป็นตัวนิวคลีโอไฟล์ (nucleophile) และพร้อม
เข้าท าปฏิกิริยากับวงแหวน pyranose ที่ต าแหน่ง
คาร์บอน anomeric ทันที จนได้ผลิตภัณฑ์ออกมา โดย
หมู่ leaving group จะเกิดการย้ายจากต าแหน่ง 
equatorial มาเป็นต าแหน่ง eclipse (ดังรูปที่ 1ก) 
หรืออาจย้ายจาก eclipse มาเป็น equatorial ได้
เช่นกัน 
กลไกการเร่งปฏิกิริยาแบบ retaining 

เป็นปฏิกิริยาสองขั้นตอน โดยแต่ละขั้นตอน
จะเกิดผ่านสารก่อกัมมันต์ เรียกว่า oxocarbenium 
ion-like transition states ขณะเกิดปฏิกิริยา จะมี
กรดอะมิโนสองตัวที่มีหมู่คาร์บอกซีเลต ซึ่งอยู่ห่างกัน
ประมาณ 5.5 Å คอยท าหน้าที่เป็นตัวเร่งปฏิกิริยา 
เช่นเดียวกับกลไกแบบ inverting แต่มีข้อแตกต่างกัน
คือ จะเกิดสารมัธยันตร์ขึ้นในขั้นแรก (glycosylation) 
เรียกว่า covalent enzyme-glycosyl intermediate 
โดยกรดอะมิโนตัวที่หนึ่งจะท าหน้าที่เป็นเบส (general 
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base) คอยให้โปรตอนแก่ออกซิเจนอะตอมของหมู่ 
leaving group ในขั้นตอนแรก และจะรับโปรตอนจาก
โมเลกุลน้ าที่อยู่ใกล้ ส่วนกรดอะมิโนตัวที่สองจะท า
หน้าที่เป็นตัวนิวคลีโอไฟล์ (nucleophile) คอยสร้าง
พันธะโควาเลนต์กับอะตอมคาร์บอนที่ต าแหน่ ง 
anomeric บนวงแหวนของน้ าตาล pyranose ใน
ขั้นตอนที่สอง (เรียกว่า deglycosylation) จะเกิดการ
สลายตัวของสารมัธยันตร์ที่เกิดขึ้นในขั้นตอนแรก โดย
กรดอะมิโนท่ีเคยท าหน้าที่เป็นเบส จะท าหน้าท่ีเป็นกรด 
คอยรับโปรตอนจากโมเลกุลน้ า ท าให้โมเลกุลน้ านี้ในรูป
ไอออนไฮดรอกไซด์ เกิดการแทนที่ที่ต าแหน่งคาร์บอน 
anomeric และได้ผลิตภัณฑ์หลุดออกมาจากบริเวณเร่ง 

 

ลักษณะเฉพาะของกลไกการเร่งปฏิกิริยาใน
เอนไซม์ไกลโคสิเดสบางชนิด 

เนื่องจากมีผลการศึกษาค้นคว้าวิจัยได้แสดง
ให้เห็นว่ากรดอะมิโนที่ปกติเคยท าหน้าเป็นตัวนิวคลีโอ
ไฟล์ อาจไม่มีบทบาทใด ๆ ในการเร่งปฏิกิริยาใน
เอนไซม์ไกลโคสิเดสบางชนิด แต่มีรูปแบบกลไกที่
แตกต่างไป และพบได้ยากในธรรมชาติ อีกทั้งยังพบว่า
กลไกแบบนี้ มีความหลากหลายของตัวนิวคลีโอไฟล์
และตัวรับโปรตอน (general base) ได้มากกว่ากลไก
แบบ inverting (Vuong and Wilson, 2010) โดยมี
รูปแบบพิเศษของการเร่งปฏิกิริยาเคมีของเอนไซม์
ประเภทน้ี ดังนี ้
1 .  กลไกที่มีสับสเตรทเป็นตัวช่วย (substrate-
assisted mechanism) 

จัดเป็นกลไกการเร่งปฏิกิริยาที่มีรูปแบบพิเศษ 
เนื่องจากอาศัยสับสเตรทเป็นตัวนิวคลีโอไฟล์แทน
กรดอะมิโน และท างานควบคู่ไปกับการให้และรับ
โปรตอนของกรดอะมิโนชนิดกรดและเบส (general 
acid/base) ในระหว่างเกิดปฏิกิริยา ดังแสดงในรูปที่ 4 

กล ไ กแบบนี้ จ ะ พบ ได้ กั บ เ อน ไ ซม์ บ า งกลุ่ ม ที่ มี
ความจ าเพาะเจาะจงกับสับสเตรทที่มีหมู่ N-acetyl ยึด
ต่อกับต าแหน่ง C2 ของอะตอมคาร์บอนภายใน 
วงแหวนน้ าตาลไพราโนส (หรืออาจเรียกหมู่ส าคัญนี้ว่า 
C2-acetamido) ปัจจุบันพบหลักฐานการใช้กลไกชนิด
นี้เพิ่มมากขึ้น ส่วนใหญ่พบในเอนไซม์ไกลโคสิเดสจาก
หลากหลายตระกูล ได้แก่ GH18 chitinases (Van 
Aalten et al., 2001; Jitonnom et al., 2011), 
GH20 chitobiase และ hexosaminidases 
(Drouillard et al., 1997; Mark et al., 2001), 
GH25 lysozyme (Martinez-Fleites et al., 2009), 
GH56 hyaluronidases (Markovic-Housley et al., 
2000), GH84 O-GlcNAcases (Macauley et al., 
2005; Bottoni et al., 2011), GH85 endo-β-N-
acetylglucosaminidases (Abbott et al., 2009) 
และ GH103 lytic transglycosylases (Reid et al., 
2007) และเมื่อเร็ว ๆ นี้  ได้มีการค้นพบว่ากลไก
ประเภทน้ีสามารถเกิดขึ้นได้ในกลุ่มของเอนไซม์ไกลโค-
ซิ ลทราน เฟอ เ รส  (glycosyltransferase) เ ช่นกั น 
(Tvaroska et al., 2012) ส าหรับกลไกการเร่งปฏิกิริยา
ย่อยสลายคาร์โบไฮเดรตโดยอาศัยสับสเตรทช่วยนั้น จะ
เริ่มจากการให้โปรตอนของกรดอะมิโนแก่ออกซิเจน
อะตอมของพันธะไกลโคสิดิก ซึ่งจะช่วยให้ปฏิกิริยา
แทนที่ที่ต าแหน่ง anomeric carbon ของหมู่ C2-
acetamido เกิดขึ้นได้ จนเกิดเป็นสารมัธยันตร์ที่มี
ลั ก ษ ณ ะ เ ป็ น ว ง แ ห ว น ปิ ด ส อ ง ว ง  (bicyclic 
intermediate) ดังรูปที่ 4 และพบว่าสามารถเกิด
สารมัธยันตร์ได้ 2 แบบ คือ oxazoline และ 
oxazolinium cation  ซึ่งแตกต่างกันที่ประจุ 
เนื่องจากสารมัธยันตร์ทั้งสองมีความเสถียรต่ า จึงต้อง
อาศัยหมู่คาร์บอกซิลของกรดอะมิโนที่อยู่บริ เวณ
ข้างเคียง ช่วยเพิ่มความเสถียรให้กับสารมัธยันตร์ 
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ตัวอย่างเช่น Asp142 ของเอนไซม์ GH18 chitinases 
(Jitonnom et al., 2011) หรือ Asp174 ของเอนไซม์ 
GH84 O-GlcNAcases (Cetinbas et al., 2006) เป็น
ต้น อย่างไรก็ตามยังพบว่ามีกรณีของเอนไซม์ไกลโค- 
สิเดส ที่ถึงแม้ว่าจะสามารถย่อยสับสเตรทที่มีหมู่ C2-
acetamido ได้ แต่กลับไม่พบหลักฐานของการใช้กลไก
แบบน้ีในระหว่างเร่งปฏิกิริยา (Vocadlo et al., 2000; 
Vocadlo et al., 2001; Huet et al., 2008) 

นอกจากนี้  ยั งพบว่า เอนไซม์  inverting 
GH58 และ GH83 endosialidases ที่สกัดได้จาก 
bacteriophage K1F (Stummeyer et al., 2005; 
Morley et al., 2009) มีรูปแบบกลไกการเร่งปฏิกิริยา
แบบอาศัยสับสเตรทท่ีมีหมู่คาร์บอกซิลเป็นตัวนิวคลีโอ-
ไฟล์ ควบคู่ไปกับกรดอะมิโน Glu581 ในระหว่างเร่ง
ปฏิกิริยาเคมี ดังรูปที่ 5 
2. กลไกที่อาศัยเบสจากภายนอก (exogenous 
bases): Myrosinases 

กลไกประเภทนี้ จะพบอยู่ในเอนไซม์ไมโร-
สิเนส (myrosinases) (Burmeister et al., 2000) ซึ่ง

อยู่ในไกลโคสิเดส ตระกูล 1 (GH family 1) มีหน้าที่เร่ง
ปฏิกิริยาการย่อยสลายด้วยน้ าของโมเลกุล anionic 
thioglycosides (glucosinolates) ที่พบในพืช 
เอนไซม์นี้ มีรูปแบบของกลไกคล้าย ๆ กับเอนไซม์ไกล-
โคสิเดส โดยทั่วไป ยกเว้นกลูตามิก (glutamic) ที่ท า
หน้าที่เป็นกรด-เบสของปฏิกิริยา จะเปลี่ยนเป็นกลูตา-
มีน (glutamine) โดยเช่ือว่าการเปลี่ยนต าแหน่งส าคัญ
นี้ เพื่อลดแรงผลักกันของประจุระหว่างหมู่ฟอสเฟตของ 
aglycon ที่มีประจุลบ (the anionic aglycon 
sulfate) ความพิเศษของ aglycon คือสามารถท า
หน้าที่เป็นตัวหลุด (leaving group) ที่ดีมากพอที่จะ
เกิดการแตกพันธะในปฏิกิริยาขั้นตอนไกลโคสิเลชัน 
(glycosylation) เพื่อเกิดสารมัธยันตร์ โดยไม่ต้องใช้ 
กลูตามิกเป็นตัวเร่งปฏิกิริยา อย่างไรก็ตามปฏิกิริยาใน
ขั้นต่อมา คือข้ันดีไกลโคสิเลชัน (deglycosylation) ยัง
จ าเป็นต้องมีตัวเร่งชนิดเบส ส าหรับเอนไซม์ไมโรสิเนส 
จะใช้โคเอนไซม์ L-ascorbate เป็นเบสของปฏิกิริยานี้ 
ดังรูปที่ 6 

 

 
รูปที่ 4 แสดงกลไกการเร่งปฏิกิรยิาแบบอาศัยสับสเตรทที่มีหมู ่N-acetyl เป็นตัวนิวคลีโอไฟล ์(ที่มา: Jitonnom 

et al., 2011) 
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รูปที ่5 แสดงกลไกการเร่งปฏิกิริยาแบบอาศัยสับสเตรทที่มีหมู่คาร์บอกซิลเป็นตัวนิวคลีโอไฟล์  (ที่มา: 
Stummeyer et al., 2005, Morley et al., 2009) 

 

 
รูปที ่6 แสดงกลไกการเร่งปฏิกิรยิาแบบอาศัยเบสจากภายนอก (ที่มา: Burmeister et al., 2000) 

 

 
รูปที่ 7 แสดงกลไกการเร่งปฏิกิริยาแบบอาศัยกรดอะมิโนชนิดอื่น เช่น Tyr แทนกรดอะมิโน Asp/Glu (ที่มา: 

Pierdominici-Sottile, G., Roitberg, A.E., 2011) 
 

3 .  ก ล ไ ก ที่ อ า ศั ย ตั ว นิ ว ค ลี โ อ ไ ฟ ล์ ช นิ ด อื่ น 
(alternative nucleophiles) 

เอนไซม์ sialidases (หรือ neuraminidases) 
เร่งปฏิกิริยาย่อยสลายหมู่ไกลโคไซด์ของ sialic acids 
นอกจากนี้ ยั งมี เ อน ไซม์  trans-sialidases 
(Pierdominici-Sottile et al., 2011) เร่งปฏิกิริยา 

transglycosylation ของ sialisides เอนไซม์ทั้งสอง
จัดอยู่ในตระกูล GH33 และ GH34 โดยมีความพิเศษ
กว่ ากลไกแบบอื่ นคือ  จะมี กรดอะมิ โนไทโรซีน 
(tyrosine) ท าหน้าที่เป็นตัวนิวคลีโอไฟล์แทนกรดกลู-
ตามิก ซึ่งถูกกระตุ้นโดยกรดอะมิโนชนิดเบสที่อยู่ติดกัน 
ข้อแตกต่างของกลไกนี้ คือ จะใช้กรดอะมิโนที่มีประจุ
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ลบของหมู่คาร์บอกซิเลต เป็นตัวนิวคลีไฟล์ โดยเข้าไป
แทนท่ีบริเวณ anomeric centre ดังรูปที่ 7 ความเป็น
นิวคลีโอไฟล์จะเกิดได้ ต้องอาศัยเบสจากกรดอะมิโนที่
อยู่ติดกัน กลไกนี้หาได้จากโครงสร้าง X-ray ที่เกิดจาก
การดักจับสารมัธยันตร์ที่มีหมู่ fluorosugars ตามด้วย 
peptide mapping crystallography และการกลาย
พันธุ ์(Watson et al., 2003; Watts et al., 2003) 
4. กลไกที่อาศัยโคแฟคเตอร์ (NAD-dependent 
hydrolysis) 

กลไกประเภทนี้จัดเป็นกลไกที่มีความแตกต่าง
ไปจากกลไกที่ ได้ กล่ าวมาโดยสิ้น เ ชิง  เพราะไม่
เกิดปฏิกิริยาชนิดกรด-เบส แต่กลับเกิดปฏิกิริยาแบบ 
รีดอกซ์ โดยใช้โคแฟคเตอร์ nicotinamide adenine 
dinucleotide (NAD) เข้าร่วมในปฏิกิริยา โดยพบว่ามี
เอนไซม์ไกลโคสิเดส ตระกูล GH4 (Yip et al., 2004) 
และ GH109 (Liu et al., 2007) ที่ใช้กลไกนี้ และใน
ระหว่างเกิดปฏิกิริยาจะเกิดผ่านสารก่อกัมมันต์ที่มี
ประจุลบ ตามด้วยปฏิกิริยาการก าจัด (elimination) 
และปฏิกิริยารีดอกซ์ (redox) ซึ่งแตกต่างจากสาร
ก่อกัมมันต์ชนิด oxocarbenium ที่พบในกลไกทั่วไป 
ดังแสดงในรูปที่ 8 จะเห็นว่ากลไกการเร่งปฏิกิริยาของ
เอนไซม์ 6-phospho-β-glucosidase จะเกี่ยวข้องกับ
ปฏิกิริยาออกซิเดชันที่หมู่ไฮดรอกซิลต าแหน่งที่ 3 ของ
สับสเตรทโดยใช้โคแฟคเตอร์ NAD ไปเพิ่มความเป็น
กรดของโปรตอนท่ีต าแหน่ง C2 และท าให้เกิดปฏิกิริยา
การก าจัดแบบ E1 (E1cb elimination) โดยมีกรดอะมิ
โนชนิดเบสเป็นตัวช่วย จากนั้นเกิดสารมัธยันตร์ที่มี
พันธะคู่อยู่ที่ต าแหน่ง α,β ซึ่งภายหลังเกิดปฏิกิริยาการ
เติมน้ าที่ต าแหน่ง anomeric และเกิดหมู่คีโตนขึ้นที่
ต าแหน่ง C3 โดยจะถูกรีดิวซ์ด้วย NADH จนปฏิกิริยา
เกิดสมบูรณ์และได้ผลิตภัณฑ์น้ าตาลในที่สุด ดังนั้นจะ
เห็ นว่ า ปฏิ กิ ริ ย าจะ เกิ ดผ่ า น ขั้ นตอนกา รก า จั ด 

(elimination step) แต่ปฏิกิริยาโดยรวมยังเป็น
ไฮโดรไลซิส การค้นพบกลไกนี้ได้จากการศึกษาสมบัติ
ทางสเตอริโอเคมีด้วยเทคนิคต่าง ๆ ได้แก่ เทคนิค
นิวเคลียร์แมกเนติกเรโซแนนซ์สเปกโตรสโกปี (NMR 
spectroscopy) เทคนิค kinetic isotope effects 
เทคนิค linear free energy relationships เทคนิค
การฉายรังสีเอกซ์ (X-ray crystallography) และ 
เทคนิคยู วี -วิ สิ เบิล  ส เปกโทรโฟโตมิทรี  (UV-Vis 
spectrophotometry) (Rajan et al., 2004; Yip et 
al., 2004) 

 

ประโยชน์ของการศึกษาเชิงกลไก: การกลาย
พันธุ์ของตัวนิวคลีโอไฟล์ 

การปรับเปลี่ยนตัวเร่งชนิดเบส/ตัวนิวคลีโอ-
ไ ฟ ล์ โ ด ย ห ลั ก ก า ร ก ล า ย พั น ธุ์  (site-directed 
mutagenesis) สามารถสร้างเอนไซม์ที่มีสมบัติใหม่ได้ 
ดังตัวอย่างเช่น เอนไซม์ glycosynthases ท าหน้าที่เร่ง
ปฏิกิริยาเคมีของการสังเคราะห์ไกลโคไซด์โดยอาศัยตัว
ให้ที่มีหมู่ไกลโคซิลที่สถานะกระตุ้น (activated 
glycosyl donors) ได้แก่ glycosyl fluorides 
เอนไซม์ glycosynthase ผลิตได้เป็นครั้งแรกในปี ค.ศ. 
1998 (Mackenzie, 1998) โดย Mackenzie และคณะ
สามารถเปลี่ยนตัวนิวคลีโอไฟล์ของเอนไซม์ retaining 
เบต้ากลูโคสิเดส ตระกูล GH1 โดยใช้หลักการกลาย
พันธุ์ ท าให้ได้เอนไซม์ใหม่ที่ให้ค่ากัมมันตภาพเปลี่ยนไป 
คือจะให้ค่ากัมมันตภาพเป็นแบบทรานไกลโคสิเลชัน 
(trans-glycosylation activity) แทนแบบไฮโดรไลติก 
(hydrolytic activity) การกลายพันธ์ุชนิดนี้จะสามารถ
น าไปสร้างน้ าตาลไกลโคไซด์ต่อได้ นอกจากเอนไซม์ 
glycosynthase แล้วยังพบว่ามีเอนไซม์ไกลโคสิเดสใน
อีกหลายตระกูลที่เกิดขึ้นได้โดยใช้หลักการกลายพันธุ์ 
อาทิเช่น เบต้าไกลโคสิเดส ตระกูล GH8 (Honda and 
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Kitaoka, 2006) และอัลฟาไกลโคสิเดส ตระกูล GH95 
(Wada et al., 2008) อย่างไรก็ตาม ยังมีการรายงานที่
แสดงให้เห็นว่าการกลายพันธุ์ของกรดอะมิโนที่เกิดการ
สร้างพันธะไฮโดรเจนกับโมเลกุลน้ า (Honda et al., 
2008) หรือ กรดอะมิโนที่ท าหน้าที่เป็นตัวเบสกระตุ้น 
(base-activating residue) (Wada et al., 2008) นั้น
จะเพิ่มประสิทธิภาพของเอนไซม์ได้ดี ปัจจุบันพบว่ามี
เอนไซม์ glycosynthases มากกว่า 10 ตระกูล ที่
สามารถใช้หลักการกลายพันธุ์แล้วให้เอนไซม์ที่มีสมบัติ
เปลี่ยนไป รวมไปถึงกรณีของเอนไซม์ที่ใช้รูปแบบของ
กลไกแบบมีสับสเตรทเข้าช่วย (Umekawa et al., 
2010) มีการรายงานว่าเอนไซม์ glycosynthases 
ก าลังได้รับความสนใจทางด้านการสังเคราะห์เพื่อใช้
ป ร ะ โ ยชน์ ท า ง ย า  ตั ว อ ย่ า ง เ ช่ น  ส า ร 
glycosphingolipids มีรายงานว่าสามารถรักษา
โรคมะเร็ง โรคเอดส์ โรคทางระบบประสาท และโรค
ภูมิคุ้มกันท าลายตัวเอง (auto-immune) (Hancock 
et al., 2009) 

น อ ก จ า ก นี้ ยั ง ส า ม า ร ถ ใ ช้ เ อ น ไ ซ ม์ 
glycosynthase ควบคุมสเตอริโอเคมีของผลิตภัณฑ์ที่
สังเคราะห์ขึ้นได้ รายละเอียดดูได้จากบทความปริทัศน์
ของ (Rakic and Withers, 2009) นอกจากนี้ยัง
สามารถท าให้เอนไซม์จับกับสับสเตรทได้หลากหลายขึน้ 
เช่น เมื่อกลายพันธุ์ต าแหน่งนิวคลีโอไฟล์ในเอนไซม์ 
glycosynthase ที่ผลิตจากเช้ือ Humicola insolens 
ของเอนไซม์ cellulase Cel7B จะสามารถเร่งปฏิกิริยา
เคมีของการย้ายน้ าตาลไปหาสารฟลาวานอยด์ที่ไม่ไช่
น้ าตาลได้ (Yang et al., 2007) ขณะที่เอนไซม์ 
retaining บางชนิดสามารถกลายพันธุ์เพื่อให้เกิด
เ อน ไซม์ ที่ มี คุณสมบั ติ ใ นการสร้ า ง ส ารจ าพวก 
thioglycosides (Rakic and Withers, 2009) ซึ่ง
พบว่าเป็นสารที่ต้านการย่อยสลายจากเอนไซม์ไกลโคสิ
เดส และนิยมน าไปใช้เป็นแอนะล็อกของไกลโคไซด์ที่มี
ความเสถียรทางเมแทบอลิซึม หรือแม้แต่การน าไปใช้
เป็นตัวยับยั้ง (inhibitors) (Rakic and Withers, 
2009) 

 

 
รูปที่ 8 แสดงกลไกการเกิดปฏิกิริยาแบบอาศัยโคแฟคเตอร์ NAD เข้าร่วมในปฏิกิริยา (ที่มา: Yip et al., 2004, 

Liu et al., 2007) 
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บทสรุป 
จากการศึกษากลไกการเร่งปฏิกิริยาเคมีของ

เอนไซม์ไกลโคสิเดส จนน ามาสู่การค้นพบกลไกที่มี
รูปแบบพิเศษของเอนไซม์ไกลโคสิเดส แสดงให้เห็นถึง
ความหลากหลายและบทบาทส าคัญของกรดอะมิโนที่
ท า ห น้ า เ ป็ น ตั ว นิ ว ค ลี โ อ ไ ฟล์ ต่ อ ก า ร ช่ ว ย เ พิ่ ม
ประสิทธิภาพในการย่อยสลายสับสเตรทของเอนไซม์
ไกลโคสิเดส ซึ่งมีความจ าเพาะเจาะจงต่อสับสเตรทและ
กลไกที่แตกต่างกัน ดังนั้นการปรับเปลี่ยนต าแหน่ง
ส าคัญดังกล่าวโดยการกลายพันธุ์  จะสามารถสร้าง
เอนไซม์ที่ให้กัมมันตภาพใหม่ได้ ดังแสดงให้เห็นใน
เอนไซม์ glycosynthases thioglycoligases และ 
thioglycosynthases การรายงานนี้ได้ช้ีให้เห็นถึง
ประโยชน์ของการศึกษากลไกการเร่งปฏิกิริยาเคมีของ
เอนไซม์ไกลโคสิเดส และศักยภาพของการกลายพันธ์ุใน
การสร้างเอนไซม์ให้มีคุณสมบัติตามความต้องการได้ 
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