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ABSTRACT

Recent studies of the carbohydrate hydrolysis by glycosidase (GH) have shown that a
number of GH families undergo various unusual mechanisms, which differ from the known
classical mechanisms, including substrate-assisted catalysis, exogenous bases, alternative
nucleophiles and NAD-dependent hydrolysis. The main reason for such specific mechanisms is
the diversity of key amino acids, which function as a catalytic base/nucleophile. Mutation of the
catalytic base/nucleophile can have a profound impact on substrate specificity, producing
enzymes with new function roles and better activity. This principle can be applied in protein
engineering for the design and synthesis of proteins with specific properties and high efficiency.
Gaining the knowledge of GH mechanism, especially the catalytic diversity, is thus crucial and

has been updated in this review.
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nnAdiTin swAdefidnuAeIfuLeiiveaoules]
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(httpyAvwwvcazy.org/) (Cantarel et al, 2009)
nsissuiseveteuluiilnaladng 9y
Suannsdndasuiuduanmegasmiziazas
Tngieulwiunazyinasiianwasresmunuadniu
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wingladea asea GHL lagldudnnisnane

o ¢

wug v llaeuladludnliedudun anwddeuly

q

Apaglviardusiunnmdunuunsiulnaladiadu
(trans-glycosylation activity) unuwuulelasla@n
(hydrolytic activity) miﬂmaﬁuﬁ:%ﬁ@ﬁ%mmm
ihluatsimalnalalesdold  uenaneulesl
glycosynthase waifanuindiieulsidlnaladinaly

s

annangaseNaniindulalagldvdnnisnateiug

]

a1y wenlnaladna msena GHS (Honda and



590

KKU Science Journal Volume 41 Number 3

Review

Kitaoka, 2006) wagdavilnaladina asza GHI5
(Wada et al, 2008) a8nslsfinu fainssneanud
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994 (Rakic and Withers, 2009) UoNNIIEN
annsavlieulmisufiuduamsvildvanmanedy
Wy Llenaneiugdunistanalolndlueules
glycosynthase ﬁmﬁmmm%@ Humicola insolens
yaaeulwil cellulase Cel7B azaunsaLsIUfizen
wileanisérethanalumansrauessdilaile
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JUN 8 wansnalnmsiinufisenvuendelaurames NAD 1inluufisen (un: Yip et al, 2004,

Liu et al,, 2007)
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