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การแพร่ขยายแบบคลื่นในพลศาสตร์ประชากรเชิงชีวภาพ 
Wave Propagation in Biological Population Dynamics 

ไวพจน์ งามสอาด1 
 

บทคัดย่อ 
การเติบโตและการแพร่กระจายของประชากรเป็นปัญหาเชิงชีวภาพพื้นฐาน สมการฟิชเชอร์เป็น

แบบจ าลองที่ใช้กันอย่างกว้างขวางในระบบนี ้ในบทความนี้เราจะน าเสนอผลเฉลยของสมการฟิชเชอร์ที่แสดงให้เห็น
ถึงการแพร่ขยายแบบคลื่นในประชากร 
 

Abstract 
The growth and dispersal of populations are the fundamental biological problems. The 

Fisher equation is a model that has been widely used in this system. In this article, we present 
the solutions of the Fisher equation that indicate the wave propagation in populations. 
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บทน า 
ในปี ค.ศ. 1937 Fisher (Fisher, 1937) ได้ศึกษาปัญหาการแพร่ (diffusion) ของยีนกลายพันธุ์ 

(mutant gene) ในพันธุศาสตร์ประชากร (population genetics) ผ่านแบบจ าลองปฏิกิริยาการแพร่ (reaction-
diffusion model) จากผลเฉลย (solution) เขาพบว่าความหนาแน่นของประชากร (population density) มีการ
แพร่ขยาย (propagation) ในลักษณะคล้ายคลื่นที่มีรูปร่างคงตัวและเคลื่อนที่ด้วยอัตราเร็วคงที่ เรียกว่า “คลื่น
เคลื่อนที่” (traveling wave) ซึ่งผลเฉลยนี้ก็ตรงกับผลเฉลยของ Kolmogoroff Petrovsky และ Piscounoff 
(KPP) ที่ได้ศึกษาสมการปฏิกิริยาการแพร่ในปเีดียวกันนั้นเอง (ดูในเอกสารอ้างอิง (Murray, 2002) แทน) นับตั้งแต่
นั้นเป็นต้นมาปรากฏการณ์การแพร่ขยายแบบคลื่นจึงได้ดึงดูดความสนใจของนักวิทยาศาสตร์เชิงทฤษฎีอย่างยิ่ง ไม่
ว่าจะเป็น นักฟิสิกส์ นักคณิตศาสตร์ นักเคมี หรือ นักชีววิทยา ในปัจจุบันนี้การประยุกต์ใช้สมการ Fisher หรือ 
KPP (ต่อไปจะเรียกว่า สมการ Fisher-KPP) มิได้ถูกจ ากัดอยู่แต่ในเรื่องของพลศาสตร์ประชากรเชิงชีวภาพ 
(biological population dynamics) เพียงอย่างเดียวเท่านั้น สมการ Fisher-KPP ได้ถูกน ามาประยุกต์ใช้เพื่อ
อธิบายปรากฏการณ์ต่าง ๆ ที่เกิดขึ้นในธรรมชาติกันอย่างกว้างขวาง เช่น ทฤษฎีการเผาไหม้ (combustion 
theory) ปฏิกิริยาเคมี (chemical reaction) และ ปรากฏการณ์ขนถ่ายในพลาสมา (transport phenomena in 
plasma) (Murray, 2002) ดังนั้นในบทความเชิงปริทัศน์นี้เราจะน าเสนอการก่อเกิดคลื่นของการแพร่ขยายของ
ประชากรผ่านผลเฉลยของสมการ Fisher-KPP รวมถึงสมการที่ต่อยอดจากสมการ Fisher-KPP ด้วย ซึ่ง
ปรากฏการณ์แพร่ขยายแบบคลื่นนี้ยังคงเป็นที่สนใจของนักวิจัยมาจนถึงปัจจุบัน 

เราเริ่มต้นศึกษาปรากฏการณ์นี้โดยการพิจารณาพลศาสตร์ของประชากรในปริภูมิ 1 มิติ (1 
dimensional space) ที่อธิบายด้วยสมการเชิงอนุพันธ์ (differential equation) 
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โดยที่  ,u u x t  คือ ความหนาแน่นของประชากร (population density) ที่ต าแหน่ง x และ เวลา t  
(ประชากรในที่นี้อาจหมายถึงประชากรของสิ่งมีชีวิตหรืออนุภาคของสารเคมีก็ได้) j คือ ฟลักซ์ของประชากร 
(population flux) และ  f u  คือ ฟังก์ชันปฏิกิริยา (reaction function) ถ้าประชากรแต่ละตัวเคลื่อนที่แบบ 
บราวเนี่ยน (Brownian motion) หรือ เคลื่อนที่แบบสุ่ม (random motion) ฟลักซ์ของประชากรจะเป็นไปตาม
กฎของฟิกค์ (Fick’s law) กล่าวคือ ฟลักซ์ของประชากรจะแปรผันตรงกับเกรเดียนต์ของความหนาแน่นของ
ประชากร นั่นคือ 
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โดยที่ D  คือ สัมประสิทธิ์การแพร่ (diffusion coefficient) และเป็นค่าคงที่ (Murray, 2002) ฟลักซ์ของ
ประชากรนี้อธิบายถึงพฤติกรรมการแพร่ของระบบ กล่าวคือ ประชากรมีแนวโน้มที่จะกระจายตัวจากบริเวณที่มี
ความหนาแน่นสูงไปยังบริเวณที่มีความหนาแน่นต่ า เมื่อแทน (2) ลงใน (1) เราได้ 
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สมการ (3) นี้รู้จักกันในนาม “สมการปฏิกิริยาการแพร่” (reaction-diffusion equation) ถ้าพิจารณาที่ต าแหน่ง
คงที่ใด ๆ ( / 0u x   ) จากสมการ (3) เราพบว่า   /f u u t    ดังนั้นฟังก์ชันปฏิกิริยา  f u  นี้จึง
เท่ากับอัตราการเปลี่ยนแปลงความหนาแน่นของประชากรเทียบกับเวลาที่เกิดจากอันตรกิริยาภายใน Fisher 
(Fisher, 1937) ได้ใช้ฟังก์ชันปฏิกิริยาทีเ่ป็นไปตามกฎลอจิสติก (logistic law) คือ 
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โดยที ่  คือ ค่าคงท่ีในหน่วย 1/s และ su  คือ ความหนาแน่นอิ่มตัว (saturated density) กฎลอจิสติกนี้อธิบาย
ถึงการเพิ่มขึ้นของประชากรภายใต้ทรัพยากรที่มีอยู่จ ากัด โดยในช่วงแรก ( / 2su u ) ประชากรมีอัตราการ
เพิ่มขึ้นอย่างรวดเร็ว หลังจากนั้น ( / 2su u ) ประชากรเพิ่มขึ้นด้วยอัตราลดลงตามประชากรที่เพิ่มขึ้น และใน
ที่สุดเมื่อประชากรเพิ่มขึ้นจนถึงจุดอิ่มตัวที่ความหนาแน่น su  แล้วอัตราการเพิ่มของประชากรเป็นศูนย์ ดังนั้น
ความหนาแน่นของประชากรจึงถูกจ ากัดค่า กล่าวคือ 0 su u   เมื่อแทน (4) ลงใน (3) เราได้ 
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สมการ (5) นีเ้ป็นสมการเชิงอนุพันธ์ย่อยแบบไม่เชิงเส้น (nonlinear partial differential equation) ที่รู้จักกันใน
นาม “สมการฟิชเชอร์” (Fisher equation) ซึ่งเป็นสมการแบบไม่เชิงเส้นที่ง่ายที่สุด Fisher (Fisher, 1937) ได้
วิเคราะห์สมการ (5) และพบว่าผลเฉลยเป็นคลื่นเคลื่อนที่ท่ีมีอัตราเร็ว 2v D  และภายในปีเดียวกันนั้นกลุ่ม
ของ Kolmogoroff Petrovsky และ Piscounoff (KPP) ก็ได้ศึกษาสมการปฏิกิริยาการแพร่ (3) ในเชิงคณิตศาสตร์
ที่มากข้ึน (Murray, 2002) ซึ่งผลเฉลยของกลุ่มนี้สอดคล้องกับผลเฉลยของ Fisher นอกจากนั้นแล้ว KPP เสนอว่า
 f u เ ป็ นฟั ง ก์ ชั น ใดๆ  ที่ มี คุณสมบั ติ ดั ง นี้  คื อ  จะมี  1u  และ  2u  ที่  1u u  และ  2u u  แล้ ว 
   1 2 0f u f u   1 2u u u    1 0f u  แ ล ะ    1 2f u f u   ดั ง นั้ น ฟั ง ก์ ชั น ป ฏิ กิ ริ ย า 

ลอจิสติก (4) สอดคล้องกับเง่ือนไขดังกล่าว ยิ่งไปกว่านั้น KPP ยังพบว่าความหนาแน่นเริ่มต้น (initial density) 
ของประชากร    0 ,0u x u x  ที่มีการกระจายตัวแบบฟังก์ชันขั้นบันไดของเฮฟวีไซด์ (Heaviside step 
function) คือ 
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จะลู่เข้าสู่ (converge) ผลเฉลยที่เป็นคลื่นเคลื่อนทีเ่สมอ (Murray, 2002) 
ส าหรับประชากรเชิงชีวภาพ เช่น มนุษย์หรือสัตว์ การเคลื่อนที่แบบสุ่มอาจไม่สะท้อนความสมจริง

เนื่องจากสิ่งมีชีวิตมีกลไกของระบบประสาทท่ีซับซ้อนและมีความจ า การเคลื่อนที่จึงไม่ใช่การเดินสุ่ม ดังนั้นกฎของ
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ฟิกค์จึงต้องถูกดัดแปลงเพื่อให้สอดคล้องกับการเคลื่อนที่ของประชากรเชิงชีวภาพ ในปี ค.ศ. 1975 Gurney และ 
Nisbet (Gurney and Nisbet, 1975) เสนอว่าสิ่งมีชีวิตมักเคลื่อนที่เข้าหาแหล่งอาหารและหลีกเลี่ยงฝูงชน 
(crowd avoided movement) โดยอัตราเร็วของการเคลื่อนที่ขึ้นอยู่กับความหนาแน่นของประชากร ดังนั้น
สัมประสิทธ์ิการแพร่จึงไม่ใช่ค่าคงที่แต่แปรผันกับความหนาแน่นของประชากร นั่นคือ  D D u  ดังนั้นฟลักซ์
ของประชากรจึงกลายเป็น   /j D u u x     และเมื่อแทน j ลงในสมการ (1) เราได้ 
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ในกรณีที่ง่ายที่สุดเราสันนิษฐานว่าสัมประสิทธิ์การแพร่แบบนี้แปรผันตรงกับความหนาแน่นของประชากร นั่นคือ 
   0 / sD u D u u  โดยที่ 0D  คือค่าคงที่มีหน่วยเดียวกับสัมประสิทธิ์การแพร่ (Gurney and Nisbet, 

1975; Newman, 1980) ซึ่งหมายความว่าการแพร่เพิ่มขึ้นตามความหนาแน่นของประชากรที่มากขึ้นทั้งนี้เพื่อหลีก
หนีฝูงชนที่แออัดนั่นเอง เมื่อแทน  D u ลงในสมการ (7) เราได้ 
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สมการ (8) นี้เรียกว่า “สมการปฏิกิริยาการแพร่ขึ้นกับความหนาแน่น” (density-dependent reaction-
diffusion equation) หรือในท่ีนี้เราเรียกว่า “สมการขยาย Fisher-KPP” (extended Fisher-KPP equation) ใน
ปี ค.ศ. 1980 Newman (Newman, 1980) และ Aronson (ดูในเอกสารอ้างอิง (Murray, 2002) แทน) ต่างได้
ศึกษาสมการ (8) นี้และพบผลเฉลยแบบคลื่นเคลื่อนทีโ่ดยมีอัตราเร็วคลื่นที่น้อยสุด คือ min / 2v D ต่อมาใน
ปี ค.ศ. 1977 Gurtin และ MacCamy (Gurtin and MacCamy, 1977) ได้ขยายสัมประสิทธิ์การแพร่ให้อยู่ในรูป
ทั่วไปมากขึ้น คือให้    0 / p

sD u D u u  โดยที่ 0p   และในปี ค.ศ. 1983 Newman (Newman, 1983) 

ได้เขียนฟังก์ชันปฏิกิริยาลอจิสติกในรูปทั่วไปเช่นกัน คือ  1 / p
su u u     ดังนั้นสมการ (7) ที่อยู่ในรูปทั่วไป 

คือ 

    
0 1 ; 0

p p

s s

u u u uD u p
t x u x u


                            

   (9) 

โดย p บ่งบอกถึงระดับของการตอบสนองต่อความกดดันอันเนื่องมาจากความหนาแน่นของประชากรที่เพิ่มขึ้น 
กล่าวคือ ถ้า p มีค่ามากประชากรมีแนวโน้มที่จะแพร่ออกจากบริเวณนั้นเร็วขึ้นแต่อัตราการเกิดจะลดลง และผล
เฉลยในรูปแบบคลื่นเคลื่อนที่ของสมการ (9) ได้ถูกค้นพบโดย Newman (Newman, 1983) นั่นเอง โดยในกรณีนี้
อัตราเร็วคลื่นที่น้อยสุด คือ  min / 1v D p   ซึ่งรายละเอียดของการวิเคราะห์ผลเฉลยของสมการ 
Fisher-KPP แบบต้นฉบับ (5) และสมการขยาย Fisher-KPP (9) จะน าเสนอในหัวข้อต่อไป 
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ผลเฉลยแบบคลื่นเคลื่อนที่ของสมการ Fisher-KPP และ สมการขยาย Fisher-KPP 
หัวข้อนี้น าเสนอผลเฉลยแบบคลื่นเคลื่อนที่ของสมการ Fisher-KPP (5) และ สมการขยาย Fisher-KPP 

(9) โดยเราจะวิเคราะห์เง่ือนไขบางประการที่ก่อให้เกิดการแพร่ขยายแบบคลื่นเคลื่อนที่ในระบบประชากรเชิง
ชีวภาพ โดยในบทความน้ีเราพยายามใช้เทคนิคทางคณิตศาสตร์เท่าที่จ าเป็น ส าหรับผู้ที่สนใจการวิเคราะห์ทาง
คณิตศาสตร์ขั้นสูง ขอให้ท่านศึกษาจากเอกสารอ้างอิง (Murray, 2002) ก่อนอื่นเพื่อให้ง่ายเราพิจารณาสมการ (5) 
ในระบบที่ไร้หน่วย (dimensionless system) ซึ่งได้ซ่อน 3 พารามิเตอร์ที่วัดได้ยากในระบบจริงไว้ คือ   D  
และ su  โดยเรานิยามตัวแปรใหมด่ังนี ้

        
* * *, ,

s

uu t t x x
u D

       (10) 

เมื่อแทน (10) ลงใน (5) เราได้สมการ Fisher-KPP แบบไร้หน่วย คือ 

    
 

2

2 1u u u u
t x

 
  

 
    (11) 

(สัญลักษณ์ * ถูกเอาออกเพื่อความสะดวกในการอ่าน) (Murray, 2002) ในระบบไร้หน่วยนี้ความหนาแน่นของ
ประชากรจึงถูกจ ากัดค่าอยู่ที่ 0 1u   โดยเราสังเกตว่าสมการ (11) มีสถานะสมดุล (equilibrium state) equ  
อ ยู่ ส อ ง ค่ า  คื อ  {0,1}equ   โ ด ย พิ จ า ร ณ า จ า ก  /equ t  = 2 2/equ x  = 0  นั่ น คื อ 

   1 0eq eq eqf u u u    
ถ้าความหนาแน่นของประชากรมีการแพร่ขยายแบบคลื่นเคลื่อนทีไ่ปทางขวามือ เราจะหาค าตอบท่ีอยู่ใน

รูปของ 

              , ;u x t z z x vt       (12) 

โดยที่  z เป็นโพรไฟล์คลื่น (wave profile) 0v   คือ อัตราเร็วคลื่น (wave speed) และ z  เรียกว่าตัวแปร
คลื่น (wave variable) (Murray, 2002) เราค านวณอนุพันธ์ของ u  ในตัวแปรคลื่นโดยการใช้กฎลูกโซ่ (chain 
rule) นั่นคือ /u t   =   / /z z t     = v  และ /u x   =   / /z z x     =   เมื่อ
แทนพจน์เหล่านี้ลงในสมการ (11) เราได้  1v         หรือจัดรูปใหม่เป็น 

    
2 0v             (13) 

เราจะเห็นว่าเมื่อแทนผลเฉลยในรูปแบบคลื่นในสมการ (12) แล้วสมการ (11) ลดรูปกลายเป็นสมการเชิงอนุพันธ์
สามัญแบบไม่เชิงเส้น (nonlinear ordinary differential equation) แต่อย่างไรก็ตามการหาผลเฉลยของสมการ 
(13) ก็ยังไม่ง่ายเนื่องจากมีพจน์ 2  แต่ในกรณีที่ความหนาแน่นของประชากรมีค่าน้อย ๆ 0   พจน์ 2  
สามารถละทิ้งได้ ดังนั้นโดยการประมาณนี้สมการ (13) กลายเป็น 

        0v           (14) 
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ซึ่งก็คือสมการเชิงอนุพันธ์สามัญแบบเชิงเส้น (linear ordinary differential equation) ทีม่ีผลเฉลยทั่วไป คือ 

  zz e       (15) 

โดยที่   คือ ค่าลักษณะเฉพาะ (eigenvalue) เราพิจารณาค่าของ   โดยการแทน (15) ลงใน (14) และพบว่า 

  

2
2 41 0

2
v vv     

        (16) 

 
รูปที่ 1 กราฟแสดงผลเฉลยแบบคลื่นเคลื่อนที่ไปทางขวามือ (21) ด้วยอัตราเร็วคงที่ v  ของสมการ Fisher-KPP 

(13) โดยท่ีเวลา 0t   โพรไฟล์ความหนาแน่นของประชากร มีรูปร่างใกล้เคียงกับฟังก์ชันขั้นบันไดของ
เฮฟวีไซด์ (6) โดยที่ 1su  และ 0 0x   

 

เนื่องจากความหนาแน่นของประชากรไม่เป็นลบท าให้ผลเฉลย (15) ต้องไม่อยู่ในรูปของไซน์ (sine) หรือโคไซน์ 
(cosine) ดังนั้นค่าของ   จึงไม่เป็นจ านวนเชิงซ้อน จากสมการ (16) เมื่อพิจารณาพจน์ที่อยู่ในรากที่สอง เรา
พบว่าค่าของ   เป็นจ านวนจริงก็ต่อเมื่อ 2v   หรือกล่าวได้ว่าอัตราเร็วคลื่นที่น้อยสุดที่ก่อให้เกิดผลเฉลยแบบ
คลื่นเคลื่อนที่ คือ min 2v   ถ้าแปลงค่าให้อยู่ในหน่วยจริงแล้วเราได้ 

       min 2v v D       (17) 

ส าหรับในกรณีที่ฟังก์ชันปฏิกิริยา  f u อยู่ในรูปทั่วไปและมีคุณสมบัติตามที่เสนอโดย KPP แล้ว สมการ (13) 
กลายเป็น 

       0v f          (18) 

และเช่นเดียวกัน เราพิจารณาในกรณีพิเศษท่ีความหนาแน่นของประชากรมีค่าน้อย ๆ 0   เมื่อกระจายอนุกรม
เทเลอร์ (Taylor series expansion) รอบจุด 0  ไปจนถึงอันดับที่ 1 ของฟังก์ชันปฏิกิริยาแล้ว เราได้ 
     0 0f f f    เนื่องจากที่จุดสมดุล  0 0f   ดังนั้นเราพบว่า    0f f   เมื่อแทน

พจน์นี้ลงในสมการ (18) เราได้ 

                0 0v f           (19) 
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เมื่อก าหนดให้ผลเฉลยของสมการ (19) มีรูปแบบเหมือนสมการ (15) เราได้ค่าของ   คือ 

     
   2

2 4 0
0 0

2
v v f

v f  
  

       (20) 

และเช่นเดียวกัน เมื่อพิจารณาพจน์ที่อยู่ ในรากที่สองของ (20) ค่าของ   เป็นจ านวนจริงก็ต่อเมื่อ 

 2 0v f   หรือเรากล่าวได้ว่า อัตราเร็วคลื่นน้อยสุดที่ก่อให้ เกิดผลเฉลยแบบคลื่นเคลื่อนที่  คือ 

 min 2 0v f   และในกรณีของฟังก์ชันปฏิกิริยาลอจิสติก    1f u u u   เราพบว่า  0 1f    ซึ่ง
ท าให้เราได้ min 2v   ซึ่งเท่ากับในกรณีแรกที่กล่าวมา 

จากการวิเคราะห์ที่ผ่านมาเราได้ผลเฉลยเมื่อความหนาแน่นของประชากรมีค่าน้อย ๆ นั่นคืออยู่ใน
ช่วงเวลาแรกเท่านั้น ต่อมา Ablowitz และ Zeppetella (Ablowitz and Zeppetella, 1979) ได้พบผลเฉลยใน

กรณีท่ัวไปของสมการ Fisher-KPP (13) โดยมีรูปแบบ คือ    1
sbzz ae


   โดยที่ a  b และ s เป็น

ค่าคงท่ี จากการแทนผลเฉลยนี้ลงในสมการ (13) เราได้ค่า 2 1a    1/ 6b   และ 2s   ยิ่งไปกว่านั้น
ผลเฉลยนี้ให้อัตราเร็วคลื่น 5 / 6 2.04v    (Murray, 2002) ดังนั้นเราสรุปผลเฉลยของสมการ Fisher-KPP 
(13) ในกรณีพิเศษน้ี คือ 

           
     

25 / 6
6, 1 2 1

x t
z x t e 


 
 

 
 
    
  

   (21) 

กราฟของ (21) แสดงในรูปที่ 1 โดยทีเ่วลาเริ่มต้น 0t   เราจะเห็นได้ว่า  ,0x  นี้มีรูปร่างใกล้เคียงกับฟังก์ชัน
ขั้นบันไดของเฮฟวีไซด์ในสมการ (6) 

ต่อไปเราพิจารณาผลเฉลยของสมการขยาย Fisher-KPP โดยในระบบไร้หน่วยนี้ สมการ (9) เขียนได้เป็น 

          
 1p pu uu u u

t x x
         

    (22) 

เมื่อแทนผลเฉลยแบบคลื่น (12) ลงใน (22) เราได้ 

     
 1 0p pd d dv

dz dz dz
         

 
   (23) 

จากการนิยามตัวแปรใหม่ คือ 1 /p d dz   =    และตามด้วยการใช้กฎลูกโซ่ เราได้ /d dz  = 
  / /d d d dz   =   1/ /p d d    จากนั้นแทนพจน์เหล่านี้ลงใน (23) จากการค านวณเราได้ 

    
 d 1 0

d
p pv  


 

      
 

    (24) 

เราก าหนดใหผ้ลเฉลยของสมการ (24) อยู่ในรูปของ 
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         1 p          (25) 

โดยที่  เป็นพารามิเตอร์ที่จะถูกค านวณภายหลัง เมื่อแทน (25) ลงใน (24) แล้วเราได้ 

        1 0p pv p               (26) 

โดยการเทียบสัมประสิทธ์ิ เราพบว่า 

     

 
 2

        0

1 1 0

v

p

 



 

   
     (27) 

จากการแก้สมการ (27) เราได้ 

  

1;
1

v
p

    


    (28) 

ในที่นี้ เราสนใจคลื่นที่ เคลื่อนที่ไปทางขวามือ ( 0v  ) ดังนั้นเราจึงเลือกค่า  1/ 1p     ที่ท าให้
อัตราเร็วคลื่น v มีค่าเป็นบวก เมื่อแทนค่าต่าง ๆ ลงในสมการ (25) เราได้ 

     
   1 d 1 1

d 1
p p

z p
      


   (29) 

หลังจากจัดรูปสมการ (29) ใหม่แล้วเราได้ 

 d 1
d 1

p pp
z p
   


    (30) 

ถ้าก าหนดให้ p   แล้วเราพบว่าสมการ (30) กลายเป็น  -11 d   =  / 1 dp p z   ซึ่งก็คือ

สมการเชิงอนุพันธ์สามัญอันดับ 1 เมื่ออินทิเกรตทั้งสองข้างเราได้  ln 1   =   0/ 1p p z z   โดยที่ 

0z  คือ ค่าคงที่ของการอินทิเกรต และเมื่อจัดรูปแล้วเราได้ผลเฉลยของโพรไฟล์คลื่น คือ (Newman, 1983; 
Murray, 2002) 

   
   

1/

01 exp
1

p
pz z z

p


       
    

   (31) 

เราสังเกตจากผลเฉลยว่าเมื่อ z  แล้ว   1z   และเพื่อไม่ให้ค่าโพรไฟล์คลื่นของความหนาแน่นของ
ประชากรเป็นลบหรือจ านวนเชิงซ้อนซึ่งไม่มีความหมายทางกายภาพ ดังนั้นพจน์ในวงเล็บปีกกาต้องไม่เป็นลบ 
กล่าวคือ  0exp / 1 1p z z p      จากการแก้อสมการนี้เราพบว่า 0z z  ดังนั้นเราจึงก าหนดให้ 

  0z  เมื่อ 0z z  เราจะเห็นว่า 0z  นี้ก็คือ “ต าแหน่งขอบสุดของการแพร่ขยาย” ที่แสดงให้เห็นว่าใน
แบบจ าลองขยาย Fisher-KPP นี้ประชากรจะแพร่ขยายในบริเวณที่จ ากัด ซึ่งในข้อนี้ต่างจากผลเฉลยของสมการ 
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Fisher-KPP แบบต้นฉบับที ่   0z   เมื่อ z   ซึ่งบ่งบอกว่าประชากรจะแพร่ขยายไปจนถึงระยะอนันต์
ซึ่งไม่สมจริงส าหรับประชากรเชิงชีวภาพที่ครอบคลุมพื้นที่ในบริเวณที่จ ากัด  ดังนั้นเราเรียกผลเฉลย (31) นี้ว่า 
“คลื่นเคลื่อนที่กระชับ” (compact traveling wave) 

ถึงแม้ว่าผลเฉลยแบบคลื่นเคลื่อนที่ของสมการ Fisher-KPP ได้ถูกค้นพบมาแล้วกว่า 70 ปี (Fisher, 
1937) และผลเฉลยของสมการขยาย Fisher-KPP ก็เช่นกันได้ถูกค้นพบมาแล้วกว่า 30 ปี (Newman, 1980; 
Newman, 1983) แต่ผลเฉลยชัดแจ้ง (explicit solution) ในตัวแปร x และ t (ที่ไม่ใช่ในตัวแปรคลื่น z ) ของ
สมการเหล่านี้ยังไม่ค่อยเป็นที่เข้าใจ Barenblatt และ Zel'dovich (Barenblatt and Zel'dovich, 1972) ได้
เสนอว่าผลเฉลยแบบคลื่นเคลื่อนที่นี้เป็นพฤติกรรมเชิงเส้นก ากับระหว่างกลาง (intermediate asymptotics) โดย
เกิดจากการลู่เข้าของผลเฉลยชัดแจ้งรูปแบบหนึ่งเมื่อเวลาผ่านไปมาก ๆ t   แต่ผลเฉลยชัดแจ้งที่ว่านี้ก็ยังไม่
ถูกค้นพบ จนกระทั่งเมื่อไม่นานมานี้ ในปี ค.ศ. 2002 Rosenau (Rosenau, 2002) ได้ศึกษาสมการขยาย Fisher-
KPP และเขาพบว่าสมการ (22) สามารถลดรูปจากสมการปฏิกิริยาการแพร่ให้กลายเป็นสมการการแพร่ล้วน ๆ โดย
การแปลงตัวแปรใหม่ดังน้ี 

          1/ 21, , ; 1 ; ; 1 1
1

m tt x m xu x t e e w x t t e R x e m p
m

       


 (32) 

(ในกรณีนี้ตัวแปร x แปลงจากหน่วยจริง คือ 0/x m D ) เมื่อแทนตัวแปรทั้งหมดใน (32) ลงใน (22) เราได้ 

    
 

2
3 1 / 2

24 m mw wR
R

 


 
    (33) 

ถึงแม้ปัญหาจะลดรูปลงกลายเป็นสมการ (33) แต่สมการนี้ยังไม่มีผลเฉลย ในกรณีที่ 1p   ( 2m  ) Rosenau 
(Rosenau, 2002) พบว่าผลเฉลยแบบคลื่นเคลื่อนที่เกิดจากผลเฉลยชัดแจ้งในรูปแบบหนึ่ง เขาได้น าเสนอผลเฉลย
นั้น คือ 

          
 

 

1/ 4

1/ 2, 1
1 1

te Ru x t
 

 
  

   
    (34) 

โดยที่ 1te    ซึ่งผลเฉลย (34) นี้ก็คือ  , 1 exp / exp 1 exp
2 2 2
x t x tu x t      

 
 ซึ่งที่จริงแล้ว

เป็นคลื่นเคลื่อนที่ที่มีอัตราเร็ว min 1v   ( / 2D  ในหน่วยจริง) เหมือนผลเฉลยของ Newman (Newman, 
1980) นั่นเอง แต่ผลเฉลยของ Rosenau (Rosenau, 2002) นี้ท าให้เราเข้าใจกระบวนการเกิดคลื่นในระบบนี้
ยิ่งขึ้น ต่อมาในปี ค.ศ. 2004 Harris (Harris, 2004) ได้ศึกษาในกรณีเดียวกันกับ Rosenau (Rosenau, 2002) 
และพบผลเฉลยชัดแจ้งในรูปทั่วไปมากขึ้น คือ 
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 

   
1/ 4 / 2

2 2
1/ 2 1/ 2

1 11 1

, 1 1
1 1

xt t

t t

c R c ee eu x t
c e cc e c 

  
     
         

  (35) 

โ ด ย ที่  1c  แ ล ะ  2c  เ ป็ น ค่ า ค ง ที่  แ ล ะ เ มื่ อ  t   เ ร า พบ ว่ า   ,u x t  ลู่ เ ข้ า สู่ ค ลื่ น เ ค ลื่ อ น ที่ 

  21 exp
2

x tx t c 
    ซึ่งสอดคล้องกับผลเฉลยของ Newman (Newman, 1980) และ Rosenau 

(Rosenau, 2002) และล่าสุดในขณะที่ก าลังเขียนบทความนี้ ผู้เขียนและผู้ร่วมงาน (Ngamsaad and 
Khompurngson, 2012) ได้ปรับปรุงการแปลงของ Rosenau (Rosenau, 2002) เพื่อที่จะท าให้สมการลดรูป 
(33) หาผลเฉลยได้ โดยเราก าหนดตัวแปรใหม่ดังนี้ คือ 

            1 1 // 1, , ; 1 ; ; 1 1
1

m t m x mt x mu x t e e w x t t e R x e m p
m

        


    (36) 

เมื่อแทน (36) ลงใน (22) เราได้ 

      
 

2
3 1 / 21 m mw m wR

m R R
               

   (37) 

ซึ่งสมการ (37) นีรู้้จักกันในนาม “สมการการแพร่ผิดธรรมดา” (anomalous diffusion) ซึ่งผลเฉลยของสมการนี้
ได้ถูกวิเคราะห์แล้วโดย Tsallis และ Lenzi (Tsallis and Lenzi, 2002) ดังนั้นเราขอสรุปผลเฉลยแบบชัดแจ้ง
ส าหรับสมการขยาย Fisher-KPP (22) ที่ถูกค้นพบใหม่นี้ คือ 

   
 

 

  1/1/ 1

21/
11

, 1
11

ppt px

p ptpt

e eu x t c
e ce c

  
          

  (38) 

โดยเราจะเห็นว่าเมื่อ t   ผลเฉลยนีลู้่เข้าสู่ค าตอบท่ีเป็นคลื่นเคลื่อนทีก่ระชับ 

               1// 1
21

pp x t px t c e           (39) 

โดยที่อัตราเร็วคลื่นเท่ากับ min 1v   (  / 1D p  ในหน่วยจริง) (Ngamsaad and Khompurngson, 
2012) ซึ่งสอดคล้องกับผลเฉลยที่ค้นพบโดย Newman (Newman, 1983) เราสังเกตจากผลเฉลยว่าเมื่อ 
z แล้ว   1z   และเช่นเดียวกันเราก าหนดให้   0z   เมื่อ 0z z  เพื่อไม่ให้ค่าโพรไฟล์คลื่น
ของความหนาแน่นของประชากรไม่มีความหมายทางกายภาพ เมื่อค านวณต าแหน่งขอบสุดของการแพร่ขยายจาก
เงื่อนไข  0 0z   เราได้  0 21 ln /z t p c p    นอกจากน้ีจากสมการ (38) เราจะเห็นว่าระบบพัฒนา
จากความหนาแน่นของประชากรเริ่มต้นในรูปแบบเฉพาะ คือ 
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   (40) 

ซึ่งจะลู่เข้าผลเฉลยที่เป็นคลื่นเคลื่อนที่ตามสมการ (39) เมื่อเวลาผ่านไปมาก ๆ t   กระบวนการลู่เข้าสู่คลื่น
เคลื่อนที่จากผลเฉลยชัดแจ้งนี้สอดคล้องกับพฤติกรรมเชิงเส้นก ากับระหว่างกลาง ดังที่ได้อธิบายโดย Barenblatt 
และ Zel'dovich (Barenblatt and Zel'dovich, 1972) จากเง่ือนไขเริ่มต้นนี้ท าให้เราสามารถค านวณค่า 

 1/
1 0limp

xc u x 
  และ    

0
1/ 1

2 1

ppxc c e
  โดยที่ 0x  เป็นต าแหน่งขอบสุดเริ่มต้น ผลเฉลย 

(38) นี้ถูกสาธิตในรูปที่ 2 โดยเราจะเห็นว่าระบบเริ่มจากความหนาแน่นของประชากรเริ่มต้นที่เวลา 0t   ตาม
สมการ (40) จากนั้นความหนาแน่นของประชากรเพิ่มขึ้นและแพร่ขยายออกไปทางขวามือ ในบริเวณที่ห่างจากขอบ
สุดของการแพร่ขยายมาก ๆ 0zx   เมื่อเวลาผ่านไปจนถึงเวลาหนึ่งความหนาแน่นของประชากรถึงจุดอิ่มตัว 

1su   และหลังจากนั้นความหนาแน่นของประชากรจะเริ่มแพร่ขยายแบบคลื่นเคลื่อนที่เมื่อเวลามาก ๆ t   
ด้วยอัตราเร็วท่ีคงที่ ดังท่ีได้อธิบายผ่านมา 
 

 
รูปที่ 2 กราฟแสดงผลเฉลยจากสมการ (38) ในกรณีที่ 4p   0.2   และ 0 1x   โดยโพรไฟล์ของความ

หนาแน่นของประชากรเริ่มต้นที่ 0t   เป็นไปตามสมการ (40) และจะเริ่มแพร่ขยายแบบคลื่นเคลื่อนที่
ด้วยอัตราเร็วคงที่ v  เมื่อเวลาผ่านไปมาก ๆ t   

 

ผลเฉลยแบบคลื่นเคลื่อนที่นี้ได้รับการยืนยันจากการทดลองที่ได้ศึกษาการก่อรูปแบบของโคโลนีของ
ประชากรแบคทีเรียในจานเลี้ยงเช้ือ (Kawasaki et al., 1997; Ben-Jacob et al., 2000) ซึ่งระบบนี้สามารถ
อธิบายได้ด้วยสมการ (22) โดยพวกเขาพบว่าโคโลนีของแบคทีเรียมีการแพร่ขยายแบบคลื่นเคลื่อนที่ในแนวรัศมี 
โดยมีอัตราเร็วของการขยายโคโลนีคงที่ (Kawasaki et al., 1997) ซึ่งสอดคล้องกับทฤษฎีที่เราได้กล่าวมา แต่
อย่างไรก็ตามการทดลองที่วัดปริมาณทางกายภาพอื่น ๆ เพื่อน ามาเปรียบเทียบกับทฤษฎีนั้นยังคงท าได้ยาก 
โดยเฉพาะการวัดความหนาแน่นของประชากรตามต าแหน่งและเวลา 
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สรุป 
ในบทความนี้เราได้ศึกษาการแพร่ขยายแบบคลื่นเคลื่อนที่ของความหนาแน่นของประชากรเชิงชีวภาพที่

ถูกอธิบายผ่านสมการ Fisher-KPP และสมการขยาย Fisher-KPP แม้ถึงว่าผลเฉลยของสมการ Fisher-KPP และ
สมการขยาย Fisher-KPP ที่แสดงถึงการก่อเกิดคลื่นของการแพร่ขยายของความหนาแน่นของประชากรเป็นที่
เข้าใจกันอย่างดีแล้ว แต่สมการขยาย Fisher-KPP ทีอ่ยูใ่นรูปทั่วไปยิ่งขึ้น กล่าวคือ 

p q ru uu u u
t x x

         
 

โดยที่ p q และ r เป็นจ านวนจริง ยังไม่มีผลเฉลยชัดแจ้ง ดังนั้นการศึกษาวิจัยในสมการนี้ยังเป็นสิ่งที่น่าสนใจและ
ท้าทายอย่างยิ่ง 
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