

แนวเดินแฟ่ทั่วที่สั้นที่สุด

On the Length of a Shortest Spanning Walk

Wasamon Jantai¹

บทคัดย่อ

แนวเดินแฟ่ทั่วของกราฟ คือ แนวเดินที่บรรจุจุดยอดทุกจุดในกราฟ จุดประสงค์ของบทความนี้ เพื่อหา จำนวนเส้นเชื่อมของแนวเดินแฟ่ทั่วที่สั้นที่สุดในกราฟเชื่อมโยง G ที่มีจุดยอด n จุด ขอบเขตของการศึกษา คือ สนใจจุดยอดเริ่มต้นและสุดท้าย, สนใจจุดยอดเริ่มต้น และไม่สนใจจุดยอดเริ่มต้นและสุดท้าย

ให้ $u, v \in V(G)$ กำหนด $w_2(G)$ คือ จำนวนเส้นเชื่อมของแนวเดินแฟ่ทั่วที่สั้นที่สุดที่มีจุดปลายที่ u และ v เมื่อ $u \neq v$, $w_1(G)$ คือ จำนวนเส้นเชื่อมของแนวเดินแฟ่ทั่วที่สั้นที่สุดโดยเริ่มต้นที่ v , และ $w_0(G)$ คือ จำนวนเส้นเชื่อมของแนวเดินแฟ่ทั่วที่สั้นที่สุด จะเห็นได้ชัดว่า $w_i(G_1) = 0$ และ $w_i(G_2) = 1$ สำหรับ $i = 0, 1, 2$ เมื่อ G_j คือกราฟเชื่อมโยงที่มีจุดยอด $j = 1$ หรือ 2 จุด สำหรับ $n \geq 3$ เราหาขอบเขตแต่ละค่าซึ่ง ทุกขอบเขตเป็นค่าที่ดีที่สุด และสรุปความสัมพันธ์แต่ละกรณีได้ดังนี้

$n-1 \leq w_2(G) \leq 2n-3;$
$n-1 \leq w_1(G) \leq 2n-3;$
$n-1 \leq w_0(G) \leq 2n-4.$

และสำหรับ $k \in \mathbb{N}$ ที่อยู่ระหว่างค่าขอบเขตบนและขอบเขตล่างของ w_i สำหรับ $i = 0, 1, 2$ จะมีกราฟ G ที่มีจุดยอด n จุด ที่ $w_i(G) = k$

¹Department of Mathematics, Faculty of Science, Khon Kaen University, Thailand

E-mail: wassymon_mommam@hotmail.com

ABSTRACT

A spanning walk of a graph is a walk that contains all vertices in a graph. The purpose of this article is to find number of edges of a shortest spanning walk of a connected graph G with n vertices. There are 3 cases in the scope of the study: a shortest spanning walk with respect to fixed endpoints; a shortest spanning walk with respect to a fixed initial vertex and a shortest spanning walk without any restriction.

Define $w_2(G) = \max_{u,v \in V(G)} \{ \text{number of edges of a shortest spanning walk with endpoints } u \text{ and } v \text{ where } u \neq v \}$, $w_1(G) = \max_{v \in V(G)} \{ \text{number of edges of a shortest spanning walk that starts at } v \}$, and $w_0(G) = \text{number of edges of a shortest spanning walk}$. It is obvious that $w_i(G_1) = 0$ and $w_i(G_2) = 1$ for $i = 0, 1, 2$ and a connected graph G_j with $j = 1$ or 2 vertices. We find bounds on each parameter in which all bounds are sharp for $n \geq 3$ as follows

$n-1 \leq w_2(G) \leq 2n-3;$
$n-1 \leq w_1(G) \leq 2n-3;$
$n-1 \leq w_0(G) \leq 2n-4.$

Moreover for each k between lower bound and upper bound of any w_i , there exists a graph G with n vertices and $w_i(G) = k$.

คำสำคัญ: แนวเดิน แนวเดินแผ่ทั่ว ทฤษฎีกราฟ

Keywords: Walk, Spanning walk, Graph theory

Introduction

In this paper, we introduce and study a concept of a spanning walk of a graph. We characterize a shortest spanning walk with respect to fixed endpoints, a shortest spanning walk with respect to a fixed initial vertex and a shortest spanning walk without any restriction. The main purpose of this paper is to obtain theorems of number of edges of a shortest spanning walk.

Main Result

A shortest spanning walk with fixed endpoints

Definition: For a connected graph G , let $w_2(G) = \max_{u,v \in V(G)} \{ \text{number of edges of a shortest spanning walk with endpoints } u \text{ and } v \text{ where } u \neq v \}$.

Observation: It is obvious that $w_2(G_1) = 0$ and $w_2(G_2) = 1$

Theorem 1: Let G be a connected graph of order n for $n \geq 3$. Then

- (a) $w_2(G) \leq 2n - 3$ and the bound is sharp;
- (b) $w_2(G) \geq n - 1$ and the bound is sharp;
- (c) If $n - 1 \leq k \leq 2n - 3$, then there is a graph H of order n such that $w_2(H) = k$.

Proof: Let $n \geq 3$

- (a) We first show that $w_2(G) \leq 2n - 3$.

Note that we can show inequality by considering only a shortest spanning walk in a spanning tree of a connected graph. Thus we may assume that G is a tree only.

Let $P(n)$ be the statement “if G is a tree of order n , then $w_2(G) \leq 2n - 3$ for all $n \in \mathbb{N}$ such that $n \geq 3$ ”.

If $n = 3$, then G is a path P_3 . So $w_2(G) = 3 = 2 \cdot 3 - 3$, that is $P(3)$ is true.

Assume that $P(k)$ is true for some $k \geq 3$.

It is well known that any tree of order $n \geq 2$ has $n - 1$ edges and at least two vertices of degree 1. Let G be a tree of $k + 1$ vertices. Then $E(G) = k$ and there are at least 2 vertices of degree 1. Note that a tree has exactly two vertices with degree 1 if and only if it is a path.

Let $u, v \in V(G)$ such that u is the initial vertex and v is the final vertex of a walk. Let $x \in V(G)$ such that $d(x) = 1$. We choose $x \neq u$ and $x \neq v$ if possible.

We want to show that there exists a uv -spanning walk of length at most $2k - 1$.

Case 1: $x \neq u$ and $x \neq v$.

Put $G' = G - x$. Then $|V(G')| = k$. Since $P(k)$ is true, $w_2(G') \leq 2k - 3$. Thus there is a uv -spanning walk W in G' with the length at most $2k - 3$. Adding an edge from W to x and from x to W , we have a uv -spanning walk in G with length at most $2k - 1$.

Case 2: $x = u$ or $x = v$.

By the choice of x , the graph G must be a path with endpoints u and v . Thus there exists a uv -spanning walk in G with length k .

Hence, $P(k + 1)$ is true.

Therefore by mathematical induction, $P(n)$ is true for all $n \in \mathbb{N}$ such that $n \geq 3$.

To show that the bound is sharp, we illustrate that there is a graph G such that $w_2(G) = 2n - 3$.

Consider a path P_n as shown in figure 1.

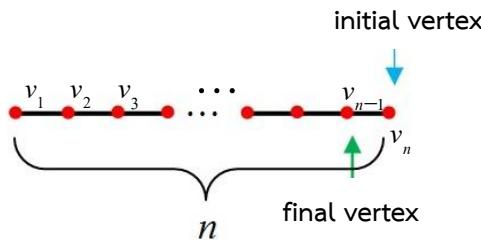


Figure 1.

Notice that a shortest spanning walk from v_n to v_{n-1} in P_n has length $2n - 3$. Thus there is a graph G such that $w_2(G) = 2n - 3$. This completes the proof of (a)

(b) Since every spanning walk of G has length at least $n - 1$, we have $w_2(G) \geq n - 1$.

Consider a complete graph K_n as shown in figure 2.

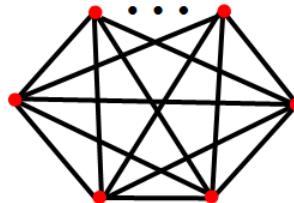


Figure 2.

Note that for any two vertices in K_n , we have a spanning walk of length $n - 1$ with those two vertices as endpoints. Hence we have a graph G such that $w_2(G) = n - 1$.

(c) Suppose that $n - 1 \leq k \leq 2n - 3$ and $l = k - n + 1$.

Consider a graph G as shown in figure 3.

Note that there is a shortest spanning walk with fixed vertices as in figure 3 which has length $n + l - 1 = n + k - n + 1 - 1 = k$.

Thus there exists a graph G of order n such that $w_2(G) = k$.

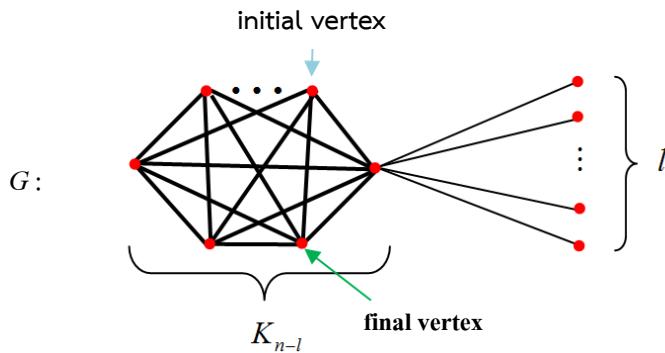


Figure 3.

A shortest spanning walk with fixed initial vertex

Definition: For a connected graph G , let $w_1(G) = \max_{v \in V(G)} \{\text{number of edges of a shortest spanning walk that starts at } v\}$.

Observation: It is obvious that $w_1(G_1) = 0$ and $w_1(G_2) = 1$.

Theorem 2: Let G be a connected graph of order n for $n \geq 3$. Then

- (a) $w_1(G) \leq 2n-3$ and the bound is sharp;
- (b) $w_1(G) \geq n-1$ and the bound is sharp;
- (c) If $n-1 \leq k \leq 2n-3$, then there is a graph G of order n such that $w_1(G) = k$.

Proof: Let $n \geq 3$

- (a) Since $w_1(G) \leq w_2(G)$, we have $w_1(G) \leq 2n-3$.

Next we show that there is a graph G such that $w_1(G) = 2n-3$.

Consider a complete bipartite graph $K_{1, n-1}$ as shown in figure 4.

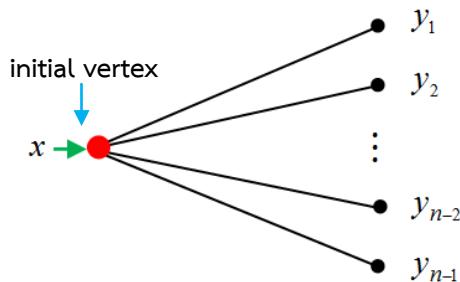


Figure 4.

We see that a walk $xy_1xy_2 \dots xy_{n-2}xy_{n-1}$ is the walk of length $2n-3$ and this is a shortest spanning walk. So we have a graph G such that $w_1(G)=2n-3$.

(b) Since every spanning walk of G has length at least $n-1$, we have $w_1(G) \geq n-1$.

Consider a cycle C_n as shown in figure 5.

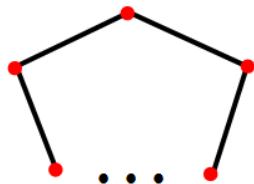


Figure 5.

Note that for every vertex in C_n , We have a spanning walk such that the length of walk is $n-1$.

Hence we have a graph G such that $w_1(G)=n-1$.

(c) Suppose that $n-1 \leq k \leq 2n-3$ and $l=k-n+1$.

Consider a graph G as shown in figure 6.

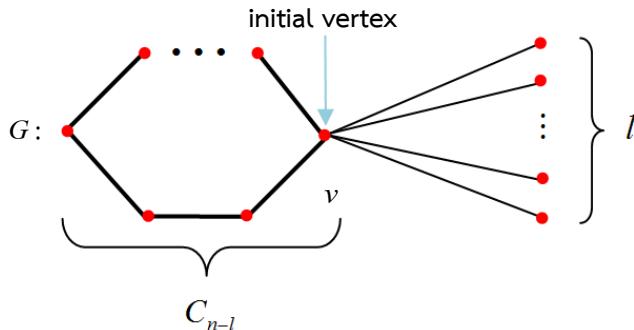


Figure 6.

Note that the length of a spanning walk which starts from the vertex v is at least $n+l-1=n+k-n+1-1=k$. If $x \in V(G)$ and $x \neq v$, then the length of a spanning walk which starts from x is at most $n+l-1=n+k-n+1-1=k$.

Therefore there is a graph G of order n such that $w_1(G)=k$.

A shortest spanning walk

Definition: For a connected graph G , let $w_0(G)$ = number of edges of a shortest spanning walk.

Observation: It is obvious that $w_0(G_1) = 0$ and $w_0(G_2) = 1$.

Theorem 3: Let G be a connected graph of order n for $n \geq 3$. Then

- (a) $w_0(G) \leq 2n-4$ and the bound is sharp;
- (b) $w_0(G) \geq n-1$ and the bound is sharp;
- (c) If $n-1 \leq k \leq 2n-4$, then there is a graph G of order n such that $w_0(G) = k$.

Proof: Let $n \geq 3$

- (a) We first show that there is a graph G such that $w_0(G) = 2n-4$

Consider a complete bipartite graph $K_{1, n-1}$ as shown in figure 7.

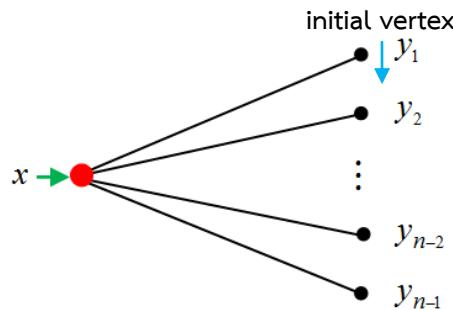


Figure 7.

We see that a walk $y_1 y_2 y_3 x \dots y_{n-2} y_{n-1}$ is the walk of length $2n-4$ and this is a shortest spanning walk. So we have a graph G such that $w_0(G) = 2n-4$.

We next show that $w_0(G) \leq 2n-4$.

Let G be a graph of order n in figure 8, and let u, v be the initial vertex and final vertex, respectively. Pick $u' \in V(G)$ such that $uu' \in E(G)$.

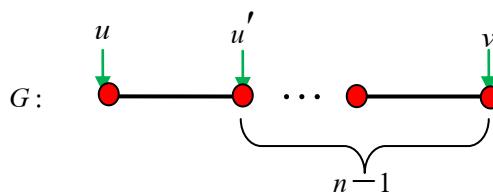


Figure 8.

We now consider $G-u$. Let $G'=G-u$. Note that $|V(G')|=n-1$. Let u' be a neighbor of u in G . Using Theorem 2, we have $w_1(G') \leq 2(n-1)-3 = 2n-5$. Thus there

is a spanning walk W of length at most $2n-5$ with an endpoint u' in G' . Since $uu' \in E(G)$, $W \cup uu'$ is a spanning walk in G of length at most $2n-5+1=2n-4$. Hence, $w_0(G) \leq 2n-4$.

This completes the proof of (a)

(b) Since every spanning walk of G has length at least $n-1$, we have $w_0(G) \geq n-1$.

We consider a path P_n as shown in figure 9.

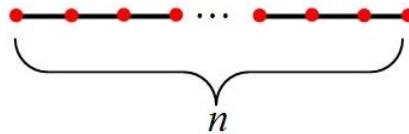


Figure 9.

P_n is a spanning walk of itself and have length $n-1$. Thus the bound is sharp.

(c) Suppose that $n-1 \leq k \leq 2n-3$ and $l=k-n+1$.

We consider a graph G as shown in figure 10.

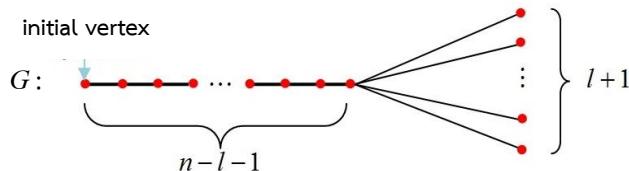


Figure 10.

Note that a shortest spanning walk in G has length $n+l-1=n+k-n+1-1=k$.

Thus there exists a graph G of order n such that $w_0(G)=k$.

Acknowledgements

I would like to express my thanks to Development and Promotion of Science and Technology Talents Project (DPST), Department of Mathematics, Faculty of Science, KKU and Asst. Prof. Dr. Kittikorn Nakprasit, the great advisor, for some valuable help, advise and inspiration and Miss Watcharintorn Ruksasakchai, for some help.

Bibliography

จีระยุทธ เวทัยวีระพงศ์. (2553). คณิตศาสตร์ดิสcrete (Discrete Mathematics). (ม.ป.ท.). 135-151.

A. Bondy, U.S.R. Murty. (2008). Graph Theory (Graduate Texts in Mathematics). (third edition). Springer; 3rd Corrected Printing.

T. Harju. (1994 – 2011). Lecture Notes on Graph Theory. Department of Mathematics University of Turku FIN-20014 Turku, Finland.

D. B. West.(2001). Introduction to Graph Theory. (Second Edition). Upper saddle River, NJ: Prentice Hall, Inc.

