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On the Length of a Shortest Spanning Walk
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ABSTRACT
A spanning walk of a graph is a walk that contains all vertices in a graph. The purpose of
this article is to find number of edges of a shortest spanning walk of a connected graph G with
n vertices. There are 3 cases in the scope of the study: a shortest spanning walk with respect to
fixed endpoints; a shortest spanning walk with respect to a fixed initial vertex and a shortest
spanning walk without any restriction.

Definew, (G) = max {number of edges of a shortest spanning walk with endpoints
u,veV(G)

u and v where u=v}, wl(G)Z max {number of edges of a shortest spanning walk that
vEV(G)

starts at v}, and WO(G): number of edges of a shortest spanning walk. It is obvious that
w’_(Gl)ZO and wi(Gz)Zl for i=0,1,2 and a connected graph G/_vvith j=1 or 2

vertices. We find bounds on each parameter in which all bounds are sharp for n>3 as follows

n—1<w (G)<2n—3;
n—ISWI(G)SZn—?:;
n—15w (G)<2n—4.

Moreover for each k between lower bound and upper bound of any w, there exists a

graph G with n vertices and w, (G)Zk.
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Introduction

In this paper, we introduce and study a concept of a spanning walk of a graph. We
characterize a shortest spanning walk with respect to fixed endpoints, a shortest spanning walk
with respect to a fixed initial vertex and a shortest spanning walk without any restriction. The
main purpose of this paper is to obtain theorems of number of edges of a shortest spanning

walk.

Main Result
A shortest spanning walk with fixed endpoints

Definition: For a connected graph G, let WZ(G): max {number of edges of a shortest
uverV(G)

spanning walk with endpoints # and v where u = v} .
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Observation: It is obvious that w, (G1 )Z 0 and w, (G2 )21

Theorem 1: Let G be a connected graph of ordernforn>3. Then
@ w, (G)<2n—3 and the bound is sharp;
(b) w, (G)=n—1 and the bound is sharp;
(© If n—1<k<2n—3, then there is a graph H of order n such that w, (H)=k.

Proof: Let n>3
(@ We first show that w, (6)<2n—3.

Note that we can show inequality by considering only a shortest spanning walk in a
spanning tree of a connected graph. Thus we may assume that G is a tree only.

Let P(n) be the statement “if Gis a tree of order n, then w, (G) <2n—3forall
neNsuch that n>37.

If n=3,then G isapath P. So w, (G)=3=2°3—3, that is P(3) is true.

Assume that P(k) is true for some k = 3.

It is well known that any tree of order n =2 hasn—1 edges and at least two vertices
of degree 1. Let G be a tree of k=1 vertices. Then E(G) =k and there are at least 2
vertices of degree 1. Note that a tree has exactly two vertices with degree 1 if and only if it is a
path.

Let u,v € V(G) such that uis the initial vertex and v is the final vertex of a walk. Let
x€V(G) such that d(x)=1.We choose x Zu and x Z vif possible.

We want to show that there exists a uv-spanning walk of length at most2k —1.

Case I: xFu and xFv.

Put G' =G —x. Then ‘V(G’)‘ =k . Since P(k) is true, w, (G’) <2k—3.Thus
there is a uv - spanning walk Win G, with the length at most 2k —3. Adding an edge from
Wto x and from x to W, we have auv-spanning walk in G with length at most 2k —1.

Case 20 x=uor x=v.

By the choice of x, the graph G must be a path with endpoints # and v. Thus there
exists a uv-spanning walk in G with length % .

Hence, P(k+1) is true.

Therefore by mathematical induction, P(n) is true for all n€ N such that n>3.



Unay MSANTINEEIERS 1. UN 41 avuh 1 115

To show that the bound is sharp, we illustrate that there is a graph G such that
w, (G)=2n—3.

Consider a path P as shown in figure 1.

initial vertex
\

v
v, V. v Y

N VK
Y

final vertex

n

Figure 1.

Notice that a shortest spanning walk from v to v _ in P has length2n—3. Thus

there is a graph G such thatw, (G)=2n—3 . This completes the proof of (a)

(b) Since every spanning walk of G has length at least n—1, we havew, (G)Zn—l .

Consider a complete graph K as shown in figure 2.

Figure 2.

Note that for any two vertices in K , we have a spanning walk of length n—1 with

those two vertices as endpoints. Hence we have a graph G such that w, (G)=n—1.

(© Suppose that n—1<k <2n—3 and [ =k—n-+1.
Consider a graph G as shown in figure 3.
Note that there is a shortest spanning walk with fixed vertices as in figure 3 which has
length n+/—1=n+k—n+1—1=k.
Thus there exists a graph G of order n such that w, (G)=k.



116 KKU Science Journal Volume 41 Number 1 Review

initial vertex

*_ J

final vertex
Figure 3.

A shortest spanning walk with fixed initial vertex

Definition: For a connected graph G, let wl(G)Z max {number of edges of a shortest
vEV(G)

spanning walk that starts at v}.

Observation: It is obvious that w, (G1 )Z 0 and w, (G2 ) =1.

Theorem 2: Let G be a connected graph of ordern for n>3. Then
@ w, (G)=<2n—3 and the bound is sharp;
(b) w, (G)=n—1 and the bound is sharp;
© If n—1<k<2n—3, then there is a graph G of order n such thatw, (G) =k.

Proof: Let n>3
(@ Since w, (G) < w, (G) we have w, (G)SZn—3.
Next we show that there is a graph G such that w, (G) =2n—3.

Consider a complete bipartite graph K|, as shown in figure 4.

—1

Wi
initial vertex R
M2
X
Vno
Yna

Figure 4.
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We see that a walk xy,xy,...xy, ,xy,, is the walk of length 2n—3 and this is a
shortest spanning walk. So we have a graph G such thatw, (G)=2n—3 .

(b) Since every spanning walk of G has length at least n—1, we have w, (G) >n—1.

Consider a cycle C as shown in figure 5.

L N
Figure 5.
Note that for every vertex in C , We have a spanning walk such that the length of walk

isn—1.

Hence we have a graph G such that w, (G)Zn—l.

(©) Suppose that n—1<k <2n—3 and [ =k—n+1.

Consider a graph G as shown in figure 6.

initial vertex

Coy
Figure 6.
Note that the length of a spanning walk which starts from the vertex v is at least
nti—1=n+k—n+1—1=k. if x€V(G) and x#v, then the length of a spanning
walk which starts from x is at most n+/—1=n+k—n+1—1=k.

Therefore there is a graph G of order n such that w, (G)Zk.

A shortest spanning walk

Definition: For a connected graph G, let WO(G): number of edges of a shortest spanning

walk.
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Observation: It is obvious that w (G1 )= 0 and w, (G2 )=1 .

Theorem 3: Let G be a connected graph of ordernfor n>3. Then
@ w, (G)S 2n—4 and the bound is sharp;

(b) w, (G)Zn—l and the bound is sharp;
© f n—1<k<2n—4, then there is a graph G of order n such thatw, (G):k .

Proof: Let n>3

(@) We first show that there is a graph G such that w, (G) =2n—4

Consider a complete bipartite graph K| as shown in figure 7.

initial vertex
¢ i
Vs

X =

Figure 7.

We see that a walk y xy xy.x...xy _ xy _ is the walk of length 2n—4 and this is a

shortest spanning walk. So we have a graph G such thatw, (G) =2n—4.

We next show that w, (G)S 2n—4.
Let G be a graph of order n in figure 8, and let u,v be the initial vertex and final

vertex, respectively. Pick u' EV(G) such that EE(G).

u u v
N J
n—I1
Figure 8.

! !/
We now consider G—u. Let G =G —u . Note that ‘V(G')‘Zn—l. Let u be a

neighbor of u in G . Using Theorem 2, we have w, (G’)S2(n—l)—3=2n—5. Thus there



Unay MSANTINEEIERS 1. UN 41 avuh 1 119

is a spanning walk W of length at most 2n—35 with an endpointu’in G'. since i’ EE(G),
WUuu’ is a spanning walk in G of length at most 2n—5+1=2n—4. Hence,
w, (G) <2n—4.

This completes the proof of (a)

(b) Since every spanning walk of G has length at least n—1, we havew, (G) >n—1.

We consider a path P as shown in figure 9.

| 9 R
Y

n
Figure 9.

P is a spanning walk of itself and have length n—1. Thus the bound is sharp.

(©) Suppose that n—1<k <2n—3 and [ =k—n+1.

We consider a graph G as shown in figure 10.

initial vertex /
G: V o —o ... e : [+1

Figure 10.

Note that a shortest spanning walk in G has length n+I[/—1=n+k—n+1—1=k.

Thus there exists a graph G of order n such thatw, (G) =k.
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