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วิธีการทางคณิตศาสตร์ส าหรับสมการชเรอดงิเงอร์  
และวิธีประมาณค่าแบบดับเบิลยูเคบี 

Mathematical Methods for Schrödinger Equation  
and the WKB Approximation Method 

เพชรอาภา บุญเสริม1 

 
บทคัดย่อ 

สมการชเรอดิงเงอร์เป็นสมการพื้นฐานของฟิสิกส์ที่อธิบายถึงพฤติกรรมเชิงกลศาสตร์ควอนตัม สมการนี้
เป็นสมการเชิงอนุพันธ์ย่อยซึ่งบรรยายระบบทางกลศาสตร์ควอนตัมที่ขึ้นกับต าแหน่งและเวลา สามารถน ามาใช้
อธิบายและวิเคราะห์สมบัติของฟังก์ชันคลื่น สมการชเรอดิงเงอร์เช่ือมโยงกับพลังงานรวมของอนุภาคโดยเกิดจาก
ผลรวมของพลังงานจลน์และพลังงานศักย์ ในบทความนี้ใช้วิธีการทางคณิตศาสตร์เพื่ออธิบายสมการชเรอดิงเงอร์ 
นอกจากนี้ได้สาธิตวิธีการประมาณแบบดับเบิลยูเคบีซึ่งเป็นวิธีการที่ส าคัญในการหาค าตอบแบบประมาณของ
ฟังก์ชันคลื่น พร้อมทั้งแสดงวิธีการหาค่าความน่าจะเป็นในการส่งผ่านและสะท้อนในปัญหาควอนตัมหนึ่งมิติ ปัญหา
ที่สนใจศึกษาในหัวข้อนี้คือปัญหาการขุดอุโมงค์โดยในทางกลศาสตร์ควอนตัมอนุภาคสามารถทะลุผ่านในกรณีที่
พลังงานศักย์มากกว่าค่าพลังงานรวมได้โดยปรากฏการณ์นี้เรียกว่า ปรากฏการณ์ขุดอุโมงค์ วิธีการดับเบิลยูเคบี
สามารถใช้เป็นพื้นฐานส าหรับการหาค าตอบอย่างแม่นย า นอกจากน้ีวิธีการประมาณแบบดับเบิลยูเคบียังเหมาะสม
กับปัญหาการแผ่กระจายของคลื่นท่ีมีความถี่สูงมากหรือความยาวคลื่นสั้นมาก 
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ABSTRACT 
The Schrödinger equation is a fundamental equation in physics for describing quantum 

mechanical behavior. It is a partial differential equation that shows how a wave function of a 
physical system evolves over time. In addition, it is associated with the kinetic energy and the 
potential energy, both of which contribute towards the total energy. This paper explains 
mathematical aspect of the Schrödinger equation. The concept of the WKB approximation has 
also been reviewed, which is an important method in finding the approximate solutions for the 
wave function. In addition, the paper also shows how to derive the transmission and reflection 
probabilities in relation to a one-dimensional quantum problem, called a “tunneling problem”, 
which occurs when a classical particle passes through a region where total energy is less than its 
potential energy. The WKB approximation can be used as a basis for formally writing down the 
exact solutions. Furthermore, it gives a high accuracy for the propagation of waves with high 
frequency or short wavelength. 
 
ค าส าคัญ: สมการชเรอดิงเงอร์  การประมาณแบบดับเบลิยเูคบี  ปรากฏการณ์ขุดอุโมงค ์
Keywords: Schrödinger equation, WKB approximations, Tunneling phenomena 
 
บทน า 

กลศาสตร์ควอนตัมเป็นทฤษฎีรากฐานของฟิสิกส์ที่มีความส าคัญมากทฤษฎีหนึ่ง ใช้อธิบายปรากฎการณ์
ในระดับจุลภาคท่ีกลศาสตร์คลาสสิกไม่สามารถอธิบายได้ เช่น พลศาสตร์ของอนุภาคในระดับอะตอม โมเลกุล 
กลศาสตร์ควอนตัมสามารถอธิบายปรากฎการณ์ดังกล่าวได้และสามารถท านายผลการทดลองได้อย่างถูกต้อง
แม่นย า 

ในปี 1925 เออร์วิน ชเรอดิงเงอร์ นักฟิสิกส์ชาวออสเตรียเช้ือสายไอริชได้ค้นพบสมการชเรอดิงเงอร์ ซึ่ง
น ามาใช้อธิบายและวิเคราะห์ปรากฏการณ์ของกลศาสตร์ควอนตัมได้อย่างถูกต้อง สมการชเรอดิงเงอร์เป็นสมการ
เชิงอนุพันธ์ย่อยท่ีเชื่อมโยงกับสมมติฐานของเดอบรอยล์ ท่ีว่า อนุภาคสามารถแสดงสมบัติของคลื่นได้ ชเรอดิงเงอร์
ได้วิเคราะห์ว่าสมการการเคลื่อนที่ของอิเล็กตรอนควรจะคล้ายกับสมการคลื่น และเรียกสมบัติคลื่นของอิเล็กตรอน
หรือของอนุภาคอื่นว่า ฟังก์ชันคลื่น โดยสามารถแก้สมการชเรอดิงเงอร์ เพื่อหาพฤติกรรมการเคลื่อนที่ของ
อิเล็กตรอนได้ และพบว่าสมการชเรอดิงเงอร์สามารถท านายสมบัติของอะตอมไฮโดรเจนได้ด้วยอย่างแม่นย า 
นอกจากนั้นสามารถใช้สมการชเรอดิงเงอร์ได้อย่างกว้างขวางทั้งในฟิสิกส์อะตอม ฟิสิกส์นิวเคลียร์ และฟิสิกส์
สถานะของแข็ง 

นอกจากชเรอดิงเงอร์แล้ว ยังมี เวอร์เนอร์ ไฮเซนเบิร์ก นักวิทยาศาสตร์ชาวเยอรมัน ที่พยายามพัฒนา
รูปแบบของทฤษฎีควอนตัมสมัยใหม่ โดยใช้เมทริกซ์ที่มีจ านวนมิติเป็นอนันต์ และน าวิธีการของพีชคณิตเมทริกซ์ 
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แสดงต าแหน่งหรือสมบัติของระบบ ดังเช่น อิเล็กตรอนในอะตอมซึ่งเมื่อแก้สมการเมทริกซ์แล้วจะได้ค าตอบที่
อธิบายสมบัติของระบบได้ 

ชเรอดิงเงอร์ได้พิสูจน์ว่าแท้จริงแล้ว สมการคลื่นของชเรอดิงเงอร์และสมการเมทริกซ์ของไฮเซนเบิร์กเป็น
สมการที่ให้ผลลัพธ์เหมือนกัน แต่แสดงออกมาด้วยวิธีการและรูปแบบที่ต่างกัน ซึ่งรูปแบบของสมการหลักนั้น
เหมือนกัน โดยภาพรวมสมการคลื่นของชเรอดิงเงอร์ใช้อธิบายปรากฏการณ์จริงในธรรมชาติที่ให้ผลทางรูปธรรม
กว่าและเข้าใจได้ง่ายกว่า แต่มีขีดจ ากัดในการใช้ส าหรับระบบที่เกี่ยวข้องกับอนุภาคจ านวนมาก ส่วนสมการ  
เมทริกซ์ของไฮเซนเบิร์กนั้นมีความซับซ้อนกว่า แสดงให้เกิดเป็นภาพได้ยากกว่า แต่เหมาะสมกับส าหรับกรณีที่
ระบบเกี่ยวข้องประกอบด้วยหน่วยย่อยเป็นจ านวนมาก (สิทธิชัย, 2553) 
 
สมการชเรอดิงเงอร์ 

สมการชเรอดิงเงอร์แบ่งออกได้เป็น สมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลา และสมการชเรอดิงเงอร์ที่ขึ้นกับ
เวลา 
1.1 สมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลา 

เริ่มต้นโดยพิจารณาสมการคลื่นแบบดั้งเดิมในหน่ึงมิติ 
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                                                 (1.1.1) 

ที่มาของสมการคลื่นแบบดั้งเดิมนี้เกิดจากการน ากฎข้อที่สองของนิวตันมาอธิบายการสั่นของเส้นลวด 
พจน์ทางฝั่งขวาของสมการ (1.1.1) เป็นปริมาณบอกถึงความเร่งที่ปรากฎในกฎข้อสองของนิวตัน ( F ma ) 
และความเร่ง (a ) คืออนุพันธ์อันดับสองของต าแหน่งเทียบกับเวลา (พยงค์, 2525; วรนุช, 2547) 

ในการหาผลเฉลยของสมการ (1.1.1) จะใช้วิธีแยกตัวแปร ซึ่งเป็นวิธีพ้ืนฐานที่ส าคัญในการหาผลเฉลยของ
สมการเชิงอนุพันธ์ย่อยเชิงเส้น เริ่มต้นด้วยการสมมุติผลเฉลยให้อยู่ในรูปของผลคูณของฟังก์ชันของตัวแปรต้น  
(พรชัย, 2550) 

พิจารณาเมื่อผลเฉลยของ (1.1.1) เขียนได้เป็นผลคูณของฟังก์ชันของ x  กับ t  

                                           ( , ) ( ) ( )u x t x f t                                             (1.1.2) 

แทนสมการ (1.1.2) ลงในสมการ (1.1.1) จะได ้
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หารตลอดทั้งสมการด้วย ( ) ( )x f t  
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จากสมการข้างต้นพบว่าทางฝั่งซ้ายของสมการเป็นฟังก์ชันของ x  เท่านั้นและทางฝั่งขวาเป็นฟังก์ชันของ 
t เท่านั้น การที่ท้ังสองฝั่งมีค่าเท่ากัน ฉะนั้นท้ังสองข้างจึงต้องเป็นค่าคงตัว และจากการค านวณพบว่าเป็นค่าลบ ซึ่ง
จะเรียกว่า  2  
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สมการข้างต้นนี้เป็นสมการอนุพันธ์สามัญอันดับสอง ซึ่งมีผลเฉลยเป็น 

                      ( ) exp( ) exp( )f t a i t b i t                                (1.1.4) 

แทนสมการ (1.1.4) ไปในสมการ (1.1.3) จะได้ 
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สมการข้างต้นเป็นสมการเชิงอนุพันธ์สามัญซึ่งใช้บรรยายคลื่นสสารด้วยฟังก์ชันของต าแหน่ง 
จากกลศาสตร์แบบฉบับ พลังงานรวมของอนุภาคจะเท่ากับผลรวมของพลังงานจลน์และพลังงานศักย์ 

2

( )
2
pE V x
m

   

ส าหรับกรณีที่ไม่คิดผลของสัมพัทธภาพ เมื่อแก้สมการข้างต้น จะสามารถเขียนโมเมนตัมในรูป 

                      2 [ ( )]p m E V x                                          (1.1.6) 

จากนั้นใช้สูตรของเดอบรอยล์เพื่อหาความยาวคลื่นท่ีขึ้นกับต าแหน่ง 
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เมื่อ   2 f  และ  f v  สามารถเขียนพจน์ 2 2/v  ในสมการ (1.1.5) ในรูปของ   ได้ดังนี้ 
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เมื่อแทนผลลัพธ์นี้ลงในสมการ (1.1.5) จะได้สมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลา 
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สมการข้างต้นสามารถจัดให้อยู่ในรูปแบบมาตรฐาน ดังนี้ 
2 2

2

d ( ) ( ) ( ) ( )
2 d

x V x x E x
m x

      

นอกจากน้ียังสามารถขยายสมการจากกรณีหนึ่งมิติส าหรับอนุภาคเดี่ยวไปยังกรณีสามมิติโดยใช้เทคนิคใน
ท านองเดียวกับกรณีหนึ่งมิติ ดังนั้นสมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลาในสามมิติ คือ 
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โดยที่ 
2 2 2

2
2 2 2x y z
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   

  
 

นอกจากน้ันในพิกัดคาร์ทีเซียน ฟังก์ชันคลื่นสามารถเขียนได้ในรูป ( , , , )x y z t  ซึ่งอธิบายคุณสมบัติ
คลื่นของอนุภาค ปริมาณ 2 dV  ใช้บอกความน่าจะเป็นที่จะพบอนุภาคอยู่ในปริมาตร d d d dV x y z

ที่เวลา t  แต่วิธีการนี้ไม่สามารถหาสมการชเรอดิงเงอร์ที่ขึ้นกับเวลาได้ หากปราศจากสมมติฐานเพิ่มเติมอื่น ๆ 
 
1.2 สมการชเรอดิงเงอร์ที่ขึ้นกับเวลา 

จากหัวข้อที่ผ่านมาการหาสมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลาส าหรับอนุภาคเดี่ยว เริ่มจากสมการคลื่น
แบบดั้งเดิมและอาศัยความสัมพันธ์ของเดอบรอยล์ แต่ในกรณีของการหาสมการชเรอดิงเงอร์ที่ขึ้นกับเวลานั้นไม่
สามารถใช้วิธีการพื้นฐานอย่างหัวข้อ 1.1 ในการหาได้ สมการชเรอดิงเงอร์ที่ข้ึนกับเวลานั้น จะต้องสอดคล้องกับ
เงื่อนไขสามข้อ ดังนี้ คือ 
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h pEh
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พบว่าสมการชเรอดิงเงอร์ที่ขึ้นกับเวลาในสามมิติส าหรับอนุภาคเดี่ยวคือ 

              
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                       (1.2.1) 

ซึ่งเป็นไปตามหลักการควอนไทเซชันแบบบัญญัต ิ(canonical quantization) 
สมการชเรอดิงเงอร์ที่ขึ้นกับเวลามีความส าคัญและเป็นประโยชน์อย่างมาก สามารถอธิบายผลการทดลอง

ได้อย่างชัดเจน เช่น อธิบายการกระจายตัวของอิเล็กตรอนในอะตอมของไฮโดรเจน นอกจากน้ันยังอธิบายระยะห่าง
ระหว่างอิเล็กตรอนกับนิวเคลียส ความเร็วในการเคลื่อนที่ เป็นต้น (นรา, 2553; สิทธิชัย, 2552) 
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ในกรณีที่พลังงานศักย์ V ของระบบ เป็นฟังก์ชันค่าจริง จะพบว่าสามารถใช้สมการที่ข้ึนกับเวลาเพื่อหาสมการทีไ่ม่
ขึ้นกับเวลาได้ ถ้าจัดฟังก์ชันคลื่นให้เป็นผลคูณของพจน์ที่ข้ึนกับต าแหน่งและพจน์ที่ข้ึนกับเวลา 

                  ( , ) ( ) ( )r t r f t                                              (1.2.2) 

แทนสมการ (1.2.2) ในสมการ (1.2.1) จะได้ 
2

2d ( )( ) ( ) ( ) ( )
d 2
f tr i f t V r r
t m

 
 

    
 

 

หรือ 
2

2d ( ) 1 ( ) ( )
( ) d ( ) 2
i f t V r r
f t t r m




 
    

 
 

จากสมการข้างต้นพบว่าทางด้านซ้ายของสมการเป็นฟังก์ชันของ t  เท่านั้นและทางด้านขวาเป็นฟังก์ชัน
ของ r  เท่านั้น การที่ท้ังสองด้านมีค่าเท่ากัน แสดงว่าแต่ละด้านของสมการต้องเท่ากับค่าคงตัว B  ท าให้ได้สมการ
เชิงอนุพันธ์สามัญสองสมการ ดังนี้ 

                           
1 d ( )
( ) d

f t i
t t

B
f

                                              (1.2.3) 

และ 

                           
2

2 ( ) ( ) ( ) ( )
2

r V r r B r
m

                                         (1.2.4) 

ซึ่งสมการ (1.2.4) คือสมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลา และค าตอบของสมการ (1.2.3) คือ 

   
 

( ) exp iBtf t  

ซึ่งพบว่าฟังก์ชัน ( )f t  เป็นฟังก์ชันของคลื่นท่ีมีความถี่เชิงมุม /B   
เนื่องจาก 2 f   และ E hf  ดังนั้น 

B hf E    

ฉะนั้น B E และเนื่องจาก E  คือพลังงานรวมของอนุภาค จึงได้ว่า B  เป็นจ านวนจริง 
เมื่อแทน ( )f t  ลงในสมการ (1.2.2) จะได้ 

( , ) ( )exp iEtr t r     
 

                                    (1.2.5) 
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ความน่าจะเป็นในการพบอิเล็กตรอนสามารถค านวณได้โดยใช้ฟังก์ชันคลื่น ( , )r t  ค่าของฟังก์ชันคลื่น
เองนั้นไม่มีนัยส าคัญเพราะสามารถเป็นจ านวนเชิงซ้อนได้ ปริมาณที่มีความหมายในทางกายภาพนั้นจะต้องเป็น
จ านวนจริง เนื่องจาก 2( , )r t  เป็นจ านวนจริงเสมอ ดังนั้น 2( , )r t มีความหมายในทางกายภาพด้วย ซึ่ง

ปริมาณ 2( , )r t  ระบุถึงความน่าจะเป็นท่ีจะพบอนุภาคต่อหนึ่งหน่วยปริมาตรที่เวลาใดๆ นอกจากนั้นสามารถ
แสดงว่า ปริมาณ 2( , )r t  ไม่ขึ้นกับเวลา ดังนี้ 

2( , ) * ( , ) ( , ) exp * ( )exp ( ) * ( ) ( )iEt iEtr t r t r t r r r r               
   

 

ในทางกลศาสตร์ควอนตัม จะไม่สามารถระบุต าแหน่งของอนุภาคได้อย่างแม่นย า เพียงแต่ระบุถึงความ
น่าจะเป็นในการพบอนุภาค ดังนั้นจึงนิยมที่จะหาค่าเฉลี่ยของจุดพิกัดของอนุภาคแทน นอกจากค่าเฉลี่ยของ
ต าแหน่งแล้ว ยังสามารถหาค่าเฉลี่ยของปริมาณอื่น ๆ ได้ด้วย เช่น โมเมนตัม พลังงานรวมของอนุภาค เป็นต้น 

ในการหาค่าเฉลี่ยของโมเมนตัมจะไม่สามารถหาได้อย่างตรงไปตรงมา เนื่องจากหลักความไม่แน่นอน
ของไฮเซนเบิร์ก ซึ่งกล่าวไว้ว่า ไม่สามารถหาต าแหน่งและโมเมนตัมพร้อม  ๆ กันได้ ดังนั้นการหาค่าเฉลี่ยของ
โมเมนตัมจึงจ าเป็นต้องใช้วิธีอื่นแทน เช่น เทคนิคของตัวด าเนินการ 

การหาค าตอบของสมการชเรอดิงเงอร์ที่ขึ้นกับเวลาจ าเป็นต้องทราบฟังก์ชันของพลังงานศักย์ ( , )V r t  
ซึ่งค าตอบนั้นจะมีลักษณะออกมาต่างๆกัน ข้ึนอยู่กับชนิดของพลังงานศักย์ 

ในหัวข้อถัดไปจะแสดงวิธีแก้สมการชเรอดิงเงอร์ เพื่อหาค าตอบ ( , )x t  โดยกล่าวถึงหนึ่งในวิธีที่ส าคัญ
และน่าสนใจคือ วิธีการประมาณแบบดับเบิลยูเคบี ซึ่งเป็นวิธีการประมาณค่าที่เหมาะกับปัญหาการแผ่กระจายของ
คลื่นท่ีมีความถี่สูงมากหรือความยาวคลื่นสั้นมาก 
1.3 วิธีการประมาณแบบดับเบิลยูเคบี (WKB Approximations) 

วิธีการประมาณแบบดับเบิลยูเคบี (Wentzel-Kramers-Brillouin) หรือเรียกอีกอย่างหนึ่งว่า การ
ประมาณแบบดับเบิลยูเคบีเจ (Wentzel-Kramers-Brillouin-Jeffreys) มีแนวคิดพื้นฐานคือ สามารถประมาณ
ฟังก์ชันคลื่นชเรอดิงเงอร์ได้ด้วยฟังก์ชันซายน์ การประมาณแบบดับเบิลยูเคบีได้น ามาใช้อธิบายคลื่นในทางทัศน
ศาสตร์ สวนศาสตร์ และอุทกพลศาสตร์มาก่อน และหลังจากปี 1925 ได้มีการน าการประมาณแบบดับเบิลยูเคบี 
มาใช้กับฟังก์ชันคลื่นชเรอดิงเงอร์ (Boonserm, 2009) 

การประมาณแบบดับเบิลยูเคบีเหมาะกับระบบท่ีพลังงานศักย์มีค่าเกือบจะคงท่ี เป็นวิธีการที่ส าคัญในการ
หาค าตอบแบบประมาณ เช่น ปัญหาการแผ่กระจายของคลื่นที่มีความถี่สูงมากหรือความยาวคลื่นสั้นมาก (เมื่อ
เปรียบเทียบกับระยะทางที่ศักย์มีการเปลี่ยนแปลง) ถึงแม้ว่า ค าตอบโดยวิธีการนี้เป็นค าตอบแบบประมาณ แต่ใน
บางกรณีมีความถูกต้องและแม่นย ามาก เริ่มต้นด้วยสมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลาหนึ่งมิติ 

2 2

2

d ( ) ( ) ( ) ( )
2 d

x V x x E x
m x

                                   (1.3.1) 

สามารถจัดสมการใหม่ได้เป็น 
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2

2 2

d 2( ) [ ( ) ] ( )
d

mx V x E x
x

                                     (1.3.2) 

โดยที่ ( )x  คือฟังก์ชันคลื่นชเรอดิงเงอร์ E  คือพลังงานรวม และ V  คือพลังงานศักย ์
ซึ่งสามารถเขียนฟังก์ชันคลื่นในรูปของฟังก์ชันเอกซ์โพเนนเชียลดังนี้ 

( )( ) ( )exp iS xx A x     
                                      (1.3.3) 

จากนั้นสามารถหาอนุพันธ์อันดับสองของ ( )x  ได้ดังนี้ 

                

2 2

2 2

d ( ) ( ) ( ) ( ) ( )( ) ( ) 2 ( ) ( ) exp
d
x S x iS x iS x iS xA x A x A x A x

x
 

แทนค่า ( )x  และ 2 2d ( )/dx x  ลงไปในสมการ (1.3.2) จะได้ 

              
     

2

2

2

( ) ( ) ( ) ( )( ) ( ) 2 ( ) ( ) exp

2 ( )( ( ) ) ( )exp

S x iS x iS x iS xA x A x A x A x

m iS xV x E A x
 

(1.3.4) 
โดยการพิจารณาส่วนจริงของสมการ (1.3.4) จะได้ว่า 

                           
   2 2 ( )( ) 2 ( ( ))

( )
A xS x m E V x
A x

                         (1.3.5) 

ส่วนจินตภาพของสมการ (1.3.4) คือ 

( )( ) 2 ( )
( )

A xS x S x
A x


    

2( ( ) ( )) 0A x S x                                                (1.3.6) 

จะพบว่า 

( )
( )
CA x
S x




                                              (1.3.7) 

โดยที่C เป็นค่าคงตัว 
เมื่อท าการประมาณให ้

  2

2

( ) ( ( ))
( )

A x S x
A x

 และ 
2

2

( )
( )

A x p
A x
                             (1.3.8) 
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ในสมการ (1.3.5) จะได้ 
2( ) 2 [ ( )]S x m E V x    

การประมาณที่ปรากฎในสมการ (1.3.8) เป็นการประมาณที่ท าให้สมการ (1.3.5) ลดรูปมาสู่สมการแฮมิน
ตัน-จาโคบี ซึ่งเป็นสมการการเคลื่อนที่ในกลศาสตร์คลาสสิก 

จากสมการ (1.1.6) จะเห็นว่า  ( ) 2 ( )p x m E V x   ดังนั้น 

 2 2( ) ( )S x p x  

ฉะนั้น 

 ( ) ( )dS x p x x                                             (1.3.9) 

แทนสมการ (1.3.7) และ (1.3.9) ลงไปในสมการ (1.3.3) จะได้ 

( ) exp ( )d exp ( )d
( ) ( )
C Ci ix p x x p x x
p x p x

                

โดยนิยาม 
2

2
2 2

2 [ ( )] ( )( ) m E V x p xk x 
   

เมื่อท าการประมาณแบบดับเบิลยูเคบี จะได้ 

exp ( )d exp ( )d
( )

( ) ( )

i k x x i k x x
x A B

k x k x


          

 

วิธีการประมาณแบบดับเบิลยูเคบีในปัญหาปรากฏการณ์ขุดอุโมงค์ (tunneling phenomena) 
เริ่มต้นจากพิจารณาพลังงานศักย์ V  ดังรูปที่ 1.1 ซึ่งในบริเวณที่ 2 พบว่าค่าพลังงานศักย์มากกว่าค่า

พลังงานรวมของอนุภาค ( )V E  ดังนั้นในทางกลศาสตร์แบบดั้งเดิม อนุภาคจะไม่สามารถอยู่ในบริเวณที่ 2 ได้ 
แต่ในทางกลศาสตร์ควอนตัมอนุภาคสามารถทะลุผ่านจากบริเวณที่ 1 มายังบริเวณที่ 2 และ 3 ได้ ปรากฏการณ์นี้
เรียกว่า ปรากฏการณ์ขุดอุโมงค์ (tunneling phenomena) 
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รูปที ่1.1 ค่าพลังงานศักย์ V ในบริเวณที่ 1, 2 และ 3 

 

โดยวิธีการประมาณแบบดับเบิลยูเคบีพบว่า ฟังก์ชันคลื่นในแต่ละบริเวณมีค่าดังต่อไปนี้ 

1

2

3

exp ( ) exp ( )
( )

( ) ( )

exp ( ) exp ( )
( )

( ) ( )

exp ( )
( )

(

d d

d d

)

d

i k x x i k x x
x A B

k x k x

k x x k x x
x C D

k x k x

i k x x
x E

k x







       

       

 
 

 

 



 

เมื่อ 1 2( ), ( )x x   และ 3( )x  คือฟังก์ชันคลื่นในบริเวณที่ 1, 2 และ 3 ตามล าดับ 
ความน่าจะเป็นท่ีจะพบอนุภาคบรเิวณที่ 3 โดยสนใจว่าอนุภาคสามารถทะลผุ่านมาบริเวณที่ 3 ได้มาก

น้อยเพียงใด จะมีค่าดังต่อไปนี้  

2

1

2

2 2

2exp d2 ( )
x

x

E mT V x E x
A

 
    

  
  

เมื่อ T  คือสัมประสิทธิ์ของการส่งผ่าน ซึ่งเป็นปริมาณที่บอกถึงความน่าจะเป็นที่อนุภาคจะทะลุผ่านออกมายัง
บริเวณที่ 3 (Ngampitipan and Boonserm, 2012) 
 
 
 

V(x) 

E 

x x1 x2 

1 2 3 
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บทสรุป 
ในบทความนี้ได้ใช้วิธีการทางคณิตศาสตร์อธิบายสมการชเรอดิงเงอร์ซึ่งเป็นสมการเชิงอนุพันธ์ย่อยที่ใช้ใน

การพัฒนาทฤษฎีควอนตัมสมัยใหม่ สมการชเรอดิงเงอร์ถูกค้นพบโดย เออร์วิน ชเรอดิงเงอร์ ในปี 1925 ซึ่งบรรยาย
ระบบทางกลศาสตร์ควอนตัมที่ขึ้นกับต าแหน่งและเวลา นอกจากนั้น ได้แสดงวิธีการประมาณแบบดับเบิลยูเคบีมา
ประยุกต์กับฟังก์ชันคลื่นชเรอดิงเงอร์ ถึงแม้ดับเบิลยูเคบีจะเป็นเทคนิคการประมาณค่า แต่เป็นการประมาณค่าที่ให้
ความแม่นย าสูงใกล้เคียงกับผลเฉลยแม่นตรง และเหมาะสมในกรณีของปัญหาการแผ่กระจายของคลื่นท่ีมีความถีส่งู
มากหรือความยาวคลื่นสั้นมากรวมถึงปัญหาขุดอุโมงค์ด้วย 
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