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บทคัดย7อ 

บทความน้ีแนะนำแคลคูลัสควอนตัมอันดับเศษสYวนบางประเภท ได^แกY แคลคูลัสเชิงผลตYาง, แคลคูลัส q  และ

แคลคูลัสฮาห0น  โดยได^แสดงแนวคิดและการสร^างตัวดำเนินการของแตYละแคลคูลัสควอนตัมอันดับเศษสYวน  

 

คำสำคัญ: แคลคูลัสควอนตัมอันดับเศษสYวน  แคลคูลัสเชิงผลตYางอันดับเศษสYวน  แคลคูลัสเชิงผลตYาง q  อันดับ

เศษสYวน แคลคูลัสเชิงผลตYางฮาห0นอันดับเศษสYวน   

 

Abstract   

This article introduces some different types of fractional quantum calculus: difference 

calculus, q- calculus and Hahn calculus. By expressing the concept and operator construction of 

each fractional quantum calculus.  

 

Keywords: fractional quantum calculus, fractional difference calculus, fractional q-difference 
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บทนำ 
 

แคลคูลัสอันดับเศษสYวน (Fractional Calculus)  ได^มีจุดเริ่มต^นในการศึกษาค^นคว̂าภายหลังจากที่ ไลบ0-

นิทซ0 (1646–1716)  ได^นิยามอนุพันธ0อันดับที่  ในรูป  โดยโลป{ตาล (1661–1704)  เกิดข^อสงสัยวYา  “จะ

เกิดอะไรขึ้นถ0า ”  ซ่ึงไลบ0นิทซ0เองในขณะน้ันก็ยังไมYสามารถอธิบายความหมายของอนุพันธ0 
 
ได^

อยYางชัดเจน ตYอมาได^มีนักคณิตศาสตร0หลายทYานศึกษาอยYางจริงจัง  อันได^แกY ออยเลอร0 (1707–1783),  ฟูรีแยร0 

(1768–1830),  อาเบล (1802–1829),  ลียูวีล (1809–1882),  รีมันน0 (1826–1866),  เฮวีไซด0 (1850–1925) เปÜนต^น  

พวกทYานเหลYาน้ีได^พัฒนาองค0ความรู^ของแคลคูลัสอันดับเศษสYวนมาอยYางตYอเน่ืองจนถึงปâจจุบัน   

แนวคิดในการสร^างตัวดำเนินการอันดับเศษสYวนบนแคลคูลัสดั้งเดิมคือ  การหาสูตรท่ัวไปในการหาปริพันธ$ซ*อน 

(Repeated Integral) m  ช้ัน (คร้ัง) ของฟuงก$ชัน f  เม่ือ m  เปÜนจำนวนนับ และ กYอน ดังน้ี 
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จากน้ันจึงนิยาม ปริพันธ$อันดับเศษส7วน 8  (Fractional Integral of Order 8) ของฟuงก$ชัน f  เม่ือ  เปÜน

จำนวนเต็มและ ,  นิยามโดย 
 

            ℐ4#(%): = 0
3(4) ∫ (% − 6)

470(6)
-                      (2) 

 

สำหรับอนุพันธ0อันดับเศษสYวนมีการนิยามหลากหลายประเภท  ในที่น้ีเราจะศึกษาเพียงสองประเภทเทYาน้ัน  ได^แกY
 

i. อนุพันธ$อันดับเศษส7วนแบบรีมันน$ – ลียูวีล (Riemann - Liouville Fractional Derivative) ของฟâงก0ชัน f  

เม่ือ  เปÜนจำนวนเต็มและ ,  จะนิยามในรูปของผลตYางอันดับเศษสYวนในรูปของอนุพันธ0

อันดับจำนวนเต็มประกอบกับปริพันธ0อันดับเศษสYวนตามลำดับ ดังน้ี

         ;4#(%): = ;4ℐ<74#(%) = 0
3(<74) ∫ (% − 6)

7470#(6)(6)
-         (3) 

 

ii. อนุพันธ$อันดับเศษส7วนแบบคาปูโต (Caputo Fractional Derivative)  ของฟâงก0ชัน f  เม่ือ  เปÜนจำนวนเต็ม

และ ,   จะนิยามในรูปของปริพันธ0อันดับเศษสYวนประกอบกับอนุพันธ0อันดับจำนวนเต็ม

ตามลำดับ  ดังน้ี

       ;=4#(%): = ℐ<74;4#(%) = 0
3(<74) ∫ (% − 6)

<7470#(<)(6)(6)
-         (4) 

 

แตYอยYางไรก็ดีนักคณิตศาสตร0สYวนใหญYก็ยังไมYได^ให^ความสำคัญของแคลคูลัสประเภทน้ี จวบจนกระทั่งในชYวงระยะเวลา

ไมYก่ีปãที่ผYานมาน้ี แคลคูลัสอันดับเศษสYวนได^กลับมาดึงดูดความสนใจของนักนักคณิตศาสตร0อีกครั้ง สืบเน่ืองมาจากได^มี

การนำแคลคูลัสอันดับเศษสYวนไปประยุกต0ใช̂ในศาสตร0สาขาวิชาฟ{สิกส0 วิศวกรรม การเงินและเศรษฐศาสตร0 และ

วิทยาศาสตร0ประยุกต0  อาทิเชYน ทฤษฎีควบคุม (Control Theory)  ทัศนศาสตร0 (Optics)  การประมวลสัญญาณ 

(Signal Processing)  การแพรY (Diffusion)  และความหยุYนหนืด (Viscoelastic)  เน่ืองจากให^ผลการคำนวณเชิงตัว

 n   D
ny(t)

   n = 0.5   D
0.5y(t)

  t ≥a

 n

  α ∈ [n−1,n)   t ≥a

 n     α ∈ [n−1,n)   t ≥a

 n

    α ∈ [n−1,n)   t ≥a
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เลขที่มีความแมYนยำมากกวYาแคลคูลัสที่มีอันดับเปÜนจำนวนเต็ม ทำให^สามารถอธิบายปรากฏการณ0ที่เก่ียวข^องได^อยYางมี

ประสิทธิภาพมากยิ่งขึ้นกวYาแคลคูลัสดั้งเดิม 

 ในหัวข^อถัดไปจะกลYาวถึงตัวดำเนินการบนแคลคูลัสควอนตัมอันดับเศษสYวน ซ่ึงมีมากมายหลากหลาย

ประเภท ซ่ึงแคลคูลัสควอนตัมเราได^กลYาวมาแล̂วในบทความที่อยูYในฉบับที่ 2 ของวารสารน้ี (Sitthiwirattham, T., 

2020)  โดยในที่น้ีจะขอแนะนำเพียงบางประเภทเทYาน้ัน ได^แกY แคลคูลัสเชิงผลตYางอันดับเศษสYวน, แคลคูลัสเชิงผลตYาง 

q  อันดับเศษสYวน  และแคลคูลัสเชิงผลตYางฮาห0นอันดับเศษสYวน   

 

แคลคูลัสเชิงผลต7างอันดับเศษส7วน  
 

สำหรับ  แคลคูลัสเชิงผลต-างอันดับเศษส-วน (Fractional Difference  Calculus)  เปÜนเครื่องมือที่

สำคัญมาก โดยจะมีประสิทธิภาพมากกวYาแคลคูลัสดั้งเดิมและแคลคูลัสอันดับเศษสYวนที่กลYาวมาข^างต^น สำหรับการ

นำไปใช̂แก̂ปâญหาที่เก่ียวข^องกับกระบวนการหรือปรากฏการณ0ในธรรมชาติที่สามารถสร^างแบบจำลองที่มีพฤติกรรมใน

ลักษณะที่ ไมYตYอเน่ือง  ตัวอยYางเชYนผลงานของ  Wu และ Baleanu  (Wu G.C., Baleanu D., 2013; Wu G.C., 

Baleanu D., 2014a; Wu G.C., Baleanu D. (2014)b; Wu G.C., Baleanu D., Zeng S.D., Deng Z.G., 2015) ใน

การพัฒนาแคลคูลัสเชิงผลตYางอันดับเศษสYวนน้ันเพิ่งมีการเริ่มต^นศึกษาในชYวง 30 ปãที่ผYานมาน้ีเอง  โดย Diaz และ 

Osler (Diaz J.B., Olser T.J., 1974) ได^ตีพิมพ0ผลงานในปã 1974 โดยแนะนำตัวดำเนินการเชิงผลตYางไมYตYอเน่ืองอันดับ

เศษสYวน (Discrete Fractional Difference Operator)  ซ่ึงนิยามบนอนุกรมอนันต0และสัมประสิทธ์ิทวินาม  ดังน้ี 

              

                                    (5) 

เม่ือ   และ  เปÜนจำนวนจริงหรือจำนวนเชิงซ̂อน  แตYตัวดำเนินการที่พวกเขาสร^างขึ้นไมY

สามารถใช̂ได^ในกรณีทั่วไป  เน่ืองจากไมYมีสมบัติการ ยกกำลัง   ตัวอยYางเชYนในอนุกรมเวลา

ไมYตYอเน่ือง (Discrete Time Series)    เราไมYสามารถหา   ได^ 

 ตYอมาในปã 1989  Miller กับ Ross (Miller K.S., Ross B., 1989) ได^ศึกษาสมบัติและแนะนำตัวดำเนินการ

ในแคลคูลัสเชิงผลตYางอันดับเศษสYวนที่แตกตYางไปจากของ Diaz และ Osler  ซ่ึงได^ถูกพัฒนาตYอมาจากนักคณิตศาสตร0

อีกหลายทYานจนเปÜนนิยามของแคลคูลัสเชิงผลตYางอันดับเศษสYวนที่เราศึกษากันในปâจจุบัน  โดยอาศัยฟâงก0ชันแกมมา 

(Gamma Function)   
 

               (6) 

 

และฟâงก0ชันแฟกทอเรียลลดอันดับเศษสYวน (Fractional Falling Factorial Function)  ดังตYอไปน้ี

                    (7) 

Δαf (t) := (−1)k
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Γ t +1−α( )

3



วารสารนวัตกรรมวิทย าศาสตรÙ เ พ ื่อ การพัฒนาอยÕางยั่ง ยืน  
ปÍที่ 3 ฉบับที ่1 [มกราคม - ธันวาคม 2564] 

พิจาณา  ปริพันธJ h ซ*อน (Repeated h - Integral Rule)  เม่ือ   

          (8)

 

จะได^  ผลรวมอันดับเศษส-วน  (Fractional Sum)  อันดับ 8  ของฟâงก0ชัน 
 
นิยามบน  คือ 

 

  
    

สำหรับ   
     (9) 

 

ผลต-างอันดับเศษส-วนแบบรีมันนJ-ลียูวีล  (Riemann-Liouville Fractional Difference) อันดับ 8  ของฟâงก0ชัน 

 
ซ่ึงนิยามบน  เม่ือ   คือ 

 

          
สำหรับ                (10)

  

 

และในปã 2009 Anastassiou [8] ได^แนะนำตัวดำเนินการเชิงผลตYางอันดับเศษสYวนประเภทใหมYคือ ผลต5างอันดับ

เศษส5วนแบบคาปูโต (Caputo Fractional Difference)  โดยนิยามของ ผลต7างอันดับเศษส7วนคาปูโตอันดับ 8  ของ

ฟâงก0ชัน 
 
ซ่ึงนิยามบน  ดังน้ี 

 

                           
                   (11) 

สำหรับ      

 

ตัวอยYางเชYน พิจารณาผลตYางรีมันน0 – ลียูวีลอันดับเศษสYวน     จะได ̂   

        

  และจาก          

  จะได^วYา  

 

  พิจารณาผลตYางคาปูโตอันดับเศษสYวน    จะได^     

         

  และจาก         

  จะได^วYา         
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นอกจากน้ียังมีตัวดำเนินการเชิงผลตYางอีกประเภทหน่ึงคือ Nabla (Backward) Difference Operator ซ่ึงนิยามดังน้ี  

 

                            (12) 

 

ซ่ึงมิได^กลYาวถึงในที่น้ี  เริ่มมีการศึกษาแคลคูลัสเชิงผลตYาง Nabla อันดับเศษสYวน โดย Gray กับ Zhang (Gray H.L., 

Zhang N.F.,1988) ได^แนะนำในปã 1988  และมีนักคณิตศาสตร0อีกหลายทYานพัฒนาตYอมาได^แกY  Hirota (Hirota R., 

2000), Nagai (Nagai A., 2003), Atici กับ Eloe (Atici F.M., Eloe P.W., 2009) และ Anastassiou (Anastassiou 

G.A., 2010) โดยมีการศึกษากันอยYางตYอเน่ืองจนถึงปâจจุบัน  

 

 

แคลคูลัสเชิงผลต7าง q อันดับเศษส7วน  
 

สำหรับแนวคิด เก่ียวกับ  แคลคูลัส เชิงผลต-าง q  อัน ดับ เศษส-วน  (Fractional –Difference 

Calculus)  น้ันเปÜนการขยายแนวคิดจากแคลคูลัสเชิงผลตYาง  ไปสูYแคลคูลัสเชิงผลตYาง  อันดับเศษสYวน โดย

อาศัยฟâงก0ชันแกมมา q   

                       
     (13) 

และฟâงก0ชันแฟกทอเรียล q  ลดอันดับเศษสYวน (Fractional q - Falling Factorial Function)  ดังตYอไปน้ี 

                    
                             (14)

 

โดยมีสมบัติ   เม่ือ   

 

พิจารณา  ปริพันธ$ q  ซ*อน (Repeated q -Integral)

 

ให^    แล̂วจะได^วYา 

          (15)
 

 

ตYอมา Al-Salam (Al-Salam W.A., 1997) และ Agarwal (Agarwal R.P., 1969) ได^นิยาม ปริพันธ$ q อันดับเศษส7วน 

(Fractional q - Integral) อันดับ 8	 ของฟâงก0ชัน  เม่ือ 
 
ดังน้ี 

 

             (16) 
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ตัวดำเนินการเชิงผลต-าง q อันดับเศษส-วนแบบรีมันนJ-ลียูวีล (Riemann-Liouville Fractional q -Difference) 

และ ผลต-าง q อันดับเศษส-วนแบบคาปูโต (Caputo Fractional q-Difference)  อันดับ 8 ของฟâงก0ชัน  

นิยามดังตYอไปน้ี ตามลำดับ 

         
                          (17) 

                                                     
(18) 

 

เม่ือ  จะเห็นได^วYา การศึกษาแคลคูลัส  อันดับเศษสYวนน้ันมีความครอบคลุมมากกวYา

แคลคูลัส  ปกติ เน่ืองจากสามารถหาผลตYาง  และปริพันธ0  อันดับใดๆ ก็ได^  ทำให^สามารถที่จะนำไปใช̂

ประโยชน0ในทางประยุกต0ได^กว̂างขวางกวYาน่ันเอง 

แคลคูลัสเชิงผลต7างฮาห$นอันดับเศษส7วน 
 

สำหรับ  แคลคูลัสเชิงผลต-างฮาหJนอันดับเศษส-วน (Fractional Hahn Difference Calculus)  เปÜน

การขยายแนว ความคิดของแคลคูลัสเชิงผลตYางฮาห0นโดยพิจารณาอันดับของผลตYางเปÜนเศษสYวน  โดยในปã 2010-

2011  Čermák และ Nechvatál (Čermák J., Nechvatál L., 2010; Čermák J., Kisela T., Nechvatál L., 2011) 

ได^แนะนำแคลคูลัสควอนตัม  ซ่ึงมีคYา   ดังน้ันแคลคูลัสควอนตัม  น้ีจึงมิใชYแคลคูลัสเชิง 

ผลตYางฮาห0น เน่ืองจากในแคลคูลัสเชิงผลตYางฮาห0นกำหนดคYา  ซ่ึงได^ถูกแนะนำโดย Brikshavana และ 

S it th iw ira tth am  (Brikshavana T., Sitthiwirattham T., 2 0 17 )ในปã  2 0 17  โด ย ให^  

 และ  
 
โดยที่   โดยอาศัย

ฟâงก0ชันแกมมา q  ในสมการ (13)  และฟâงก0ชันแฟกทอเรียล q,w  ลดอันดับเศษสYวน (Fractional q,w - Falling 

Factorial Function)  ดังตYอไปน้ี 

                                   
                         (19) 

พิจารณา  ปริพันธJฮาหJนซbอน (Repeated Hahn Integral)

  

ให^     

 (20)

 

จะได^วYา  ปริพันธJฮาหJนอันดับเศษส-วน (Fractional Hahn Integral)  อันดับ 8	 ของฟâงก0ชัน  คือ 
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                             (21) 

ตัวดำเนินการเชิงผลต-างฮาหJนอันดับเศษส-วนแบบรีมันนJ -ลียูวีล (Riemann-Liouville Fractional Hahn 

Difference) และ ผลต-างฮาหJนอันดับเศษส-วนแบบคาปูโต (Caputo Fractional Hahn Difference)  อันดับ 

8  ของฟâงก0ชัน  นิยามดังตYอไปน้ี ตามลำดับ 

      
        (22)

 

     
         (23)      

เม่ือ   

บทสรุปและข*อเสนอแนะ  
 

(1)   แนวคิดในการสร^างตัวดำเนินการอันดับเศษสYวนของแตYละแคลคูลัสควอนตัมคือ  การหาสูตรทั่วไปในการหา

ปริพันธ0ซ̂อนหรือผลรวม m  ช้ัน (ครั้ง) ของฟâงก0ชัน f  ของแตYละแคลคูลัสควอนตัม จากน้ันจึงนิยามปริพันธ0หรือ

ผลรวมอันดับเศษสYวน  สุดท^ายก็จะนำนิยามดังกลYาวมานิยามอนุพันธ0หรือผลตYางอันดับเศษสYวนแบบรีมันน0-ลียวีูล 

และแบบคาปูโต ของแตYละแคลคูลัสควอนตัมตYอไป 

(2)   ปâจจุบันได^มีการพัฒนาพัฒนาองค0ความรู^ในการสร^างตัวดำเนินการอันดับเศษสYวนของแคลคูลัสควอนตัมประเภท

อ่ืนๆอีกอาทิเชYน 
 

• ปã 2019 Patanarapeelert  และ Sitthiwirattham (Patanarapeelert, N., Sitthiwirattham, T., 2019) 

ได^แนะนำ แคลคูลัสสมมาตรฮาห$นอันดับเศษส7วน (Fractional Symmetric Hahn Difference 

Calculus)  ซ่ึงเปÜนการขยายองค0ความรู^จากแคลคูลัสฮาห0นอันดับเศษสYวน 

• ปã  2020  Soontraranon และ Sitthiwirattham (Soontraranon, J., Sitthiwirattham, T., 2020) ได^

แนะนำ แคลคูลัสเชิงผลต7าง p,q  อันดับเศษส7วน (Fractional (p,q )-Difference Calculus) ซ่ึงเปÜน

การขยายองค0ความรู^จากแคลคูลัส q  อันดับเศษสYวน 
  

(3)    มีแคลคูลัสควอนตัมอีกหลายประเภทที่ยังไมYได^มีการศึกษาองค0ความรู^ในเรื่องอันดับเศษสYวนเลย ดังน้ันจึงเปÜนองค0

ความรู^ที่นYาศึกษาค^นคว̂าวิจัยเปÜนอยYางยิ่งในอนาคต  
 

(4)   องค0ความรู^ใหมYในเรื่องแคลคูลัสควอนตัมอันดับเศษสYวน สามารถค^นคว̂าวิจัยตYอยอดในหัวข^อวิจัย ความ

เสถียรภาพและพฤติกรรมเชิงเส*นกำกับ (Stability and Asymptotic Behavior) ของแคลคูลัสควอนตัม 

อันดับเศษส7วนประเภทต7างๆ  ซ่ึงในปâจจุบันมีนักคณิตศาสตร0ที่ศึกษาวิจัยเก่ียวกับหัวข^อวิจัยน้ีอยูYน̂อยมาก จึง

นYาจะเปÜนโอกาสอันดีตYอนักวิจัยคณิตศาสตร0ไทยให^หันมาศึกษาวิจัยในสาขาวิจัยน้ีเพิ่มขึ้น สามารถศึกษาวิจัย

ค^นคว̂าหาองค0ความรู^ใหมYและนำผลงานไปตีพิมพ0เผยแพรYในวารสารนานาชาติได^  อีกทั้งในอนาคตหมายม่ันวYาจะ
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ได^มีนักวิจัยในศาสตร0สาขาอ่ืนที่เก่ียวข^องนำองค0ความรู^ที่ได^สร^างขึ้นมาน้ีไปประยุกต0ใช̂ให^เกิดประโยชน0สูงสุด

ตYอไป 
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