

การตรวจการทำข้อสอบแบบปรนัย ด้วยปัจจัยสีและความหนาแน่นที่ต่างกัน โดยใช้วิธีการประมวลผลภาพ
An Investigation of the Color and Density of Different Multiple Choice Answer Sheet Input
Factors Using Image Processing Techniques

วันเพ็ญ ผลศิริ

Wanpen Plisorn

อาจารย์ สาขาวิชาศิวกรรมคอมพิวเตอร์ คณะครุศาสตร์อุตสาหกรรม
มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ
wanpen_tc@hotmail.com

บทคัดย่อ

การตรวจการทำข้อสอบแบบปรนัย ด้วยปัจจัยสีและความหนาแน่นที่ต่างกัน โดยใช้วิธีการประมวลผลภาพนี้ เป็นการพัฒนาวิธีการตรวจgradeตามคำตอบแบบปรนัย 3 ขั้นตอน ประกอบด้วย ขั้นตอนการเตรียมข้อมูล ขั้นตอนการรู้จำผลเฉลย และ ขั้นตอนการตรวจคำตอบ ที่ประยุกต์ใช้เทคนิคการประมวลผลภาพสำหรับการตรวจสอบ หาความแตกต่างระหว่างภาพgradeและภาพที่ต้องการตรวจ คำตอบที่ต้องการตรวจ และภาพของgradeเฉลย ในแต่ละตำแหน่ง ที่ถูกกำหนดไว้ให้เป็นจุดสนใจของภาพ (ROI: Region of Interested) พร้อมทั้งสรุปผลการวิเคราะห์ตามฟังก์ชันที่กำหนด อนึ่งการทดสอบประสิทธิภาพด้านความถูกต้องของรูปแบบการตรวจสอบการทำข้อสอบแบบปรนัยนี้ ใช้gradeตามคำตอบแบบปรนัยของมหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ จำนวนตัวเลือก 5 ตัวเลือก 150 ข้อต่อแผ่น และทำการทดสอบกับ gradeตามคำตอบตัวอย่าง รวม 720 แผ่น แบ่งออกเป็นการทำข้อสอบด้วยดินสอ 2B ปากกาสีดำและปากกาสีแดง ผลการทดสอบสรุปว่ารูปแบบการตรวจสอบแบบปกติของการทำข้อสอบแบบปรนัยนี้ มีประสิทธิภาพด้านความถูกต้องเฉลี่ยร้อยละ 92.47 และการตรวจแบบช้าขึ้นเมื่อประสิทธิภาพต้านความถูกต้องเฉลี่ยร้อยละ 88.89 จึงสามารถใช้เป็นหลักการในการตรวจสอบการทำข้อสอบแบบปรนัยได้ ส่วนสีที่เหมาะสมกับขั้นตอนนี้ คือปากกาสีดำและปากกาสีแดงซึ่งมีความถูกต้องและประสิทธิภาพสูง

คำสำคัญ: การตรวจข้อสอบ กระดาษคำตอบแบบปรนัย การประมวลผลภาพ ปัจจัยสีและความหนาแน่น ค่าความแตกต่าง

Abstract

The research used image processing technique to investigate the effect of color and density of different input factors when completing multiple choice answer sheets. The process consists of three steps: data preparation, recognition answer sheet and check answer. Additionally, the study examined the difference between the figures of the completed answer sheet and the true one for each specified position which is called ROI (region of interest). The efficiency of the processes was evaluated using 150 items of a five-choice answer sheet, a total of 720 sheets for the sample of the study. The accuracy of the program operation was tested using different styles of answer sheet completion, namely, answer sheet filled in by 2B pencils, blue-ink pens, black-ink pens, and red-ink pens. The results showed that the program works at an average of 92.47% accuracy for normal patterns and 88.89% accuracy for abnormal patterns. It was concluded that the process can be used efficiently. The color of choice for this procedure are black-ink pens and red-inks pen, which is accurate and efficient.

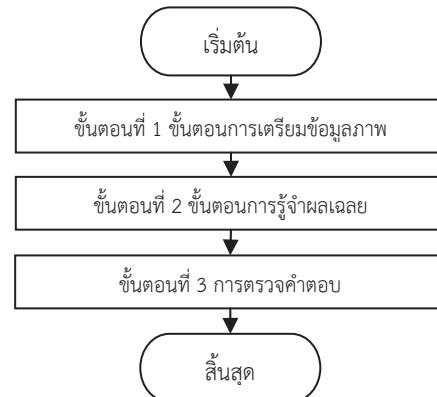
Keywords : Checking answer, Multiple-choice answer sheet, Image processing, Color and density, Different factors

1. บทนำ

การตรวจกระดาษคำตอบแบบปรนัยสำหรับการสอบคัดเลือกนักศึกษารวมถึงการสอบบรรจุพนักงานในหน่วยงานต่างๆ ที่มีปริมาณมาก โดยทั่วไปจะใช้เครื่องอ่านเครื่องหมายด้วยแสง (Optical Mark Readers - OMR) ที่ต้องอาศัยปริมาณสารแม่เหล็ก (Magnetic particle) ที่ได้จากดินสอดำเพื่อให้เครื่องสามารถรับรู้ข้อมูลได้ ซึ่งมีจุดเด่นคือสามารถตรวจข้อสอบแบบปรนัยในปริมาณมาก ๆ ด้วยความรวดเร็วอีกทั้งความถูกต้องเที่ยงตรงสูง แต่ต้องเสียค่าใช้จ่ายในการตรวจ การตรวจด้วยเทคโนโลยีดังกล่าว จึงไม่เหมาะสมกับการนำมายังหน่วยงานที่มีงบประมาณไม่เพียงพอ ซึ่งสอดคล้องกับงานวิจัยของครัญญา หล้ามุงคุณ [1] ที่ได้นำเสนอการพัฒนาระบบตรวจข้อสอบแบบปรนัย ต้นทุนต่ำ ด้วยการประมวลผลภาพจากการสแกนภาพ ซึ่งเทคนิคการประมวลผลภาพ (Image Processing Technique) เป็นเทคโนโลยีที่เกี่ยวกับการนำภาพในรูปแบบ Digital มาทำการประมวลผลเพื่อให้ได้ผลลัพธ์ตามที่ออกแบบไว้ ซึ่งเทคนิคดังกล่าวถูกนำมาใช้กันอย่างแพร่หลาย ทั้งการใช้ในการติดตามการเคลื่อนไหว จิตร์วัตน์ เศรษฐ์ชีวิน และณพ วีณา ฤกษ์ปรีดาพงศ์ [2] ระบุว่า “ขั้นตอนการติดตามการเคลื่อนไหวของรูปม่านตาประกอบด้วย 1. ดึงภาพหนึ่งเฟรมมาประมวลผล 2. แปลงภาพในเฟรมนั้น เป็นภาพระดับสีเทา 3. เริ่มค้นหาบริเวณใบหน้าโดยใช้ Harr like-Features โดยเมื่อเจอบริเวณใบหน้าในเฟรมแล้วจะตีกรอบสีเหลี่ยมเพื่อให้ทราบว่าบริเวณนั้นเป็นจุดสนใจ 4. แบ่งส่วนบริเวณจุดสนใจ” ถือว่าเป็นการประยุกต์ใช้หลักการประมวลผลภาพในการวิเคราะห์ภาพ 3 มิติได้อย่างน่าสนใจ การตรวจจับวัตถุใน การพัฒนาหุ่นยนต์คุปป้าจุบัน การวิเคราะห์สภาพภูมิศาสตร์ หรืออาจกล่าวได้ว่าสามารถนำภาพถ่ายมาประยุกต์ใช้ให้เกิดประโยชน์ได้อย่างหลากหลาย

ดังนั้นผู้เขียนบทความวิจัย จึงมีแนวคิดในการออกแบบขั้นตอนวิธีสำหรับการตรวจข้อสอบแบบปรนัยด้วยรูปแบบปัญญาประดิษฐ์โดยใช้วิธีการประมวลผลภาพ เพื่อลดข้อจำกัดจากการใช้ดินสอทำเครื่องหมายเพียงอย่างเดียว และสามารถใช้วัสดุนิดเดียวที่มีความต่างระหว่างปริมาณสีของเครื่องหมาย กับกระดาษคำตอบได้อีกด้วย โดยใช้หลักการเปลี่ยนรูปแบบกระดาษคำตอบให้อยู่ในลักษณะของไฟล์ภาพในรูปแบบ Digital ซึ่งใช้เครื่องสแกนเนอร์ที่มืออยู่ทั่วไป และดำเนินการตามขั้นตอนวิธีที่ได้ออกแบบขึ้น สอดคล้องกับไฟบูล์ พวงวงศ์ตระกูล [3] ที่กล่าวถึงเทคนิคพื้นฐานของปัญญาประดิษฐ์ที่เป็นการพัฒนาให้คอมพิวเตอร์มีความฉลาดและมีปัญญาล้ำมนุษย์ รวมถึงความสามารถใน

การรู้จำเพื่อเรียนรู้ วิเคราะห์ และแก้ปัญหา ซึ่งสามารถนำมาใช้เป็นหลักการเพื่อวิเคราะห์และตรวจสอบการดำเนินการที่อยู่ในกระบวนการตรวจข้อสอบแบบปรนัย เพื่อทดสอบการใช้เครื่องอ่านเครื่องหมายด้วยแสงในกรณีที่มีงบประมาณจำกัด

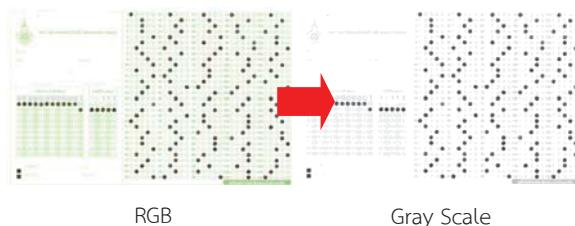

2. วัตถุประสงค์ของการวิจัย

เพื่อออกแบบขั้นตอนวิธีการตรวจข้อสอบแบบปรนัยด้วยวิธีการประมวลผลภาพ

3. การออกแบบขั้นตอนการตรวจสอบการทำ

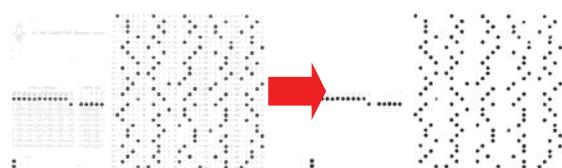
ข้อสอบแบบปรนัย ด้วยปัจจัยสีและความหนาแน่นที่ต่างกัน โดยใช้วิธีการประมวลผลภาพ

บทความวิจัยนี้ สามารถแบ่งกระบวนการทำงานของโปรแกรมตรวจกระดาษคำตอบแบบปรนัยออกเป็น 3 ขั้นตอนการทำงาน ดังรูปที่ 1

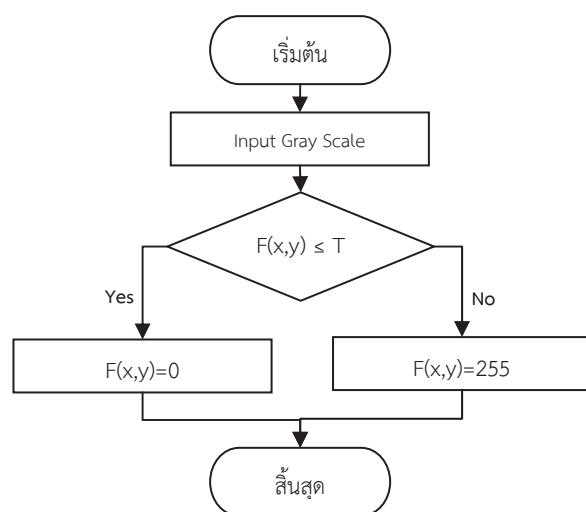


รูปที่ 1 ขั้นตอนการตรวจสอบการทำข้อสอบแบบปรนัย ด้วยปัจจัยและความหนาแน่นที่ต่างกัน โดยใช้วิธีการประมวลผลภาพ

3.1 ขั้นตอนการเตรียมข้อมูลภาพ


ขั้นตอนนี้ เป็นกระบวนการเริ่มต้นของการตรวจกระดาษคำตอบแบบปรนัย โดยใช้วิธีการแปลงภาพ RGB ที่ได้จากการสแกนภาพ ให้เป็น Binary Image ซึ่งเป็นรูปแบบที่เหมาะสมสำหรับการวิเคราะห์ผล และกำหนดจุดสนใจของภาพ ดังนี้

1. แปลงภาพ RGB เป็น Gray Scale ด้วยวิธีการลดจำนวนบิตในแต่ละ Pixel ของภาพ ตามหลักวิธีที่ Jun Tang [4] กล่าวถึงหลักวิธีการแบ่งส่วนภาพสีเพื่อใช้ในการวิเคราะห์ข้อมูล โดยภาพที่ได้จะถูกเปลี่ยนจากภาพสีเป็นภาพระดับเทา ดังรูปที่ 2



รูปที่ 2 การลดจำนวนบิตในแต่ละ Pixel ของภาพ

2. แปลงภาพ Gray Scale เป็น Binary Image เพื่อลดจำนวนของระดับความเข้มลง ดังรูปที่ 3 และ รูปที่ 4

รูปที่ 3 การลดจำนวนและระดับความเข้มในแต่ละ Pixel

รูปที่ 4 กระบวนการแปลง Gray Scale เป็น Binary Image

โดยการคำนวณค่า Threshold (T) เพื่อเป็นเงื่อนไขในการปรับค่าสี ซึ่งสัตถ์ถาวร ไทยพานิช และจักรี ศรีนินทัตธร. [5] ระบุว่า “เงื่อนไขในการปรับค่าสีจะมีการปรับค่าในแต่ละจุดสี โดยกำหนดให้จุดสีมีค่าเท่ากับ 0 เมื่อจุดสีนั้นมีค่าน้อยกว่าหรือเท่ากับค่า Threshold และปรับค่าจุดสีให้มีค่าเท่ากับ 255 เมื่อจุดสีนั้นมีค่ามากกว่า Threshold” โดยใช้เทคนิคการวิเคราะห์ภาพ [6] จาก Input Gray Scale ให้เป็นภาพขาวและดำ เนื่องจากความต่างของสีไม่มีความจำเป็นในการประมวลผล เพราะการตรวจสอบต้องการทราบเพียงสถานะของการfonในภาพเท่านั้น ซึ่งเป็นไปได้เพียง 2 สถานะ คือ fon หรือไม่fon ซึ่งค่า Threshold สามารถหาได้ดังสมการที่ 1

$$T = \overline{F} - \sigma - C \quad (1)$$

เมื่อ \bar{F} คือ ค่าเฉลี่ยของความเข้มจากทุกๆ Pixel ของทุก ตำแหน่งของ $F(x,y)$ ในภาพ ซึ่งคำนวณจาก สมการที่ 2

$$\overline{F} = \frac{1}{M \cdot N} \sum_{x=1}^M \sum_{y=1}^N F(x, y) \quad (2)$$

๕ คือ ส่วนเบี่ยงเบนมาตรฐานของค่าความเข้มทุก Pixel ซึ่งคำนวณจากสมการที่ 3

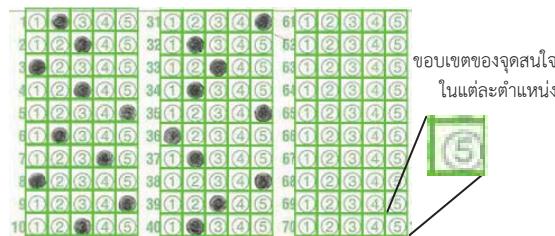
$$\sigma = \sqrt{\frac{1}{M \cdot N} \sum_{x=1}^M \sum_{y=1}^N \left(F(x, y) - \bar{F} \right)^2} \quad (3)$$

คือ ค่าคงที่ของความเข้มสี (ได้มาจากการทดลอง)

จากนั้น นำค่า Threshold ที่ได้ทำการแปลงภาพให้เป็น Binary Image โดยใช้ค่า Threshold เป็นจุดที่ทำการตัดภาพตามเงื่อนไขดังสมการที่ 4

$$F(x, y) = \begin{cases} 0 & \text{if } F(x, y) \leq T \\ 255 & \text{if } F(x, y) > T \end{cases} \quad (4)$$

3. การพิจารณาจุดสนใจของภาพ หรือ ROI (Region of Interested) เป็นการกำหนดขอบเขตในการประมวลผลภาพ และแยกแยกตำแหน่งที่กำหนด ว่าอยู่ในตำแหน่งใด ดังรูปที่ 5 เพื่อลดปริมาณและระยะเวลาในการวิเคราะห์ผล สมการที่ 5 จะทำการพิจารณาแต่ละปริเวณจุดที่สนใจ


$$\text{ProcessingArea} = \sum_0^x \sum_0^y f(x, y) \quad (5)$$

เนื้อ Processing Area คือ จำนวน Pixel ที่ต้องทำการประมวลผล

X คือ จำนวนของจุดภาพในแนวแกนนอน

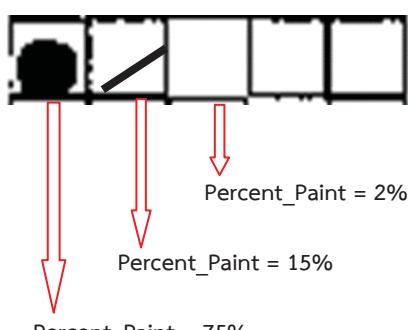
y คือ จำนวนของจุดภาพในแนวแกนตั้ง

$f(x,y)$ คือ พงก์ชันของภาพ

รูปที่ 5 การกำหนดขอบเขตของจดสนใจเพื่อใช้ในการระบบตามาแน่น

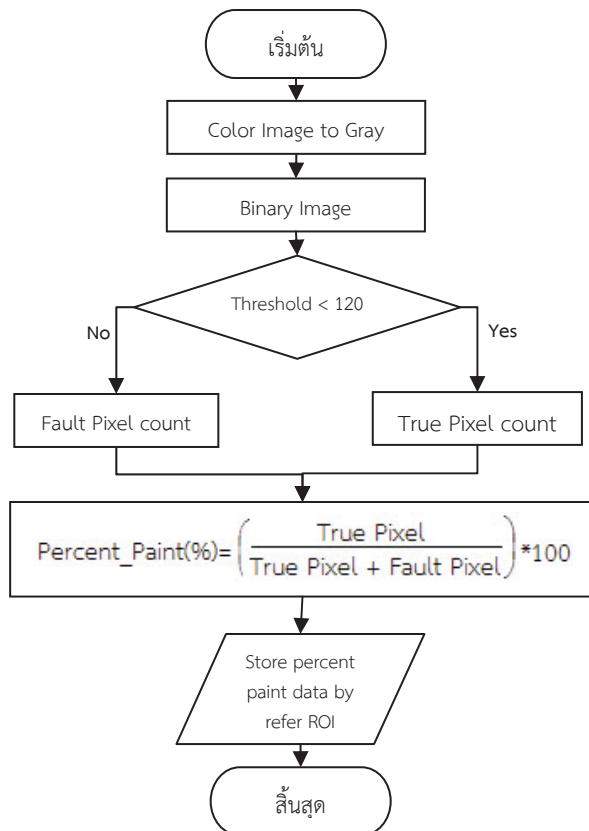
4. การแยกแยะการระบายน้ำ เป็นการพิจารณาข้อมูลเพื่อระบุว่าตำแหน่งที่กำลังตรวจสอบอยู่ในระบบายน้ำหรืออยู่ต่อหน้าหรือไม่ โดยพิจารณาจากการตรวจสอบบริเวณที่สนใจ ทำการแปลงข้อมูลภาพให้เป็นข้อมูลแบบ Binary Image และทำการ

ตรวจสอบโดยการพิจารณาจากการนับ Pixel ที่เป็น True เปรียบเทียบกับจำนวน Pixel ทั้งหมดภายในบริเวณที่สนใจ และทำการคิดเป็นเปอร์เซ็นต์ โดยเปอร์เซ็นต์ที่ได้คือเปอร์เซ็นต์ของพื้นที่ที่ถูกระบายนั่นเอง ดังสมการที่ 6


$$\text{Percent_Paint}(\%) = \left(\frac{\text{True Pixel}}{\text{True Pixel} + \text{Fault Pixel}} \right) * 100 \quad (6)$$

เมื่อ Percent_Paint(%) คือ เปอร์เซ็นต์ของพื้นที่ที่ถูกระบายนั่นเอง

True Pixel คือ จำนวนของจุดภาพที่มีค่าต่ำกว่าค่า Threshold จากการทำ Binary Image


Fault Pixel คือ จำนวนของจุดภาพที่มีค่าเท่ากับหรือสูงกว่าค่า Threshold จากการทำ Binary Image

เพื่อเป็นการแยกแยะพื้นที่ในการระบายน้ำด้วยในกระดาษคำตอบ ด้วยเปอร์เซ็นต์ของพื้นที่ที่ถูกระบายน้ำดังรูปที่ 6

รูปที่ 6 เปอร์เซ็นต์ของพื้นที่ที่ถูกระบายน้ำ

โดยกระบวนการแยกแยะการระบายน้ำดังรูปที่ 7

รูปที่ 7 กระบวนการแยกแยะการระบายน้ำ

3.2 ขั้นตอนการรู้จำผลเฉลย

เป็นการสร้างเฉลย เพื่อใช้ในการตรวจข้อสอบ ซึ่งการรู้จำนี้จะเป็นการหาความแตกต่างระหว่างจุดสนใจ (ROI) ในตำแหน่งเดียวกันของกระดาษเปล่า (Blank Form) และกระดาษที่เป็นเฉลย (Answer Form) ดังรูปที่ 8

รูปที่ 8 ความแตกต่างระหว่าง Blank Form และ Answer Form

ด้วยหลักการ Image Subtraction ดังนี้

1. การจดจำรูปแบบที่ได้จากการทำ Image Subtraction เพื่อหาความแตกต่างระหว่างภาพ ตามที่ Gonzalez, Rafael C and Richard E. Woods [7] ได้กล่าวถึงหลักการหาความแตกต่าง ดังสมการที่ 7 ระหว่าง Blank Form และ Answer Form

4.1 ผลการทดสอบประสิทธิภาพด้านความถูกต้องในการฝนแบบปกติ

ผู้วิจัยเลือกใช้ระดับความเข้มของการฝน 4 ระดับ จาก ดินสอ 2B ปากกาสีน้ำเงิน ปากกาสีดำ และปากกาสีแดง ทดสอบกับกระดาษคำตอบแบบปรนัยของมหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ จำนวน ระดับความเข้มละ 1,800 ข้อ สามารถสรุปผลได้ดังตารางที่ 1 ซึ่งมีค่าเฉลี่ยของประสิทธิภาพด้านความถูกต้องคิดเป็นร้อยละ 92.47

ตารางที่ 1 ผลการทดสอบประสิทธิภาพความถูกต้องในการฝนแบบปกติ

ระดับการฝน กระดาษคำตอบ	จำนวน ข้อที่ฝน ทั้งหมด	จำนวน ข้อที่ ตรวจ ผิดพลาด	ความ ผิดพลาด ในการ ตรวจด้วย โปรแกรม (ร้อยละ)	ประสิทธิ- ภาพ ความ ถูกต้อง (ร้อยละ)
ดินสอ 2B	1,800	542	30.11	69.89
ปากกาสีน้ำเงิน	1,800	0	0	100
ปากกาสีดำ	1,800	0	0	100
ปากกาสีแดง	1,800	0	0	100
ค่าเฉลี่ยรวม	7,200	542	7.53	92.47

4.2 ผลการทดสอบประสิทธิภาพด้านความถูกต้องในการฝนแบบชี้ช่อง

เลือกใช้ระดับความเข้มของการฝนและกระดาษคำตอบปรนัยที่ใช้ในการทดสอบ เหมือนกับการทดสอบประสิทธิภาพด้านความถูกต้องในการฝนแบบปกติ สามารถสรุปผลได้ดังตารางที่ 2 ซึ่งมีค่าประสิทธิภาพด้านความถูกต้องของดินสอ 2B คิดเป็นร้อยละ 70.27 ปากกาสีน้ำเงิน คิดเป็นร้อยละ 96.97 ส่วนปากกาสีดำ และปากกาสีแดงคิดเป็นร้อยละ 100 สรุปผลการทดสอบประสิทธิภาพความถูกต้องเฉลี่ยร้อยละ 88.89

ตารางที่ 2 ผลการทดสอบประสิทธิภาพความถูกต้องในการฝนแบบชี้ช่อง

ระดับการฝน กระดาษคำตอบ	จำนวน ข้อที่ กำหนดให้ ชี้ช่อง ทั้งหมด	จำนวน ข้อที่ ตรวจ พบ ความ ชี้ช่อง	ความ ผิดพลาด ในการ ตรวจ ด้วย โปรแกรม (ร้อยละ)	ประสิทธิ- ภาพความ ถูกต้อง (ร้อยละ)
ดินสอ 2B	74	96	29.73	70.27
ปากกาสีน้ำเงิน	33	34	3.03	96.97
ปากกาสีดำ	37	37	0	100
ปากกาสีแดง	63	63	0	100
ค่าเฉลี่ยรวม	207	230	11.11	88.89

5. บทสรุป

งานวิจัยนี้นำเสนอขั้นตอนวิธีที่ประยุกต์ใช้เทคนิคการประมวลผลภาพในการตรวจกระดาษคำตอบแบบปรนัย ด้วยการกำหนดจุดสนใจในการวิเคราะห์ และหาความแตกต่างของข้อมูลภาพระหว่างภาพเฉลยและภาพกระดาษคำตอบที่ต้องการตรวจ ด้วยการทดสอบประสิทธิภาพด้านความถูกต้องของการตรวจกระดาษคำตอบ ของมหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิที่ถูกผนึ่งด้วยดินสอ 2B ปากกาสีน้ำเงิน ปากกาสีดำและปากกาสีแดง รวมเป็น 8 แบบ ทั้งหมด 10,800 ข้อ ผลปรากฏว่า ประสิทธิภาพด้านความถูกต้องในการฝนแบบปกติอยู่ที่ร้อยละ 92.47 ส่วนประสิทธิภาพด้านความถูกต้องในการฝนแบบชี้ช่องเฉลี่ยอยู่ที่ร้อยละ 88.89 ในภาพรวมผลการทดสอบด้านความถูกต้อง เฉลี่ยคิดเป็นร้อยละ 90.68 ซึ่งแนวคิดการตรวจตรวจสอบการทำข้อสอบแบบปรนัย ด้วยปัจจัยสีและความหนาแน่นที่ต่างกัน สามารถสรุปได้ว่าการเลือกใช้วิธีการประมวลผลภาพในการตรวจหาความแตกต่างของปัจจัยสีและความหนาแน่นของสี ควรเลือกใช้การทำข้อสอบด้วยปากกาสีดำและสีแดง จึงจะมีความถูกต้องและมีประสิทธิภาพมากที่สุด นำไปประยุกต์ใช้สำหรับตรวจกระดาษคำตอบแบบปรนัยที่ต้องการประยุกต์ตันทุนได้

6. อภิปรายผล

จากการทดสอบประสิทธิภาพด้านความถูกต้องของขั้นตอนวิธีการตรวจข้อสอบแบบปรนัยด้วยเทคนิคการประมวลผลภาพ ทั้งการทดสอบแบบปกติและการทดสอบแบบชี้ช่อง พบว่าปากกาสีดำและปากกาสีแดงมีความถูกต้อง และมีประสิทธิภาพมากที่สุด เนื่องจากความแตกต่างกันในความหนาแน่นของสี ระหว่างภาพเฉลี่ยและภาพกระดาษคำตอบอย่างชัดเจน จึงส่งผลให้สามารถเปรียบเทียบความแตกต่างกันได้อย่างแม่นยำ ส่วนดินสอ 2B มีความผิดพลาดสูง เนื่องจากความหนาแน่นของสี เมื่อเปรียบเทียบกับภาพเฉลี่ยไม่แตกต่างกัน ทำให้การวิเคราะห์ข้อมูลมีการผิดพลาดขึ้น ส่วนหนึ่งมาจากการกำหนดค่า T หรือค่า $Threshold$ ซึ่งเป็นเงื่อนไขในการปรับค่าสีจาก Input Gray Scale ให้เป็นภาพขาวและดำด้วย หากกำหนดค่า T ที่มีความเหมาะสมก็อาจส่งผลให้สามารถเปรียบเทียบความแตกต่างระหว่างปัจจัยสีทุกสี และความหนาแน่นของสีทุกรูปแบบได้โดยไม่ต้องจำกัดรูปแบบการทำข้อสอบแบบปรนัยด้วยดินสอ เสมอไป พร้อมทั้งยังสามารถปรับเปลี่ยนรูปแบบของกระดาษคำตอบได้ตามความเหมาะสม

กิตติกรรมประกาศ

บทความวิจัยฉบับนี้สำเร็จลุล่วงไปได้ด้วยความช่วยเหลือ
อย่างดีเยี่ยมของนักวิจัยพี่เลี้ยง นายสัตถ์ถาวร ไทยพานิชและ
สาขาวิชาศึกษาคอมพิวเตอร์ ที่ได้กรุณาให้คำแนะนำและ
ข้อคิดเห็นต่าง ๆ ของการวิจัยมาโดยตลอด

ขอขอบคุณ กองทุนส่งเสริมงานวิจัย และคณบดีครุศาสตร์
อุตสาหกรรม มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ ที่
ให้การสนับสนุนทุนวิจัยและส่งเสริมการเผยแพร่ผลงานวิจัย
อย่างดีเยี่ยม

เอกสารอ้างอิง

- [1] ศรีภูมิ หล้ามุ่งคุณและคณ. 2553. ระบบตรวจ
ช้อสบปนนัยตันทุนตា. วิทยานิพนธ์ปริญญาศึกษา
ศาสตรบัณฑิต ภาควิชาศึกษาคอมพิวเตอร์
คณะศึกษาคอมพิวเตอร์ มหาวิทยาลัยเกษตรศาสตร์.
- [2] จิตวัฒน์ เทชจารัสชีวน และณพวีณ ฤกษ์ปรีดาพงศ์.
2551. ระบบติดตามลักษณะเด่นบนใบหน้าโดยใช้
กล้องเพียงหนึ่งตัว. วิทยานิพนธ์ปริญญาศึกษาศาสตร
บัณฑิต ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์
จุฬาลงกรณ์มหาวิทยาลัย.
- [3] ไพบูลย์ พวงวงศ์ตระกูล. ปัญญาประดิษฐ์
ในชีวิตประจำวัน. วารสารครุศาสตร์อุตสาหกรรม,
11(1), น. 260-267.
- [4] Jun Tang. 2010. A color image segmentation
algorithm based on region growing.
**International Conference on Computer
Engineering and Technology (ICCET),**
2(6), p. 634-637.
- [5] สัตถ์ถาวร ไทยพานิช และจักรี ศรีนนท์ฉัตร. 2553.
การพัฒนาเทคนิคพิจารณ์ค่าคลอรอฟิลล์
ในใบข้าวด้วยกรรมวิธีวิเคราะห์ความถดถอย
เชิงเส้นพหุ. วิทยานิพนธ์ปริญญาศึกษาศาสตร
บัณฑิต สาขาวิชาศึกษาคอมพิวเตอร์ ภาควิชาศึกษา
คอมพิวเตอร์ มหาวิทยาลัยเทคโนโลยี
ราชมงคลล้านบุรี.
- [6] Gonzalez, Rafael C and Richard E.
Woods. 2001. **Digital Image Processing.**
2nd ed. New Jersey : Prentice-Hall.
- [7] The MathWorks. 2014. **Image Thresholding.**
Retrieved July 4, 2014, from
<http://www.mathworks.com/discovery/image-thresholding.html>