

บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน

TABLET-BASED LEARNING ABOUT BASIC SEMI-CONDUCTOR DEVICES

ณรงค์กร สีจันทร์¹ วิสุทธิ์ สุนทร堪กพงศ์² และวินัย ใจล้า³
Narongkorn Seejan¹, Wisuit Sunthonkanokpong² and Winai Jaikla³

¹นักศึกษาหลักสูตร ค.อ.ม. (สาขาวิชาศิวกรรมไฟฟ้าสื่อสาร)

²รองศาสตราจารย์ ³ผู้ช่วยศาสตราจารย์ สาขาวิชาครุศาสตร์วิศวกรรม

คณะครุศาสตร์อุตสาหกรรม สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

narongkorn.se@e-tech.ac.th, wisuit.su@kmitl.ac.th and winai.ja@kmitl.ac.th

บทคัดย่อ

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อพัฒนาและหาประสิทธิภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน และเพื่อเปรียบเทียบผลสัมฤทธิ์ทางการเรียน ก่อนและหลังเรียนด้วยบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน กลุ่มตัวอย่างที่ใช้ในการทำวิจัยคือ ผู้เรียนประกาศนียบัตรวิชาชีพปีที่ 1 แผนกอิเล็กทรอนิกส์ วิทยาลัยเทคโนโลยีภาคตะวันออก(อี.เทค) จำนวน 30 คน ภาคเรียนที่ 2 ปีการศึกษา 2558 เครื่องมือที่ใช้ในการวิจัย ประกอบด้วย บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน แบบประเมินคุณภาพของบทเรียนบนแท็บเล็ตด้านเนื้อหาและด้านเทคนิคการผลิตสื่อ และแบบทดสอบวัดผลสัมฤทธิ์ทางการเรียน

ผลการวิจัยพบว่า บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน มีคุณภาพด้านเนื้อหาอยู่ในระดับดีมาก ($\bar{X} = 4.63$, S.D. = 0.40) และด้านเทคนิคการผลิตสื่อ อยู่ในระดับดี ($\bar{X} = 4.47$, S.D. = 0.53) ประสิทธิภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน เท่ากับ 84.07/83.53 ซึ่งเป็นไปตามเกณฑ์ที่กำหนดไว้ คือ E1/E2 ไม่น้อยกว่า 80/80 และผลสัมฤทธิ์ทางการเรียนที่เรียนด้วยบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน หลังเรียนสูงกว่าก่อนเรียนอย่างมีนัยสำคัญทางสถิติที่ระดับ 0.05

คำสำคัญ: แท็บเล็ต บทเรียนบนแท็บเล็ต อุปกรณ์สารกึ่งตัวนำพื้นฐาน ประสิทธิภาพของบทเรียน ผลสัมฤทธิ์ทางการเรียน

Abstract

The research objectives was to develop tablet-based learning about basic semi-conductor devices, and to determine its efficiency by comparing pretest and posttest scores of student learning achievement. The sample for this study consisted of 30 first year vocational certificate students majoring in electronics from Eastern Technological College (E.TECH) during the second term of the 2558 academic year. The tools utilized in the research were tablet-based learning tasks on basic semi-conductor devices, quality evaluation of the contents and multimedia production techniques, and a learning achievement test.

The results revealed that the quality of the contents was at the great level ($\bar{X} = 4.63$, S.D. = 0.40) and multimedia production was at the good level ($\bar{X} = 4.47$, S.D. = 0.53). The efficiency of tablet-based learning about basic semi-conductor devices or E1/E2 was 84.07/83.53, which was congruent with the specified hypothesis. When the pretest and posttest scores of student learning achievement were compared, it was found that the posttest scores ($\bar{X} = 41.77$, S.D. = 3.02) were statistically significantly higher than the pretest ones ($\bar{X} = 24.73$, S.D. = 4.37) at the 0.05 level.

Keywords: Tablet; Tablet- Based Learning; Semi-Conductor Devices; Efficiency; Achievement

1. บทนำ

เทคโนโลยีอิเล็กทรอนิกส์เข้ามามีบทบาทในชีวิตประจำวันของมนุษย์ สิ่งประดิษฐ์อิเล็กทรอนิกส์ที่ทำจากสารกึ่งตัวนำอยู่ในอุปกรณ์ไฟฟ้าทุกชนิด เช่น วิทยุ โทรศัพท์ เครื่องซักผ้า เตาไมโครเวฟ รถยนต์ เครื่องคอมพิวเตอร์ ฯลฯ ดังนั้น สารกึ่งตัวนำจึงกลายเป็นวัสดุไฟฟ้าที่มีความสำคัญต่อการใช้ชีวิตในโลกยุคปัจจุบันและอนาคต สารกึ่งตัวนำซึ่งมีคุณสมบัติอยู่ระหว่างตัวนำและอนุวัติ มีการค้นพบมานานพร้อมกับวัสดุชนิดอื่นๆ แต่ไม่ได้นำมาใช้ประโยชน์อย่างจริงจังจนกระทั่งปี พ.ศ.2490 ซึ่งมีการคิดค้นทรานซิสเตอร์ได้สำเร็จ เป็นครั้งแรก สารกึ่งตัวนำนี้ได้รับความสนใจ และมีบทบาทในการพัฒนาอุตสาหกรรมต่างๆ อย่างมาก เพราะสามารถทำงานทดแทนหลอดสูญญากาศได้ ทำให้อุปกรณ์อิเล็กทรอนิกส์ มีขนาดเล็ก น้ำหนักเบา กินไฟฟ้าน้อย และมีราคาถูก เมื่อนำสารกึ่งตัวนำมาผลิตเป็นอุปกรณ์อิเล็กทรอนิกส์ จะถูกเรียกว่า อุปกรณ์สารกึ่งตัวนำ (Semi-conductor Devices)

ผู้เรียนที่เข้ามาเรียน สาขาวิชาไฟฟ้าและอิเล็กทรอนิกส์ ต้องมีพื้นฐานความรู้เกี่ยวกับวิชาอุปกรณ์อิเล็กทรอนิกส์และวิจารณ์ ซึ่งจดอยู่ในหมวดหักษิริชพ ตามหลักสูตรประกาศนียบัตรวิชาชีพ พุทธศักราช 2556 เนื้อหาเรื่อง อุปกรณ์สารกึ่งตัวนำ (Semi-conductor Devices) เป็นส่วนหนึ่งในวิชาดังกล่าว มีความสำคัญมาก เพราะเป็นเนื้อหาพื้นฐานในการเรียนวิชาที่ยกขึ้นต่อไป จากการเรียนการสอนที่ผ่านมา พับปัญหาและอุปสรรคเป็นประเดิมได้ดังนี้ ดัง

1. การเรียนตามเนื้อหาหลักสูตร เรื่อง อุปกรณ์สารกึ่งตัวนำ ในรายวิชานี้ใช้การสอนแบบบรรยาย ผู้เรียนต้องใช้จินตนาการสูงเพื่อสร้างภาพกระบวนการโดยส่วนรวม การศึกษาเฉพาะในห้องเรียนจึงเป็นการยากที่จะทำให้ผู้เรียนเข้าใจเนื้อหาได้อย่างลึกซึ้ง ผู้เรียนมีการบทวนบทเรียน และค้นคว้าข้อมูลเพิ่มเติมเพื่อความเข้าใจในเนื้อหา

2. การเรียนการสอนนั้นส่วนมากจะสอนในชั้นเรียนกับผู้เรียนจำนวนมากพร้อมกัน โดยทำการสอนที่หน้าชั้นเรียนโดยวิธีการสอนในภาคทฤษฎีจะเป็นการอธิบายเนื้อหาให้มีสื่อการสอนเพียงสื่อสิ่งพิมพ์ และแผ่นใส่เท่ากัน และในการสอนภาคปฏิบัติจะใช้การสาธิตขั้นตอนการปฏิบัติ ในขณะที่ผู้เรียนเป็นผู้ที่ต้องรับผิดชอบกัน ทำให้การสอนเป็นผู้ที่ต้องรับผิดชอบกันทั้งชั้นเรียน พบร่วมกันไม่ค่อยมีส่วนร่วมในกิจกรรม จึงมีผู้เรียนจำนวนหนึ่งไม่สามารถผ่านจุดประสงค์การเรียนที่กำหนดไว้ อันเป็นอุปสรรคในการนำไปสู่กระบวนการเรียนรู้เพื่อให้เกิดหักษิริชพและไม่สามารถนำความรู้ที่ได้ไปปฏิบัติด้วยตนเอง

3. พื้นฐานความรู้ของผู้เรียนที่แตกต่างกัน ทำให้การเรียนการสอนบางครั้งจะต้องใช้การสอนบทวนทบทวนซ้ำอยู่บ่อยครั้ง

เพื่อให้ผู้เรียนเกิดความเข้าใจ ซึ่งก็เป็นผลกระทบต่อเวลาที่จะเรียนในเรื่องดังไป

4. ผู้เรียนต้องการบทเรียนที่มีลักษณะเรียนรู้ได้ด้วยตนเอง เพื่อสร้างความเข้าใจในเนื้อหาเพิ่มเติม เพื่อชดเชยบทเรียนส่วนที่ขาดหายไป จากการเรียน หรือเพื่อเป็นการบทวนบทเรียนที่เรียนผ่านมาแล้ว

จากปัญหาและอุปสรรคในการเรียนการสอน สืบต่อที่มีคุณลักษณะที่เหมาะสมในการนำเสนอที่ดี จะทำให้ผู้เรียนเกิดความเข้าใจในการเรียนจากผู้สอนและการเรียนรู้ด้วยตนเองได้ตลอดเวลา ซึ่งสื่อความรู้มีลักษณะนำเสนอที่สามารถเห็นภาพเสมือนจริง โดยให้ความสำคัญในการเรียนรู้ด้วยตนเอง คำนึงถึงความสามารถของผู้เรียนเป็นสำคัญ[1]

การนำเทคโนโลยีและสื่อสารการศึกษา มาประยุกต์ใช้กับการเรียนรู้ของผู้เรียน ในรูปแบบใหม่โดยการใช้แท็บเล็ต เป็นเครื่องมือในการเข้าถึงแหล่งเรียนรู้ และแสวงหาองค์ความรู้ในรูปแบบต่างๆ ที่มีอยู่ ในรูปแบบทั้ง Offline และ Online ทำให้ผู้เรียนมีโอกาสศึกษาหาความรู้ ฝึกปฏิบัติ และสร้างองค์ความรู้ต่างๆ ได้ด้วยตัวเอง การใช้แท็บเล็ต ช่วยเพิ่มแรงจูงใจของผู้เรียน และมีผลกระทบในทางบวกต่อผลสัมฤทธิ์ทางการเรียน รวมทั้งสนับสนุนให้เกิดการเรียนรู้ด้วยตนเอง ช่วยส่งเสริมให้เกิดการค้นคว้า และการเข้าถึงองค์ความรู้ นอกห้องเรียนอย่างกว้างขวาง รวมทั้งส่งเสริมการเรียนรู้แบบมีส่วนร่วมของผู้เรียน แท็บเล็ตสามารถที่จะตอบสนองต่อความต้องการ การเรียนรู้ของผู้เรียนได้เป็นอย่างดี ความสำคัญอีกประการหนึ่งก็คือ การจัดการเรียนการสอนของครู หรือการนำสื่อการเรียนการสอนมาใช้กับผู้เรียน จะต้องมีครูเป็นผู้แนะนำแนวทาง รวมถึงจัดการเรียนการสอนผ่านสื่อที่ครูสร้างขึ้น ได้เป็นอย่างดีด้วย[2]

การใช้เทคโนโลยีสารสนเทศที่ได้ยึดผู้เรียนเป็นศูนย์กลาง หนังสืออิเล็กทรอนิกส์ เป็นการนำเสนอวัตกรรมใหม่ๆ มาสนับสนุนเพื่อเพิ่มประสิทธิภาพของบทเรียน และปัจจุบันเป็นที่ยอมรับว่า การใช้หนังสืออิเล็กทรอนิกส์นั้นสามารถนำมายังประโยชน์ต่อการเรียนการสอนมากมาย ผู้เรียนสามารถแสวงหาความรู้จากสื่อการเรียนการสอนนี้ด้วยตัวเองตลอดชีวิต[3] เมื่อแท็บเล็ตเข้ามาเป็นเครื่องมือ ในการจัดกิจกรรมการเรียนการสอน สามารถสร้างองค์ความรู้ให้กับผู้เรียน สม่ำเสมอ กับการเปิดห้องเรียนสู่โลกกว้างของเทคโนโลยีที่ไร้พรมแดน ข้อดีของแท็บเล็ต คือ พกพาสะดวก จ่อภาพแบบสัมผัส ใช้งานง่าย เป็นเทคโนโลยีที่ทันสมัย ช่วยพัฒนาฝีมือในการอ่าน ที่น่าสนใจ คือ พัฒนาการเรียนรู้ของผู้เรียน การเข้าถึงสื่อด้วย ได้อย่างรวดเร็วและสะดวก ไม่จำกัดเวลา

วิทยาลัยเทคโนโลยีภาคตะวันออก(อี.เทค) เป็นวิทยาลัยที่เล็งเห็นถึงความสำคัญของการจัดการเรียนการสอนให้ทันสมัย

โดยนำเทคโนโลยีสารสนเทศมาช่วยในการจัดการ ตามวิสัยทัศน์ของวิทยาลัย “เป็นผู้นำทางการอาชีวศึกษา ประยุกต์ใช้เทคโนโลยีดิจิทัล มาบูรณาการจัดการศึกษา อย่างมีคุณภาพ ได้มาตรฐานสากล” และพัฒกิจของวิทยาลัย “ให้บริการด้านการศึกษาในระดับภาคีนีบัตรวิชาชีพ (ปวช.) ประกาศนียบัตรวิชาชีพชั้นสูง (ปวส.) ด้านช่าง 奧术สาหกรรมและบริหารธุรกิจ เพื่อตอบสนองความต้องการของประชาชนในภาคตะวันออก พร้อมทั้งรักษาความเป็นมาตรฐานระดับประเทศ ตลอดจนการนำเทคโนโลยีสารสนเทศ มาใช้ในการจัดการระบบงานและการเรียนการสอนให้ทันสมัยอยู่เสมอ”

แผนกอิเล็กทรอนิกส์ วิทยาลัยเทคโนโลยีภาคตะวันออก (อ.เทคโนโลยี) ได้นำแท็บเล็ต มาใช้ในการสอน ตั้งแต่ปีการศึกษา 2556 บทเรียนบนแท็บเล็ตถือว่าเป็นทางออกอีกทางหนึ่งที่จะช่วยให้ผู้เรียนได้สามารถเข้าถึงบทเรียนได้และสามารถทำความเข้าใจในเนื้อหาต่างๆ ได้ด้วยตัวเอง ความรู้ที่นักศึกษาระดับภาคีนีบัตรวิชาชีพ(ปวช.) สาขาวิชาไฟฟ้าและอิเล็กทรอนิกส์จะต้องมี เป็นพื้นฐานในการเรียนวิชาต่อไปคือ เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐาน ซึ่งผู้เรียนมีความเข้าใจในเรื่องดังกล่าว จะทำให้ง่ายต่อการเรียน และเข้าใจวิชาที่ยกในระดับที่สูงขึ้น

จากความสำคัญของอุปกรณ์สารกีร์ตัวนำพื้นฐาน และวิทยาลัยเทคโนโลยีภาคตะวันออก ที่สนับสนุนแท็บเล็ต ให้แก่แผนกอิเล็กทรอนิกส์ใช้ในการเรียนการสอน ผู้วิจัยจึงเห็นควรพัฒนาบนเรียนบนแท็บเล็ตเรื่องอุปกรณ์สารกีร์ตัวนำพื้นฐาน สำหรับผู้เรียน ปวช.1 เพื่อให้ได้สื่อที่มีคุณภาพ เอื้ออำนวย ความสะดวก มีประโยชน์แก่ผู้เรียน และผู้เรียนสามารถทบทวนความรู้ได้ตลอดเวลา ส่งผลให้ผู้เรียนมีผลลัพธ์ที่ทางการเรียนที่สูงขึ้น

2. วัตถุประสงค์การวิจัย

2.1 เพื่อพัฒนาและหาประสิทธิภาพบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐาน ที่มีคุณภาพ

2.2 เพื่อเปรียบเทียบผลลัพธ์ที่ทางการเรียน ก่อนและหลังเรียนของผู้เรียนบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐาน

3. สมมติฐานการวิจัย

3.1 บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐาน ที่สร้างขึ้นมา มีคุณภาพในระดับดี ($\bar{X} \geq 3.50$) ขึ้นไป [4] และ มีประสิทธิภาพตามเกณฑ์คือ E1/E2 ไม่น้อยกว่า 80/80 [5]

3.2 ผลลัพธ์ที่ทางการเรียน บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐานก่อนและหลังเรียนไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติที่ระดับ 0.05 หรือต่ำกว่า

4. กรอบแนวคิดที่ใช้ในการวิจัย

4.1 การสร้างบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐาน

ผู้วิจัยได้ใช้กรอบแนวคิดมาจากการขั้นตอนการออกแบบบทเรียนการสอนของ Gagné⁷ จำนวน 9 ขั้น อ้างใน นันท์กัส สิทธิวัฒน์กุลธรรม[6] ได้แก่ เร้าความสนใจ บอกวัตถุประสงค์ของบทเรียน ทบทวนความรู้เดิม เสนอเนื้อหา ขั้นแนวทางการเรียนรู้ กระตุ้นให้มีการตอบสนอง ให้ข้อมูลย้อนกลับ ทดสอบความรู้ การจำและการนำไปใช้

4.2 การประเมินคุณภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐาน

ผู้วิจัยนำแนวคิดของณัฐกร สงคราม[4] มาใช้เป็นกรอบแนวคิดในการหาคุณภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐาน ซึ่งแบ่งเป็น 2 ด้านคือด้านเนื้อหา และด้านเทคนิคการผลิตสื่อ

4.3 การหาประสิทธิภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐาน

ผู้วิจัยนำแนวคิดของชัยยงค์ พรหมวงศ์[5] คือ ประสิทธิภาพของกระบวนการ(E1) และประสิทธิภาพของผลลัพธ์(E2)

4.4 การวัดผลลัพธ์ที่ทางการเรียน เรื่อง อุปกรณ์สารกีร์ตัวนำพื้นฐาน

ผู้วิจัยได้ศึกษาแนวคิดของของ Bloom อ้างใน ภัสรา ศรี กลับ[7] ที่กล่าวว่าความสามารถทางด้านพุทธิสัญญาเป็นความสามารถทางด้านสมองในการคิดเกี่ยวกับสิ่งต่าง ๆ ซึ่งมีพคุติกรรมที่แยกย่อยเป็น 6 ขั้น ในการวิจัยครั้งนี้ผู้วิจัยได้นำมาระยุกต์ใช้เพียง 3 ขั้น ได้แก่ ความรู้ความจำ ความเข้าใจ และการนำไปใช้

5. วิธีดำเนินการวิจัย

5.1 ประชากรและกลุ่มตัวอย่าง

ประชากรที่ใช้ในการวิจัยครั้งนี้ คือ ผู้เรียนหลักสูตร ประกาศนียบัตรวิชาชีพ ชั้นปีที่ 1 ที่เรียนวิชา อุปกรณ์ อิเล็กทรอนิกส์และวงจร ปีการศึกษา 2558 สาขาว่าง อิเล็กทรอนิกส์ วิทยาลัยเทคโนโลยีภาคตะวันออก (อ.เทคโนโลยี) จำนวน 398 คน

กลุ่มตัวอย่าง ได้แก่ ผู้เรียนหลักสูตรประกาศนียบัตรวิชาชีพ ชั้นปีที่ 1 ที่เรียนวิชา อุปกรณ์ อิเล็กทรอนิกส์และวงจร

สาขาวิชาช่างอิเล็กทรอนิกส์ วิทยาลัยเทคโนโลยีภาคตะวันออก
โดยใช้วิธีการสุมอย่างง่าย จำนวน 30 คน

5.2 เครื่องมือที่ใช้ในการวิจัย

1. บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน
มีเนื้อหา ดังนี้

- หน่วยที่ 1 ไดโอด
- หน่วยที่ 2 ทรานซิสเตอร์
- หน่วยที่ 3 เอสซีอาร์
- หน่วยที่ 4 ไดออก
- หน่วยที่ 5 ไตรแอด

2. องค์ประกอบของบทเรียนบนแท็บเล็ตประกอบด้วย
หน้าจอ เนื้อหา ฝึกทักษะ และแบบทดสอบ ดังภาพในรูปที่
1 - 4 ดังนี้

รูปที่ 1 ตัวอย่างหน้าจอ

รูปที่ 2 ส่วนเนื้อหา

รูปที่ 3 ส่วนฝึกทักษะ

รูปที่ 4 ส่วนแบบทดสอบ

3. แบบประเมินคุณภาพของบทเรียนบนแท็บเล็ต เรื่อง
อุปกรณ์สารกึ่งตัวนำพื้นฐาน ด้านเนื้อหา และด้านเทคนิคการ
ผลิตสื่อ

4. แบบทดสอบวัดผลสัมฤทธิ์ทางการเรียน เรื่อง อุปกรณ์
สารกึ่งตัวนำพื้นฐาน เป็นข้อสอบแบบเลือกตอบ ชนิด 4
ตัวเลือก จำนวน 50 ข้อ แบบทดสอบมีค่าดัชนีความ
สอดคล้องอยู่ระหว่าง 0.67-1.00 ค่าความยากง่ายอยู่ระหว่าง
0.40 - 0.70 ค่าอำนาจจำแนกอยู่ระหว่าง 0.20 - 0.60 และ
ค่าความเชื่อมั่นเท่ากับ 0.85

5.3 การเก็บรวบรวมข้อมูล

1. แจ้งกำหนดการและสถานที่ให้กลุ่มตัวอย่างทราบเพื่อ^{เพื่อ}
ทำการทดลอง

2. ติดตั้งโปรแกรมบทเรียนบนแท็บเล็ต จำนวน 30 ชุด
เพื่อทำการทดลองใช้บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สาร
กึ่งตัวนำพื้นฐาน โดยใช้แจงวัตถุประสงค์ของการใช้บทเรียนบน
แท็บเล็ต

3. นำแบบทดสอบวัดผลสัมฤทธิ์ ให้กลุ่มตัวอย่างทั้ง 30
คน ทดสอบก่อนเรียน

4. แจกบทเรียนบนแท็บเล็ตและแบบฝึกหัดแต่ละหน่วย
ให้แก่กลุ่มตัวอย่างเพื่อศึกษาบทเรียนและทำแบบฝึกหัด
ระหว่างเรียนแต่ละหน่วยด้วยตนเอง

5. หลังจากศึกษาบทเรียนแต่ละหน่วยจบทุกหน่วย ให้
กลุ่มตัวอย่างทั้ง 30 คน ทำแบบทดสอบความรู้หลังเรียน
โดยใช้แบบทดสอบวัดผลสัมฤทธิ์ทางการเรียน

6. นำผลเรียนที่ได้มาตรวจให้คะแนนโดยใช้วิธี 0-1
(Zero-One method) โดยมีเกณฑ์ว่า ถ้าตอบถูกได้ 1
คะแนน ตอบผิด ไม่ตอบ หรือตอบเกิน หากเป็นข้อสอบแบบ
เลือกตอบ ให้ 0 คะแนน

7. วิเคราะห์ข้อมูลทางสถิติ

8. สรุปผลการวิจัย

5.4 การวิเคราะห์ข้อมูล

1. วิเคราะห์คุณภาพบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์
สารกึ่งตัวนำพื้นฐาน จากผลการประเมินคุณภาพด้านเนื้อหา
และด้านเทคนิคการผลิตสื่อ ของผู้ทรงคุณวุฒิจำนวน 3 ท่าน
โดยการหาค่าเฉลี่ย และค่าส่วนเบี่ยงเบนมาตรฐาน

2. วิเคราะห์หาประสิทธิภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐาน โดยเปรียบเทียบผลคะแนนจากการทำแบบทดสอบทั้งหัวเรียนในแต่ละหน่วยการเรียน และการทำแบบทดสอบวัดผลสัมฤทธิ์ทางการเรียนหลังเรียนครบทุกหน่วยการเรียน โดยการหาค่าประสิทธิภาพของกระบวนการ E1 และประสิทธิภาพของผลลัพธ์ E2 ตามเกณฑ์ที่กำหนดไว้ไม่น้อยกว่า 80/80

3. วิเคราะห์เปรียบเทียบผลสัมฤทธิ์ทางการเรียน เพื่อเปรียบเทียบผลสัมฤทธิ์ทางการเรียน ก่อนและหลังเรียนของกลุ่มตัวอย่าง โดยใช้ t-test แบบ t-test for Dependent Samples [8]

6. ผลการวิจัย

6.1 ผลการวิเคราะห์หาคุณภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐาน

ตารางที่ 1 แสดงค่าเฉลี่ย และค่าล่วงเบนมาตรฐาน ของคุณภาพบทเรียนบนแท็บเล็ต ด้านเนื้อหา และ ด้านเทคนิคการผลิตสื่อ

รายการที่ประเมิน	n = 3		ระดับคุณภาพ
	\bar{X}	S.D.	
1.ด้านเนื้อหา	4.63	0.40	ดีมาก
2.ด้านเทคนิคการผลิตสื่อ	4.47	0.53	ดี
เฉลี่ยรวม	4.55	0.46	ดีมาก

จากตารางที่ 1 พบว่า ในภาพรวมคุณภาพของบทเรียนบนแท็บเล็ต เรื่องอุปกรณ์สารก่อตัวนำพื้นฐาน อยู่ในระดับดีมาก ($\bar{X} = 4.55$, S.D.=0.46) สำหรับด้านที่มีค่าเฉลี่ยสูงสุด คือ ด้านเนื้อหา จัดอยู่ในระดับดีมาก ($\bar{X} = 4.63$, S.D.=0.40) รองลงมา คือด้านเทคนิคการผลิตสื่อ จัดอยู่ในระดับดี ($\bar{X} = 4.47$, S.D.=0.53)

6.2 ผลการวิเคราะห์หาประสิทธิภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐาน

ตารางที่ 2 แสดงประสิทธิภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐาน

คะแนน	คะแนน เต็ม	คะแนน เฉลี่ย	คิดเป็น ร้อยละ	เกณฑ์ ร้อยละ
ระหว่างเรียน (E1)	50	42.03	84.07	80
หลังเรียน (E2)	50	41.77	83.53	80

จากตารางที่ 2 พบว่า ผลการหาประสิทธิภาพของบทเรียนบนแท็บเล็ต เรื่องอุปกรณ์สารก่อตัวนำพื้นฐาน ที่สร้างขึ้นมีประสิทธิภาพ คือ E1 เท่ากับ 84.07 และ E2 เท่ากับ 83.53 ซึ่งมีประสิทธิภาพเป็นไปตามเกณฑ์ คือ E1/E2 ไม่น้อยกว่า 80/80 แสดงว่า บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐานสามารถนำไปใช้ในการเรียนการสอนได้อย่างมีประสิทธิภาพ

6.3 ผลการเปรียบเทียบผลสัมฤทธิ์ทางการเรียน ก่อนและหลังเรียนด้วยบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐาน

ตารางที่ 3 แสดงค่าเฉลี่ย ค่าล่วงเบนมาตรฐาน ของผลสัมฤทธิ์ทางการเรียนก่อนและหลังเรียนด้วยบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐาน

ผลการ ทดสอบ	n	คะแนน เต็ม	\bar{X}	S.D.	t
ก่อนเรียน	30	50	24.73	4.37	
หลังเรียน	30	50	41.77	3.02	18.74*

*มีนัยสำคัญทางสถิติที่ระดับ 0.05

จากตารางที่ 3 พบว่าคะแนนเฉลี่ยหลังเรียนด้วยบทเรียนบนแท็บเล็ต เรื่องอุปกรณ์สารก่อตัวนำพื้นฐาน ($\bar{X} = 41.77$, S.D.=3.02) สูงกว่าก่อนเรียน ($\bar{X} = 24.73$, S.D.=4.37) อย่างมีนัยสำคัญทางสถิติที่ 0.05

7. สรุปผลการวิจัย

7.1 ผลการประเมินคุณภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐานของผู้ทรงคุณวุฒิ จำนวน 3 ท่าน ในภาพรวม อยู่ในระดับดีมาก ($\bar{X} = 4.55$, S.D.=0.46) และเมื่อพิจารณาเป็นรายด้าน พบว่า ด้านเนื้อหา จัดอยู่ในระดับดีมาก ($\bar{X} = 4.63$, S.D.=0.40) และด้านเทคนิคการผลิตสื่ออยู่ในระดับดี ($\bar{X} = 4.47$, S.D.=0.53)

7.2 ประสิทธิภาพของบทเรียนบนแท็บเล็ต เรื่องอุปกรณ์สารก่อตัวนำพื้นฐาน พบร่วมกับการทำแบบทดสอบทั้งหัวเรียนของหน่วยการเรียนที่ 1-5 มีค่าเฉลี่ยเท่ากับ 42.03 คะแนน จากคะแนนเต็ม 50 คะแนน หรือคิดเป็นร้อยละ 84.07 และคะแนนจากการทำแบบทดสอบวัดผลสัมฤทธิ์ทางการเรียนหลังเรียนครบทุกหน่วยการเรียน ได้คะแนนเฉลี่ยรวมเท่ากับ 41.77 คะแนน จากคะแนนเต็ม 50 คะแนน คิดเป็นร้อยละ 83.53 ดังนั้น บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐานมีประสิทธิภาพคือ E1/E2 เท่ากับ 84.07/83.53 ซึ่งเป็นไปตามสมมติฐานที่กำหนดคือ E1/E2 ไม่น้อยกว่า 80/80 แสดงว่า บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐานสามารถนำไปใช้ในการเรียนการสอนได้อย่างมีประสิทธิภาพ

7.3 ผลการเปรียบเทียบผลสัมฤทธิ์ทางการเรียน ก่อนและหลังเรียนด้วยบทเรียนบนแท็บเล็ต เรื่องอุปกรณ์สารก่อตัวนำพื้นฐาน พบร่วมกับการเรียนด้วยบทเรียนบนแท็บเล็ต เรื่องอุปกรณ์สารก่อตัวนำพื้นฐาน ($\bar{X} = 41.77$, S.D.=3.02) สูงกว่าก่อนเรียน ($\bar{X} = 24.73$, S.D.=4.37) อย่างมีนัยสำคัญทางสถิติที่ 0.05 ทั้งนี้อาจเนื่องจากบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารก่อตัวนำพื้นฐานมีเนื้อหาและตัวอย่างที่ทำให้

ผู้เรียน มีความรู้ วิชาอุปกรณ์อิเล็กทรอนิกส์และวงจรเพิ่มมากขึ้น

8. อภิปรายผลการวิจัย

8.1 ผลการพัฒนาและหาคุณภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐานมีคุณภาพด้านเนื้อหาจัดอยู่ในระดับดีมาก มีค่าเฉลี่ยเท่ากับ 4.63 เนื่องจากผู้วิจัยได้ทำการวิเคราะห์หลักสูตร และเนื้อหาบทเรียน กำหนดจุดประสงค์เชิงพฤติกรรม จึงทำให้นี้เนื้อหาแบบทดสอบและจุดประสงค์เชิงพฤติกรรมมีความสอดคล้องกัน ส่วนคุณภาพด้านเทคนิคการผลิตสื่ออยู่ในระดับดี มีค่าเฉลี่ยเท่ากับ 4.47 เนื่องจากผู้วิจัยได้ทำการศึกษาและออกแบบบทเรียนตามหลักการออกแบบสื่อการเรียนการสอน ทำให้การวางแผนแบบหน้าจอและการนำเสนอที่เหมาะสม สอดคล้องกับงานวิจัยของเทวัญ กันเข็ตต์[9] เรื่องการพัฒนาบทเรียนคอมพิวเตอร์มัลติมีเดียบนแท็บเล็ต เรื่องสุนทรีย์คณิตศาสตร์ สำหรับผู้เรียนชั้นประถมศึกษาปีที่ 1 มีคุณภาพของบทเรียนด้านเนื้อหา ($\bar{X} = 4.46$, $S.D.=0.43$) และด้านเทคนิคการผลิตสื่อ ($\bar{X} = 4.22$, $S.D.=0.64$) มีคุณภาพอยู่ในระดับดี

8.2 ผลการหาประสิทธิภาพของบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐานโดยนำไปทดลองกับผู้เรียน ประกาศนียบัตรวิชาชีพปีที่ 1 สาขาอิเล็กทรอนิกส์ มีผลลัพธ์เท่ากับ 84.07/83.53 ซึ่งสอดคล้องกับสมมติฐาน คือ ไม่ต่ำกว่า 80/80 เพราะผู้วิจัยได้วิเคราะห์เนื้อหาบทเรียนอย่างเหมาะสม ก่อนไปทดลองใช้กับกลุ่มตัวอย่าง ดังนั้นจึงทำให้ผู้เรียนเข้าใจเนื้อหาได้เป็นอย่างดี มีความเข้าใจในเนื้อหามากขึ้นอีกทั้งบทเรียนมีความน่าสนใจ จึงทำให้ประสิทธิภาพของกระบวนการเท่ากับ 84.07 และ ประสิทธิภาพของผลลัพธ์เท่ากับ 83.53 ซึ่งสอดคล้องกับงานวิจัยของนันทรัตน์ กลินหอม[10] เรื่องการพัฒนาบทเรียนผ่านเครือข่ายอินเทอร์เน็ต เพื่อการทบทวน เรื่องระบบเครือข่ายคอมพิวเตอร์ วิชาเทคโนโลยีสารสนเทศเบื้องต้นที่ผลการวิจัยพบว่า ค่าประสิทธิภาพของกระบวนการต่อค่าประสิทธิภาพของผลลัพธ์เท่ากับ 84.40/80.48 ซึ่งเป็นไปตามเกณฑ์ ที่กำหนดไว้คือ E1/E2เท่ากับ 80/80

8.3 ผลการเปรียบเทียบผลสัมฤทธิ์ทางการเรียนก่อนและหลังเรียนบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน พบร่วมกับผลสัมฤทธิ์ทางการเรียนหลังเรียน ($\bar{X} = 41.77$) ด้วยบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐานสูงกว่าก่อนเรียน ($\bar{X} = 24.73$) อย่างมีนัยสำคัญทางสถิติที่ระดับ 0.05 ซึ่งสอดคล้องกับงานวิจัยของภานุมาศ นักชั้ตต์รมณฑล [11] เรื่อง การพัฒนาเลิร์นนิ่งออบเจ็คต์ วิชาคณิตศาสตร์บนแท็บเล็ต เรื่องรูปสามเหลี่ยม สำหรับผู้เรียนชั้นประถมปีที่ 5 ที่

พบว่าคะแนนเฉลี่ย ของผลสัมฤทธิ์ทางการเรียนหลังจากการเรียนด้วยเลิร์นนิ่ง ออบเจ็คต์ บนแท็บเล็ต เรื่องรูปสามเหลี่ยม สูงกว่าก่อนเรียน อย่างมีนัยสำคัญทางสถิติที่ระดับ 0.05

9. ข้อเสนอแนะ

9.1 ครุพัฒนาสามารถนำบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐานเป็นสื่อการสอนได้อย่างถูกต้อง เหมาะสมตามระยะเวลาการเรียนรู้ และเป็นการเพิ่มประสิทธิภาพการเรียนการสอนใน รายวิชาอุปกรณ์อิเล็กทรอนิกส์และวงจรได้

9.2 ใน การเรียนด้วยบทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐาน ผู้สอนควรมีการซี้แจงรายละเอียดต่างๆ ของบทเรียน ตลอดจนวิธีใช้งานเพื่อให้การเรียนมีประสิทธิภาพ

9.3 บทเรียนบนแท็บเล็ต เรื่อง อุปกรณ์สารกึ่งตัวนำพื้นฐานที่สร้างขึ้นทำให้ผู้ที่ศึกษาสามารถอ่านได้ถึงลักษณะการนำไปใช้งาน และผู้ที่สนใจทั่วไปสามารถนำไปศึกษาค้นคว้าได้ด้วยตนเอง เวลาใดหรือสถานที่ใดก็ได้ ตามความพึงพอใจ

เอกสารอ้างอิง

- 1] อภิชาติ อนุกูลเวช. 2556. บทเรียนช่วยฝึกทักษะแบบฐานสมรรถนะ เรื่อง การตรวจสอบอุปกรณ์สารกึ่งตัวนำเบื้องต้น. วิทยานิพนธ์ครุศาสตรอุตสาหกรรม มหาบัณฑิต สาขาวิชาศึกษาและพัฒนา. คณะครุศาสตร์อุตสาหกรรม สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง. Anukulwech,A. 2013. Competency Based Skill Training on Testing Basic Semiconductor Devices. Master Thesis of Science in Industrial Education (Electrical Communication Engineering) Faculty of Industrial Education King Mongkut's Institute of Technology Ladkrabang.
- 2] สุรศักดิ์ ปาเข. 2555. แท็บเล็ตเพื่อการศึกษาโอกาสและความท้าทาย. [ออนไลน์].เข้าถึงได้จาก: <http://www.kan1.go.th/tablet-for-education.pdf> (วันที่สืบค้นข้อมูล: 8 สิงหาคม 2558).

[3] ปรัชญา เนียมทอง และ จกกล แก่นเพิ่ม. 2557. การพัฒนาหนังสืออิเล็กทรอนิกส์บนแท็บเล็ต เรื่องจัตุรathanan และการอ่านค่าสีสำหรับผู้เรียนระดับชั้นมัธยมศึกษาปีที่ 3.[ฉบับอิเล็กทรอนิกส์]. วารสารเทคโนโลยีการศึกษา และมีเดียคอนเวอร์เจนซ์, 1(1),n.99-107.เข้าสู่ได้จาก: http://edtech.tsu.ac.th/etmc/ejournalVol1/article8_01_2014.pdf (วันที่สืบค้นข้อมูล: 8 สิงหาคม 2558).

[4] ณัฐกร สงคราม. 2553. การออกแบบและพัฒนา มัลติมีเดียเพื่อการเรียนรู้. กรุงเทพฯ: สำนักพิมพ์ แห่งจุฬาลงกรณ์มหาวิทยาลัย.

[5] ชัยยงค์ พรหมวงศ์ และคณะ. 2521. ระบบสื่อการสอน.กรุงเทพฯ: สำนักพิมพ์จุฬาลงกรณ์ มหาวิทยาลัย.

[6] นันท์กัส สิทธิวัฒน์กุลธร อรรถพร ฤทธิเกิด และฉันทนา วิริยะเจกุล. 2558. บทเรียนคอมพิวเตอร์ช่วยฝึกทักษะ เน้นฐานสมรรถนะ เรื่องการประกอบวงจรอิเล็กทรอนิกส์. วารสารครุศาสตร์อุตสาหกรรม, 14(1),n.185-190. Sittiwatkulatorn, N. Ridhikerd, A. & Viriyavejakul, C. 2015. Computer - based skill competency on electronics circuit assembly. *Journal of Industrial Education*,14 (1), p.185-190.

[7] ภัสรา ศรีกลับ. 2557. การพัฒนาบทเรียนคอมพิวเตอร์ ช่วยสอนผ่านเครือข่ายอินเทอร์เน็ตเพื่อทบทวน เรื่อง การสร้างเว็บเพจ. วิทยานิพนธ์วิทยาศาสตร์ มหาบัณฑิต สาขาวิชาการศึกษาวิทยาศาสตร์ (คอมพิวเตอร์) คณะครุศาสตร์อุตสาหกรรม สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง.

[8] พรรรณี ลิกิจวัฒนะ. 2551. วิธีวิจัยทางการศึกษา. พิมพ์ครั้งที่ 3 กรุงเทพฯ: คณะครุศาสตร์อุตสาหกรรม สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง.

[9] เทวัญ กันเขตต. 2555. การพัฒนาบทเรียน คอมพิวเตอร์มัลติมีเดียร์บันแท็บเล็ต เรื่องสนับสนุน คณิตศาสตร์สำหรับผู้เรียนชั้นประถมศึกษาปีที่ 1. วิทยานิพนธ์วิทยาศาสตร์มหาบัณฑิต สาขาวิชาการศึกษาวิทยาศาสตร์ (คอมพิวเตอร์) คณะครุศาสตร์อุตสาหกรรม สถาบันเทคโนโลยี พระจอมเกล้าเจ้าคุณทหารลาดกระบัง.

[10] นันทรัตน์ กลินหอม เลิศลักษณ์ กลินหอม และฉันทนา วิริยะเจกุล. 2555. การพัฒนาบทเรียน ผ่านเครือข่ายอินเทอร์เน็ตเพื่อการทบทวน เรื่องระบบ เครื่อข่ายคอมพิวเตอร์วิชาเทคโนโลยีสารสนเทศเบื้องต้น. วารสารครุศาสตร์อุตสาหกรรม, 11(2),n.48-54. Klinhom, N. Klinhom, L & Viriyavejakul, C. 2012. Development of Web-Based Instruction for Review on Computer Network in Fundamental Information Technology Subject. *Journal of Industrial Education*, 11 (2), p.48-54.

[11] ภาณุมาศ นักชัตตรมณฑล. 2556. การพัฒนา เลิร์นนิ่ง ออนไลน์ วิชาคณิตศาสตร์บนแท็บเล็ต เรื่องรูปสามเหลี่ยม สำหรับผู้เรียนชั้นประถมปีที่ 5. วิทยานิพนธ์ศึกษาศาสตร์มหาบัณฑิตสาขาวิชาเทคโนโลยี และสื่อสารการศึกษามหาวิทยาลัยเกษตรศาสตร์.