

การพัฒนาบทเรียนบนเครือข่ายอินเทอร์เน็ต ผ่านกิจกรรมการเรียนรู้สังคมศีกษา
เรื่องการพัฒนาโปรแกรม สำหรับนักเรียนชั้นมัธยมศึกษาปีที่ 3
A DEVELOPMENT OF WEB-BASED INSTRUCTION VIA STEM EDUCATION ACTIVITIES
ON PROGRAM APPLICATION FOR GRADE 9 STUDENTS

อัพนาน อัลมูสตอฟา¹ ทงศักดิ์ โสวจัสดากุล² และศิริรัตน์ เพ็ชร์แสงศรี³

Afnan Al-mustafa¹, Thanongsak Sovajassatakul² and Sirirat Petsangsri³

¹นักศึกษาหลักสูตร วท.ม. (สาขาวิชาการศึกษาวิทยาศาสตร์) สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

²ผู้ช่วยศาสตราจารย์ ³ผู้ช่วยศาสตราจารย์ ภาควิชาครุศาสตร์อุตสาหกรรม

คณะครุศาสตร์อุตสาหกรรม สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

afnanzz.a@gmail.com, kstonong@kmitl.ac.th, and kpsirira@kmitl.ac.th

บทคัดย่อ

การวิจัยครั้งนี้วิจัยดูฤทธิ์ฤทธิ์ของบทเรียนบนเครือข่ายอินเทอร์เน็ต ผ่านกิจกรรมการเรียนรู้สังคมศีกษา เรื่องการพัฒนาโปรแกรม สำหรับนักเรียนชั้นมัธยมศึกษาปีที่ 3 ที่มีคุณภาพและประสิทธิภาพ และเพื่อเปรียบเทียบผลสัมฤทธิ์ทางการเรียนระหว่างกลุ่มเรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สังคมศีกษา เรื่องการพัฒนาโปรแกรม กับกลุ่มเรียนปกติ กลุ่มตัวอย่างที่ใช้ในการวิจัย คือ นักเรียนระดับมัธยมศึกษาชั้นปีที่ 3 ภาคเรียนที่ 2 ปีการศึกษา 2558 โรงเรียนเทพา จังหวัดสงขลา ได้มาจากการสุ่มแบบแบ่งกลุ่ม (Cluster Random Sampling) โดยแบ่งเป็น 2 กลุ่ม กลุ่มละ 30 คน โดยกลุ่มที่ 1 เป็นกลุ่มเรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ต ผ่านกิจกรรมการเรียนรู้สังคมศีกษา และกลุ่มที่ 2 เป็นกลุ่มเรียนปกติ เครื่องมือที่ใช้ในการวิจัยประกอบด้วย บทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สังคมศีกษา เรื่องการพัฒนาโปรแกรม แบบประเมินคุณภาพของบทเรียนและแบบทดสอบวัดผลสัมฤทธิ์ทางการเรียน ซึ่งมีค่าดัชนีความสอดคล้องอยู่ระหว่าง 0.67-1.00 มีค่าความยากง่ายอยู่ระหว่าง 0.27-0.80 ค่าอำนาจจำแนกอยู่ระหว่าง 0.20-0.53 และค่าความเชื่อมั่นเท่ากับ 0.82 สถิติที่ใช้ในการวิเคราะห์ คือ ค่าเฉลี่ย ส่วนเบี่ยงเบนมาตรฐานและการทดสอบค่าที่ (t-test) แบบ independent sample

ผลการวิจัยพบว่าบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สังคมศีกษา เรื่องการพัฒนาโปรแกรม มีคุณภาพโดยรวมอยู่ในระดับดีมาก ($\bar{X} = 4.54$, $S = 0.54$) เมื่อพิจารณาเป็นรายด้านพบว่ามีคุณภาพด้านเนื้อหาอยู่ในระดับดีมาก ($\bar{X} = 4.58$, $S = 0.58$) และคุณภาพด้านเทคนิคการผลิตสื่ออยู่ในระดับดี ($\bar{X} = 4.48$, $S = 0.50$) มีค่าประสิทธิภาพ E_1/E_2 เท่ากับ 82.60/80.15 และผลสัมฤทธิ์ทางการเรียนของนักเรียนที่เรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สังคมศีกษา สูงกว่ากลุ่มที่เรียนแบบปกติ อย่างมีนัยสำคัญทางสถิติที่ระดับ .05

คำสำคัญ: บทเรียนบนเครือข่ายอินเทอร์เน็ต กิจกรรมการเรียนรู้สังคมศีกษา การประเมินคุณภาพบทเรียน ประสิทธิภาพ ผลสัมฤทธิ์ทางการเรียน

Abstract

The main purposes of this research include developing the quality and efficiency of web-based instruction about an application development for 9th grade students via STEM education activities as well as comparing the learning achievement between the students who are learning through web-based instruction via STEM education activities and regularly-instructed group. The samples of the study are 30 students per group in second semester of academic year of 2015 from Thepha School, Songkla. Group 1 is the group of students who are learning through web-based instruction via STEM education activities and group 2 is the group of students who apply the normal learning. All samples are selected by Cluster Random Sampling Method. The research tools are comprised of web-based instruction lessons, quality evaluation questionnaire

of web-based instruction and achievement test. The Index of Consistency (IOC) was reported between 0.67-1.00 while the level of difficulty was between 0.27-0.80. The degree of discrimination was between 0.20-0.53 while the test reliability was at 0.82. The data were statistically analyzed by using mean, standard deviation and independent sample t-test.

The results showed that the total quality of web-based instruction via STEM education activities was at very good level ($\bar{X} = 4.54$, $S = 0.54$) with the quality of content at very good level ($\bar{X} = 4.58$, $S = 0.58$) and the quality of media production at good level ($\bar{X} = 4.48$, $S = 0.50$). It is also found that the efficiency of web-based instruction lessons (E_1/E_2) was 82.60/80.15. Furthermore, it is revealed that the learning efficiency of the student learning through web-based instruction via STEM education activities was significantly better than those of the regularly-instructed group at significant level of 0.05.

Keywords: Web-Based Instruction; STEM Education; Quality Evaluation; Efficiency; Learning Achievement

1. บทนำ

การศึกษาในศตวรรษที่ 21 มีการเปลี่ยนแปลงอย่างรวดเร็วด้วยความก้าวหน้าเทคโนโลยีและการสื่อสาร ซึ่งก่อให้เกิดปรากฏการณ์ข้อมูลข่าวสารจำนวนมหาศาล ผู้เรียนสามารถค้นหาความรู้ได้ด้วยตนเองแหล่งต่างๆ มากมาย และตลอดเวลา รวมไปถึงการแข่งขันเพื่อประโยชน์ทางเศรษฐกิจ ส่งผลให้ทุกประเทศต้องเร่งพัฒนาประชากรของตนให้มีคุณภาพสูงขึ้น เพื่อให้สามารถดำรงชีวิตและแข่งขันในตลาดแรงงานกับนานาอารยประเทศได้ [1] ปัจจุบัน เทคโนโลยีคอมพิวเตอร์และอินเทอร์เน็ตได้พัฒนาเติบโตและได้ก้าวมาเป็นเครื่องมือชั้นสำคัญที่เปลี่ยนแปลงรูปแบบการเรียนการสอน การฝึกอบรม รวมทั้งการถ่ายทอดความรู้ เพื่อเป็นการส่งเสริมให้ผู้เรียนมีความสามารถทางสติปัญญาสูงขึ้น มาเป็นการส่งเสริมผู้เรียนให้มีความฉลาดทางอารมณ์ เรียนรู้ที่จะใช้ชีวิตในสังคมได้อย่างมีความสุข [2]

การจัดการเรียนการสอนผ่านเว็บ เป็นการผสมผสานกันระหว่างเทคโนโลยีปัจจุบันกับกระบวนการออกแบบการเรียน การสอน โดยการรวมคุณสมบัติของสื่อหลายมิติทั้งคุณลักษณะของอินเทอร์เน็ต มาออกแบบเป็นเว็บเพื่อการเรียนการสอนที่สนับสนุนและส่งเสริมให้เกิดการเรียนรู้อย่างมีความหมาย อาทัย การเชื่อมโยงเป็นเครือข่ายที่สามารถเรียนได้ทุกที่ทุกเวลา ผู้เรียนและผู้สอนมีปฏิสัมพันธ์กันโดยผ่านเครือข่ายคอมพิวเตอร์ ที่เชื่อมโยงถึงกัน ดังนั้นการจัดการเรียนการสอนผ่านเว็บจึงจัดเป็นทางเลือกในการส่งเสริมการเรียนรู้เพื่อเปิดประตูการศึกษาจากห้องเรียนไปสู่โลกแห่งการเรียนรู้อันกว้างใหญ่ รวมทั้งการนำการศึกษาไปสู่ผู้ที่ขาดโอกาสด้วยข้อจำกัดทางด้านเวลาและสถานที่ กลยุทธ์เป็นคลังแห่งความรู้ที่ไร้พรมแดน [3]

ในประเทศไทย กระทรวงศึกษาธิการและสถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สวท.) ซึ่งเป็นหน่วยงานหลักในการยกระดับการศึกษา ได้เร่งผลักดันแนวทางการจัดการศึกษาที่บูรณาการความรู้ด้านวิทยาศาสตร์ วิศวกรรม เทคโนโลยี และคณิตศาสตร์ (Science Technology Engineering and Mathematics : STEM) หรือเรียกว่า “สะเต็มศึกษา” สะเต็มศึกษาสู่ส่งเสริมการเรียนรู้ผ่านกิจกรรมหรือโครงการที่มุ่งแก้ไขปัญหาที่พบเห็นในชีวิตจริง เพื่อสร้างเสริมประสบการณ์ ทักษะชีวิต ความคิดสร้างสรรค์ และเป็นการเตรียมความพร้อมให้กับผู้เรียนในการปฏิบัติงานที่ต้องใช้องค์ความรู้และทักษะกระบวนการด้านวิทยาศาสตร์ คณิตศาสตร์ และเทคโนโลยีในการผลิต รวมทั้งนำไปสู่การสร้างนวัตกรรมในอนาคต โดยคาดหวังว่า จะช่วยยกระดับผลการทดสอบต่างๆ เช่น PISA ให้สูงขึ้น ส่งผลให้ประชากรมีคุณภาพและส่งผลให้สามารถแก้ปัญหาของชาติในด้านอื่นๆ ได้ [4]

การจัดกระบวนการเรียนการสอนในรายวิชาเทคโนโลยีสารสนเทศ ขั้นมัธยมศึกษาปีที่ 3 เรื่องการพัฒนาโปรแกรมนั้น แต่เดิมครูผู้สอนทำหน้าที่ถ่ายทอดเนื้อหาวิชาให้กับผู้เรียนตามโครงการที่เนื้อหาที่หลักสูตรกำหนดไว้ โดยเนื้อหาของบทเรียนประกอบด้วยทฤษฎีและหลักการทำงานต่างๆ ในการพัฒนาโปรแกรม ซึ่งเป็นเนื้อหาที่ค่อนข้างทำความเข้าใจได้ยาก ผู้เรียนจึงขาดความสนใจ เป็นหน่วยไม่เทื่นความสำคัญ และผู้เรียนไม่สามารถนำความรู้มาประยุกต์ใช้และบูรณาการได้ นอกจานนี้ผู้จัดได้วิเคราะห์ลักษณะของผู้เรียนและปัญหาในชั้นเรียนพบว่าผู้เรียนมีคีบะแนผลสัมฤทธิ์ทางการเรียนวิชาเทคโนโลยีสารสนเทศต่ำกว่าเกณฑ์ร้อยละเฉลี่ย 75.8 [5]

จากปัญหาและแนวคิดดังกล่าว ผู้วิจัยจึงตระหนักรถึงความสำคัญในการนำสื่อคอมพิวเตอร์มาใช้ในการจัดการเรียนการสอน โดยได้จัดทำบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สะเต็มศึกษา เพื่อเป็นการกระตุ้นทักษะการคิดระดับสูง ส่งเสริมให้ผู้เรียนได้ศึกษาหาความรู้และทำความเข้าใจง่ายมากขึ้น เนื่องจากได้มีการเรียนรู้ด้วยตนเอง ขั้นนำไปสู่การสร้างองค์ความรู้ใหม่และนำความรู้ไปประยุกต์ใช้ให้เป็นประโยชน์ นอกจากนี้ยังเป็นประโยชน์ต่อผู้สอนเรื่องการพัฒนาโปรแกรมหรือรายวิชาอีกด้วย ที่มีส่วนเกี่ยวข้องที่จะนำไปใช้ประกอบการเรียนการสอนให้มีประสิทธิภาพยิ่งขึ้น

2. วัตถุประสงค์ของการวิจัย

1. เพื่อพัฒนาบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สะเต็มศึกษา เรื่องการพัฒนาโปรแกรมสำหรับนักเรียนชั้นมัธยมศึกษาปีที่ 3 ที่มีคุณภาพและประสิทธิภาพ

2. เพื่อเปรียบเทียบผลลัพธ์ที่ทางการเรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สะเต็มศึกษา เรื่องการพัฒนาโปรแกรม ของนักเรียนชั้นมัธยมศึกษาปีที่ 3 กลุ่มเรียนแบบสะเต็มศึกษาและกลุ่มเรียนปกติ

3. สมมติฐานของการวิจัย

ผลลัพธ์ทางการเรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สะเต็มศึกษา เรื่องการพัฒนาโปรแกรม สำหรับนักเรียนชั้นมัธยมศึกษาปีที่ 3 กลุ่มเรียนแบบสะเต็มศึกษาสูงกว่ากลุ่มเรียนปกติ

4. กรอบแนวคิดของการวิจัย

4.1 การพัฒนาแผนการจัดการเรียนรู้ตามแนวทางสะเต็มศึกษา

ผู้วิจัยได้นำแนวความคิดของอวิสิทธิ์ รงไชย [6] ซึ่งได้ตัดแปลงจากแนวความคิดของ Daniel L. Householder และ Christine E. Hailey โดยกระบวนการจัดการเรียนการสอนที่ใช้กิจกรรมสะเต็มศึกษา มีกระบวนการออกแบบเชิงวิศวกรรม ทั้งหมด 5 ขั้นตอนนี้

1. ขั้นระบุปัญหา (Identify a Challenge)
2. ขั้นค้นหาแนวคิดที่เกี่ยวข้อง (Explore Ideas)
3. ขั้นวางแผนและพัฒนา (Plan and Develop)
4. ขั้นทดสอบและประเมินผล (Test and Evaluate)
5. ขั้นนำเสนอผลลัพธ์ (Present the Solution)

4.2 การพัฒนาบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมสะเต็มศึกษา

ผู้วิจัยได้นำแนวความคิดของ Barbara Seels และ Rita Glasgow [7] โดยใช้รูปแบบ ADDIE Model ประกอบด้วย 5 ขั้นตอน ดังนี้

1. การวิเคราะห์ (Analysis)
2. การออกแบบ (Design)
3. การพัฒนา (Development)
4. การนำไปใช้ (Implementation)
5. การประเมินผล (Evaluation)

4.3 คุณภาพของแผนการจัดการเรียนรู้สะเต็มศึกษา

ผู้วิจัยใช้แนวความคิดของวนนุช ตันทกิจ [8] ซึ่งพิจารณาได้จาก

1. เนื้อหา/สาระการเรียนรู้
2. กิจกรรมการเรียนการสอน
3. สื่อ/แหล่งการเรียนรู้
4. การวัดผล/ประเมินผล และเครื่องมือ

4.4 คุณภาพของบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมสะเต็มศึกษา

ผู้วิจัยนำแนวความคิดของไฟโรจน์ ตีรอนนาภุล และคณะ [9] ซึ่งแบ่งเป็น 2 ด้าน ดังนี้

1. ด้านเนื้อหา
2. ด้านเทคนิคการผลิตสื่อ

4.5 ประสิทธิภาพของการจัดการเรียนรู้แบบสะเต็มศึกษา

ผู้วิจัยได้นำแนวความคิดของชัยยงค์ พรหมวงศ์ และคณะ [10] ด้วยวิธี E_1/E_2 โดยกำหนดเกณฑ์ $E_1/E_2 = 80/80$ ซึ่ง

1. E_1 หมายถึง ประสิทธิภาพของกระบวนการซึ่งคิดจากคะแนนร้อยละเฉลี่ยของผู้เรียนทั้งหมดจากการทำแบบฝึกหัดท้ายหน่วยการเรียนด้วยบทเรียน

2. E_2 หมายถึง ประสิทธิภาพของผลลัพธ์ซึ่งคิดจากคะแนนร้อยละเฉลี่ยของผู้เรียนทั้งหมดที่ทำแบบทดสอบหลังเรียนด้วยบทเรียน

4.6 การวัดและการประเมินผล

ผู้วิจัยได้นำแนวความคิดจาก Benjamin S. Bloom [11] ซึ่งเน้นทางด้านพุทธิพิสัย มีทั้งหมด 6 ระดับ คือ ความรู้-ความจำ ความเข้าใจ การนำไปใช้ การวิเคราะห์ การสังเคราะห์ และการประเมินค่า ผู้วิจัยได้ใช้การประเมินผลการเรียนด้านพุทธิพิสัย 3 ระดับด้วยกัน คือความรู้-ความจำ ความเข้าใจ และการนำไปใช้

5. ขอบเขตของการวิจัย

5.1 ประชากร

ประชากร คือ นักเรียนระดับมัธยมศึกษาชั้นปีที่ 3 โรงเรียนเทพฯ อำเภอเทพฯ จังหวัดสิงห์บุรี ภาคเรียนที่ 2 ปีการศึกษา 2558 จำนวน 5 ห้องเรียน 99 คน

5.2 กลุ่มตัวอย่าง

กลุ่มตัวอย่าง คือ นักเรียนระดับมัธยมศึกษาชั้นปีที่ 3 โรงเรียนเทพฯ อำเภอเทพฯ จังหวัดสิงห์บุรี จำนวน 60 คน ได้มาจากการสุ่มแบบแบ่งกลุ่ม (Cluster Random Sampling) โดยแบ่งเป็นดังนี้

1. กลุ่มทดลองเป็นกลุ่มที่เรียนด้วยบทเรียนบนเครือข่าย อินเทอร์เน็ต ผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม จำนวน 30 คน

2. กลุ่มควบคุมเป็นกลุ่มที่เรียนแบบปกติด้วยบทเรียนเรื่อง การพัฒนาโปรแกรม ด้วยวิธีการสอนแบบปกติ จำนวน 30 คน

5.3 เนื้อหาของบทเรียน

เนื้อหาของบทเรียนบนเครือข่ายอินเทอร์เน็ต ผ่าน กิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม ประกอบด้วย

1. คำสั่งควบคุมแบบเนื่องใน
2. คำสั่งควบคุมแบบวนซ้ำ

6. เครื่องมือที่ใช้ในการวิจัย

1. แผนการจัดการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม สำหรับนักเรียนชั้นมัธยมศึกษาปีที่ 3 มีคุณภาพอยู่ในระดับดีมาก ($\bar{X} = 4.85$, $S = 0.40$)

2. บทเรียนบนเครือข่ายอินเทอร์เน็ต ผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม สำหรับ นักเรียนชั้นมัธยมศึกษาปีที่ 3

3. แบบประเมินคุณภาพของบทเรียนบนเครือข่าย อินเทอร์เน็ต ผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม สำหรับนักเรียนชั้นมัธยมศึกษาปีที่ 3 มี 2 ด้านคือด้านเนื้อหา และด้านเทคนิคการผลิตสื่อ

4. แบบทดสอบวัดผลสัมฤทธิ์ทางการเรียน เป็นแบบทดสอบชนิด 4 ตัวเลือก จำนวน 40 ข้อ ค่าตัวชี้วัดความสอดคล้อง อุ่นห่วง 0.67-1.00 มีค่าความยากง่ายอยู่ระหว่าง 0.27-0.80 ค่าอำนาจจำแนกอยู่ระหว่าง 0.20-0.53 และค่าความเชื่อมั่น เท่ากับ 0.82

7. การเก็บรวบรวมข้อมูล

ผู้วิจัยได้ดำเนินการทดลองและเก็บรวบรวมข้อมูลกับกลุ่มตัวอย่าง ซึ่งมีขั้นตอนในการดำเนินการดังนี้

1. ให้กลุ่มทดลองศึกษาบทเรียนที่ผู้วิจัยสร้างขึ้นตามลำดับเนื้อหา และจัดกิจกรรมการเรียนรู้สระเต็มศึกษา โดยนักเรียนดาวน์โหลดไฟล์ในบทเรียน แล้วทำการตามตามที่ได้รับมอบหมาย เมื่อจบแต่ละหน่วยการเรียนแล้ว ให้นักเรียนทำแบบฝึกหัดท้ายหน่วยการเรียน ส่วนกลุ่มควบคุมใช้การเรียนในชั้นเรียนแบบปกติ โดยใช้ระยะเวลาในการเรียนเท่ากัน

2. หลังจากนักเรียนกลุ่มตัวอย่างได้ผ่านการเรียนครบถ้วน หน่วยการเรียนแล้ว ให้ทำแบบทดสอบหลังเรียนจำนวน 40 ข้อ

3. นำผลการทดลองของกลุ่มทดลองที่เรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตมาวิเคราะห์ข้อมูลเพื่อหาประสิทธิภาพและเปรียบเทียบผลสัมฤทธิ์ทางการเรียนกับกลุ่มควบคุมที่เรียนในชั้นเรียนแบบปกติ

8. การวิเคราะห์ข้อมูล

1. การวิเคราะห์หาคุณภาพของบทเรียนบนเครือข่าย อินเทอร์เน็ต ผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา โดยใช้สถิติค่าเฉลี่ย และค่าเบี่ยงเบนมาตรฐาน

2. การวิเคราะห์หาประสิทธิภาพของบทเรียนบนเครือข่าย อินเทอร์เน็ต ผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม สำหรับนักเรียนชั้นมัธยมศึกษาปีที่ 3 ใช้การหาประสิทธิภาพ E_1/E_2

3. การเปรียบเทียบผลสัมฤทธิ์ทางการเรียนจากคะแนน สอบกุ่มทดลองและกลุ่มควบคุม โดยใช้สถิติทดสอบที่ (t-test) แบบ independent samples ที่ระดับนัยสำคัญทางสถิติ เท่ากับ .05

9. ผลการวิจัย

9.1 ผลการประเมินคุณภาพของบทเรียนบนเครือข่าย อินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา

ตารางที่ 1 แสดงค่าเฉลี่ย ส่วนเบี่ยงเบนมาตรฐาน และระดับคุณภาพ ของบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม

รายการประเมิน	\bar{X}	S	ระดับคุณภาพ
ด้านเนื้อหา	4.58	0.58	ดีมาก
ด้านเทคนิคการผลิตสื่อ	4.48	0.50	ดี
รวม	4.54	0.54	ดีมาก

จากตารางที่ 1 พบว่า คุณภาพของบุคคลเครือข่ายอินเทอร์เน็ต ผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา โดยรวมอยู่ในระดับดีมาก ($\bar{X} = 4.54, S = 0.54$) เมื่อพิจารณาเป็นรายด้านพบว่า มีคุณภาพด้านเนื้อหาอยู่ในระดับดีมาก ($\bar{X} = 4.58, S = 0.58$) และคุณภาพด้านเทคนิคการผลิตสื่ออยู่ในระดับดี ($\bar{X} = 4.48, S = 0.50$)

9.2 ผลการหาประสิทธิภาพของบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา

ตารางที่ 2 แสดงผลการหาประสิทธิภาพของบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม

คะแนน	นักเรียนจำนวน	คะแนนเต็ม	คะแนนเฉลี่ย	ร้อยละเฉลี่ย
ระหว่างเรียน	30	60	49.56	82.60(E ₁)
หลังเรียน	30	40	32.63	80.15(E ₂)

จากตารางที่ 2 พบว่า แบบฝึกหัดท้ายหน่วยการเรียนมีคะแนนเฉลี่ย 60 คะแนน ได้ค่าเฉลี่ย 49.56 คิดเป็นร้อยละเฉลี่ย 82.60 (E₁) และแบบทดสอบหลังเรียนมีคะแนนเต็ม 40 คะแนน ได้คะแนนเฉลี่ย 32.63 คิดเป็นร้อยละเฉลี่ย 80.15 (E₂) แสดงว่าบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษามีประสิทธิภาพเท่ากับ 82.60/80.15 ซึ่งเป็นไปตามเกณฑ์ที่กำหนด $E_1/E_2 = 80/80$

9.3 ผลการเปรียบเทียบผลสัมฤทธิ์ทางการเรียน

ตารางที่ 3 แสดงผลการเปรียบเทียบผลสัมฤทธิ์ทางการเรียน

กลุ่มผู้เรียน	n	\bar{X}	S	t	Sig
กลุ่มทดลอง	30	32.63	3.88		
กลุ่มควบคุม	30	23.10	4.86	8.396*	.000

*มีนัยสำคัญที่ระดับ .05 [$\alpha = .05$, df = 58, t = 2.002]

จากตารางที่ 3 พบว่า ผลสัมฤทธิ์ทางการเรียนของผู้เรียนกลุ่มการเรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา ($\bar{X} = 32.63, S = 3.88$) สูงกว่ากลุ่มการเรียนในชั้นเรียนแบบปกติ ($\bar{X} = 23.10, S = 4.86$) อย่างมีนัยสำคัญทางสถิติที่ระดับ .05

10. สรุปผลการวิจัย

1. บทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม มีคุณภาพโดยรวมอยู่ในระดับดีมาก ($\bar{X} = 4.54, S = 0.54$) เมื่อพิจารณาเป็นรายด้านพบว่า มีคุณภาพด้านเนื้อหาอยู่ในระดับดีมาก ($\bar{X} = 4.58, S = 0.58$) และคุณภาพด้านเทคนิคการผลิตสื่ออยู่ในระดับดี ($\bar{X} = 4.48, S = 0.50$) และประสิทธิภาพของ

บทเรียนเท่ากับ 82.60/80.15 ซึ่งเป็นไปตามเกณฑ์ที่กำหนด $E_1/E_2 = 80/80$

2. ผลสัมฤทธิ์ทางการเรียนของกลุ่มทดลองที่เรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม สูงกว่ากลุ่มควบคุมที่เรียนแบบปกติ อย่างมีนัยสำคัญทางสถิติที่ระดับ 0.05 ซึ่งเป็นไปตามสมมติฐานที่ตั้งไว้

11. อภิปรายผลการวิจัย

11.1 อภิปรายเกี่ยวกับคุณภาพของบทเรียนบนเครือข่ายอินเทอร์เน็ต

ผลการพัฒนาหาคุณภาพของบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา เรื่องการพัฒนาโปรแกรม โดยภาพรวมอยู่ในระดับดีมาก ($\bar{X} = 4.54, S = 0.54$) เมื่อพิจารณาเป็นรายด้านพบว่า มีคุณภาพด้านเนื้อหาอยู่ในระดับดีมาก ($\bar{X} = 4.58, S = 0.58$) และคุณภาพด้านเทคนิคการผลิตสื่ออยู่ในระดับดี ($\bar{X} = 4.48, S = 0.50$) ทั้งนี้เนื่องจากผู้วิจัยได้วิเคราะห์เนื้อหาโดยทำการแบ่งเนื้อหาเป็นหน่วยการเรียนรู้ กำหนดจุดประสงค์การเรียนรู้ แบบทดสอบหลังเรียน ที่มีความถูกต้องของเนื้อหา สอดคล้องกับจุดประสงค์การเรียนรู้ อีกทั้งปฏิสัมพันธ์กับผู้เรียน สามารถจัดการข้อมูลออนไลน์ได้มีความเหมาะสมของภาพและ การใช้ภาษาชัดเจน สอดคล้องกับเนื้อหาเหมาะสมกับระดับผู้เรียน นอกจากนี้ยังมีการตรวจสอบความบกพร่องของบทเรียนโดยผู้ทรงคุณวุฒิ เพื่อนำข้อบกพร่องมาเป็นข้อมูลสำหรับการแก้ไขปรับปรุงบทเรียนให้มีความสมบูรณ์ยิ่งขึ้น ประกอบกับการจัดการเรียนครั้งนี้ได้นำบทเรียนบนเครือข่ายอินเทอร์เน็ตมาใช้ในการจัดการเรียน การสอนร่วมกับการเรียนการสอนแบบสระเต็มศึกษา ช่วยทำให้ผู้เรียนเกิดการเรียนรู้ร่วมกันในเรื่องการเขียนโปรแกรมอย่างลึกซึ้ง มีขั้นตอนการปฏิบัติงานที่ชัดเจน ทำให้ผู้เรียนได้เกิดกระบวนการเรียนรู้อย่างเป็นระบบและมีขั้นตอน เป็นไปตามวัตถุประสงค์ของการเรียน มีองค์ประกอบของความรู้ครบถ้วนและเหมาะสมกับผู้เรียน โดยใช้ประโยชน์จากเครือข่ายอินเทอร์เน็ตอย่างสูงสุดและเหมาะสม ซึ่ง สอดคล้องกับแนวคิดของมนต์ซัย เทียนทอง [12] ได้กล่าวว่า ในการสร้างบทเรียนบนเครือข่ายอินเทอร์เน็ต เนื้อหาแบบทดสอบหลังเรียนจะต้องมีความสอดคล้องกับจุดประสงค์ มีภาพนิ่ง วิดีโอ เพื่อให้นักเรียนสามารถเรียนรู้ด้วยตนเอง และมีแบบทดสอบหลังเรียน ซึ่งช่วยเสริมสร้างความรู้ความเข้าใจแก่นักเรียน และสอดคล้องกับงานวิจัยของจิรภารรณ์ วงศ์กาญจนฉัตร [13] ได้พัฒนาบทเรียนผ่านเครือข่ายอินเทอร์เน็ต เรื่อง พระราชนิพัทธ์ตัวด้วยการกระทำความผิด กีวีกับคอมพิวเตอร์ พ.ศ. 2550 พบว่า มีคุณภาพในภาพรวม

อยู่ในระดับดีมาก ($\bar{X} = 4.50$) เมื่อพิจารณาโดยด้านพบว่า คุณภาพด้านเนื้อหาอยู่ในระดับดีมาก ($\bar{X} = 4.54$) ส่วนคุณภาพด้านเทคนิคการผลิตสื่ออยู่ในระดับดี ($\bar{X} = 4.47$)

11.2 อภิปรายเกี่ยวกับการหาประสิทธิภาพที่เรียนบนเครือข่ายอินเทอร์เน็ต

ผลการหาประสิทธิภาพของบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา พบว่า ผลสัมฤทธิ์ทางการเรียนของนักเรียนจากการทำแบบฝึกหัดท้ายหน่วยการเรียนและหลังเรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตมีประสิทธิภาพเท่ากับ $82.60/80.15$ ซึ่งเป็นไปตามเกณฑ์ที่กำหนด $E_1/E_2 = 80/80$ เนื่องจากได้นำกระบวนการจัดการเรียนการสอนที่ใช้กิจกรรมสะเต็มศึกษาซึ่งมีกระบวนการออกแบบแบบเชิงวิศวกรรม ประกอบไปด้วยขั้นตอนการเรียนรู้ 5 ขั้นตอน คือ ขั้นระบุปัญหา ขั้นค้นหาแนวคิดที่เกี่ยวข้อง ขั้นวางแผนและพัฒนา ขั้นทดสอบและประเมินผล และขั้นนำเสนองานพัฒนา มាថวยกระตุนให้ผู้เรียนเกิดความสนใจในการเรียน นำความรู้ทางด้านวิทยาศาสตร์ คณิตศาสตร์ การออกแบบเชิงวิศวกรรม และเทคโนโลยีมาบูรณาการ แก้ไขปัญหาและประยุกต์ใช้ร่วมกันได้ นักเรียนได้เรียนเนื้อหาจากการลงมือปฏิบัติจริงด้วยตนเอง จากการที่ได้ศึกษาค้นคว้าหาความรู้ด้วยตัวเองจากบทเรียนบนเครือข่ายอินเทอร์เน็ตและแหล่งเรียนรู้ต่างๆ ทำให้นักเรียนเข้าใจเนื้อหาวิชามากขึ้น ส่งผลให้สามารถทำแบบทดสอบได้ดีและมากขึ้น ซึ่งสอดคล้องกับแนวคิดของอวสิทธิ์ รง.ชัย [6] ได้กล่าวว่า การเรียนรู้แบบสะเต็มศึกษาจะเน้นที่การประยุกต์ใช้อย่างคุณภาพและทักษะที่เรียนจากทั้งวิทยาศาสตร์ คณิตศาสตร์ เทคโนโลยีมาบูรณาการกันเพื่อแก้ปัญหาหรือสร้างสรรค์ขึ้นงาน หรือวิธีการที่เชื่อมโยงกับชีวิตจริง นอกจากนี้มีการแบ่งกลุ่มนักเรียนคละความสามารถ โดยมีนักเรียนที่มีความสามารถสูงและนักเรียนที่มีความสามารถต่ำ แล้วแต่ความสามารถของนักเรียนแต่ละคน จัดให้แต่ละคนได้รับบทบาทที่เหมาะสมกับความสามารถของตัวเอง ทำให้เกิดการเรียนรู้ที่มีความสนุกสนาน กระตุ้นให้เกิดความตื่นเต้นและเรียนรู้อย่างต่อเนื่อง ซึ่งสอดคล้องกับแนวคิดของ David Ausubel [15] ได้กล่าวว่า การเรียนรู้เกิดขึ้นเมื่อนักเรียนได้เชื่อมโยงสิ่งที่เรียนรู้ใหม่ หรือข้อมูลใหม่กับความรู้เดิมในสมองของนักเรียน และสอดคล้องกับงานวิจัยของผลศักดิ์ แสงพรหมศรี [16] ได้ศึกษาเปรียบเทียบผลสัมฤทธิ์ทางการเรียน ทักษะกระบวนการทางวิทยาศาสตร์ขั้นบูรณาการ และเจตคติต่อการเรียนวิชาเคมี ของนักเรียนชั้นมัธยมศึกษาปีที่ 5 ที่ได้รับการจัดการเรียนรู้สระเต็มศึกษา สูงกว่ากลุ่มที่ได้รับการจัดการเรียนรู้ด้วยวิธีการสอนแบบปกติ อย่างมีนัยสำคัญทางสถิติที่ระดับ .05

11.3 อภิปรายเกี่ยวกับการหาผลสัมฤทธิ์ทางการเรียนด้วยการเรียนบนเครือข่ายอินเทอร์เน็ต

ผลการเปรียบเทียบผลสัมฤทธิ์ทางการเรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษา พบว่าผลสัมฤทธิ์ทางการเรียนด้วยบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้แบบสะเต็มศึกษา เรื่องการพัฒนาโปรแกรม กลุ่มเรียนแบบสะเต็มศึกษาสูงกว่ากลุ่มเรียนปกติ ซึ่งสอดคล้องกับสมมติฐานที่ตั้งไว้ ทั้งนี้เนื่องจากการใช้กิจกรรมการเรียนรู้แบบสะเต็มศึกษา มีกระบวนการช่วยพัฒนาทักษะทางด้านวิทยาศาสตร์ คณิตศาสตร์ การออกแบบเชิงวิศวกรรม และการใช้เทคโนโลยี การทำงานร่วมกันเป็นกลุ่ม การสร้างความสัมพันธ์ กระตุ้นให้นักเรียนเกิดการเรียนรู้ด้วยตนเอง โดยใช้ความรู้เดิมเป็นฐาน นำไปสู่การพัฒนาความสามารถด้านการเรียนรู้ เชื่อมโยงและบูรณาการความรู้ด้านวิทยาศาสตร์ คณิตศาสตร์ การออกแบบเชิงวิศวกรรม และเทคโนโลยี ส่งผลให้เกิดการเรียนรู้ที่มีความหมายต่อนักเรียน และนักเรียนสามารถถ่ายทอดความรู้ได้ ซึ่งสอดคล้องกับแนวคิดของ David Ausubel [15] ได้กล่าวว่า การเรียนรู้เกิดขึ้นเมื่อนักเรียนได้เชื่อมโยงสิ่งที่เรียนรู้ใหม่ หรือข้อมูลใหม่กับความรู้เดิมในสมองของนักเรียน และสอดคล้องกับงานวิจัยของผลศักดิ์ แสงพรหมศรี [16] ได้ศึกษาเปรียบเทียบผลสัมฤทธิ์ทางการเรียน ทักษะกระบวนการทางวิทยาศาสตร์ขั้นบูรณาการ และเจตคติต่อการเรียนวิชาเคมี ของนักเรียนชั้นมัธยมศึกษาปีที่ 5 ที่ได้รับการจัดการเรียนรู้สระเต็มศึกษา สูงกว่ากลุ่มที่ได้รับการจัดการเรียนรู้ด้วยวิธีการสอนแบบปกติ อย่างมีนัยสำคัญทางสถิติที่ระดับ .05

12. ข้อเสนอแนะ

12.1 ข้อเสนอแนะในการนำผลการวิจัยไปใช้

1. ผู้สอนสามารถนำบทเรียนบนเครือข่ายอินเทอร์เน็ตไปใช้เป็นสื่อสำหรับจัดการเรียนการสอนในรายวิชาที่มีเนื้อหาใกล้เคียงกันได้

2. ผู้สอนสามารถนำบทเรียนบนเครือข่ายอินเทอร์เน็ตไปใช้ในการสอนชั่วโมงเสริมสำหรับผู้เรียนที่มีปัญหาเรื่องผลการเรียน เพื่อช่วยให้นักเรียนมีผลสัมฤทธิ์ทางการเรียนสูงขึ้น

3. ผู้เรียนสามารถนำบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สระเต็มศึกษาไปเรียนรู้ด้วยตัวเอง ตามศักยภาพของตนเองได้ทุกสถานที่และเวลา โดยผู้เรียนจะต้องรับผิดชอบต่อตนเองในการศึกษาบทเรียน เช่น การทำแบบฝึกหัด การบันทึกหรือเรียนแล้วสรุปความเข้าใจ เพื่อได้คุณภาพทางการเรียนรู้

12.2 ข้อเสนอแนะเพื่อการวิจัยครั้งต่อไป

1. ควรพัฒนาบทเรียนบนเครือข่ายอินเทอร์เน็ตผ่านกิจกรรมการเรียนรู้สังคมศึกษา ให้ครอบคลุมเนื้อหาในหน่วยการเรียนอื่นๆ ของรายวิชาเทคโนโลยีสารสนเทศ
2. ควรมีการศึกษาการจัดการเรียนรู้สังคมศึกษา ที่มีระดับการวัดผลสัมฤทธิ์ทางการเรียนในระดับ วิเคราะห์ประเมินค่า และคิดสร้างสรรค์
3. ควรมีการศึกษาการจัดการเรียนรู้สังคมศึกษา ซึ่งเกี่ยวข้องกับภูมิปัญญาท้องถิ่นต่อการแก้ปัญหาที่เกิดขึ้นภายในชุมชนของนักเรียน

กิตติกรรมประภาค

วิทยานิพนธ์ฉบับนี้สำเร็จสมบูรณ์ได้อย่างดีด้วยความอนุเคราะห์จากสถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สวท.) ที่ได้กรุณาให้ทุนสนับสนุนการศึกษาและทุนสนับสนุนงานวิจัยในครั้งนี้ตลอดมา ขอกราบขอบพระคุณ พศ.ดร.ทงศักดิ์ سوจัลลากุล อาจารย์ที่ปรึกษาวิทยานิพนธ์ และ พศ.ดร.ศิริรัตน์ เพ็ชร์แสงศรี อาจารย์ที่ปรึกษาร่วม วิทยานิพนธ์ ที่ได้กรุณาถ่ายทอดความรู้ แนวคิด วิธีการ ให้ คำปรึกษา แนะนำแนวทาง รวมถึงการตราจสอบปรับปรุง แก้ไขข้อบกพร่องต่างๆ ในวิทยานิพนธ์ฉบับนี้ จนสามารถทำได้อย่างสมบูรณ์

เอกสารอ้างอิง

- [1] รติพร สุดเสนา. 2556. ทำไม่ต้องเป็นการเรียนรู้แบบ STEM Education. ค้นเมื่อวันที่ 5 มีนาคม 2557, จาก <https://lekratiporn.wordpress.com/type/video>
- [2] ทวีศักดิ์ ก้อนบันตกุล. 2545. นโยบาย e-Education. กรุงเทพฯ: ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ.
- [3] ณอนมพร เลาหจัลลแสง. 2544. การสอนบนเว็บ (Web-Based Instruction) นวัตกรรมเพื่อคุณภาพ การเรียนการสอน. วารสารศึกษาศาสตร์สาร. 28(1) น. 87-94.
- [4] อวิสิทธิ์ รงไชย และคณะ. 2555. สรุปการบรรยาย พิเศษ เรื่อง Science, Technology, Engineering and Mathematics Education : Preparing students for the 21st Century. ค้นเมื่อวันที่ 5 มีนาคม 2557, จาก <http://designtechnology.ipst.ac.th/uploads/STEMeducation.pdf>
- [5] ฝ่ายวิชาการโรงเรียนเทพฯ. 2557. ผลสัมฤทธิ์ทางการเรียนวิชาเทคโนโลยีสารสนเทศ.[ออนไลน์]. เข้าถึงได้จาก: <http://www.thepha.ac.th>. (วันที่ค้นข้อมูล: 5 มีนาคม 2557).
- [6] อวิสิทธิ์ รงไชย. 2556. เทคโนโลยีและวิศวกรรมคืออะไรในสังคมศึกษา. สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สวท.), 42(185), น.35-37.
- [7] Seel, B. B. and Richey, R. C. 1994. *Instructional Technology: The Definition and Domains of the field*. Washington, D.C.: Association for Educational Communications and Technology.
- [8] วราุช ตุนกิจ. 2553. การตรวจสอบแผนการจัดการเรียนรู้. ค้นเมื่อวันที่ 5 มีนาคม 2557, จาก <http://www.km.skn.go.th/?name=research&file=readresearch&id=5>
- [9] ไฟโรจน์ ตีรอนนากุล ไฟบูลย์ เกียรติโภนล และเสกสรร แซ้มพินิจ. 2546. การออกแบบและผลิตบทเรียนคอมพิวเตอร์การสอน. กรุงเทพฯ:ศูนย์สื่อสิ่งสื่อสารกรุงเทพฯ.
- [10] ชัยยงค์ พรหมวงศ์. และคณะ. 2542. ระบบสื่อสารการสอน. กรุงเทพฯ: โรงพิมพ์จุฬาลงกรณ์มหาวิทยาลัย.
- [11] Bloom, B.S. 1956. *Taxonomy of Educational objectives*. New York: Longman.
- [12] มนต์ชัย เทียนทอง. 2548. การออกแบบและพัฒนาคอร์สwareสำหรับบทเรียนคอมพิวเตอร์ช่วยสอน. กรุงเทพฯ: ศูนย์ผลิตตำราเรียนสถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ.

[13] จิรภักรณ์ วงศ์กาญจนัชต์. 2557. บทเรียนผ่านเครือข่ายอินเทอร์เน็ต เรื่องพระราชนิรภัยตัวด้วยการกระทำความผิดเกี่ยวกับคอมพิวเตอร์ พ.ศ. 2550 สำหรับนักเรียนระดับประกาศนียบัตร วิชาชีพ. วิทยานิพนธ์วิทยาศาสตร์ (คอมพิวเตอร์) คณะครุศาสตร์อุตสาหกรรม สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี ลาดกระบัง. Wongkanjanachut, J. 2014. *Web-based Instruction on Act on computer-Related Offences be 2550*. Thesis in Science, Science Education (Computer), Industrial Education, King Mongkut's Institute of Technology Ladkrabang.

[14] จีรนันท์ ปัญญาเหลือ ฉันทนา วิริยะเจกุล และ อรรถพร ฤทธิเกิด. 2558. บทเรียนบนเครือข่ายอินเทอร์เน็ต เรื่อง เรื่อง รื่อง วารสารครุศาสตร์อุตสาหกรรม, 14(1), น. 191-197. Panyalue, J., Viriyavejakul, C. and Ridhikerd, A. 2015. Web-Base Instruction Based on Reamaunre Dance. *Journal of Industrial Education*. 14(1), p. 191-197.

[15] Ausubel, D. P., Novak, J. D. and Hanesian, H. 1978. *Educational Psychology: A Cognitive View*. 2nd ed. New York: Holt, Rinehart and Winston.

[16] พลศักดิ์ แสงพรหมศรี. 2558. การเปรียบเทียบผลสัมฤทธิ์ทางการเรียน ทักษะกระบวนการทางวิทยาศาสตร์ชั้นมัธยมศึกษาปีที่ 5 ที่ได้รับการจัดการเรียนรู้สูงสุดตามศึกษาภัณฑ์ วิทยานิพนธ์วิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม. Saengpromsri, P. 2015. *Comparisons of learning achievement, and attitude towards chemistry learning for Matthayom 5 student between STEM education and conventional methods*. Thesis in Science, Chemistry Education, Mahasarakham University.