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ABSTRACT

This paper provides a comprehensive and rigorous exposition of Fractional Quantum Calculus (FQQ),
a sophisticated mathematical framework that systematically extends classical integer-order quantum calculus to the realm
of arbitrary fractional orders. We delineate the construction of five interconnected yet distinct types of fractional difference
operators: the foundational Fractional Difference Calculus (FDC), Fractional g-Difference Calculus (FqDC), and Fractional
Hahn Difference Calculus (FHDC), complemented by the advanced generalizations Fractional Symmetric Hahn Difference
Calculus (FSHC) and Fractional (p, q)-Calculus (FpgC). The unifying principle undergirding all five frameworks involves the
non-integer generalization of iterated summation, leading to the derivation of both Riemann-Liouville and Caputo operators.
Fractional quantum calculus furnishes an indispensable analytical instrument for modeling intricate physical and biological
phenomena characterized by inherent non-locality, memory-dependent behavior, and discrete dynamical evolution,

capabilities that transcend the limitations of conventional integer-order mathematical models.
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1. INTRODUCTION: UNIFYING THE DISCRETE,
THE QUANTUM, AND THE FRACTIONAL

The mathematical landscape of Fractional
Calculus (FC) traces its intellectual lineage to the
foundational philosophical inquiries of Leibniz and
de UHopital in the waning years of the seventeenth
century (Miller & Ross, 1989, Gray & Zhang, 1988).
What began as an abstract theoretical speculation
has matured into a robust and indispensable
analytical tool for elucidating the behavior of
complex systems across diverse scientific domains,
including viscoelasticity, anomalous diffusion
phenomena, and chaotic dynamics (Anastassiou,
2009, Ferreira & Torres, 2011). The distinctive merit
of fractional calculus lies in its inherent capacity to
encapsulate the temporal history and memory
characteristics of dynamical systems, a feature
conspicuously absent from the classical integer-
order derivative formalism (L'Hopital, 1695, Leibniz,
1695).

In parallel, the necessity to model phenomena
occurring on discrete temporal scales or non-
uniformly distributed grids catalyzed the
emergence of Quantum Calculus, a calculus
architecture constructed independently of the
limiting process (Al-Salam, 1966, Agarwal, 1969).
This framework encompasses several fundamental
quantum operators: the h-difference operator
(operative on uniformly spaced time scales), the g-
difference operator or Jackson derivative (operative
on geometric time scales), and the Hahn difference
operator (synthesizing both uniform and geometric
scaling).

The transformative synthesis emerges from the
convergence of these two mathematical paradigms:
Fractional Quantum Calculus. This novel
theoretical structure furnishes a unified analytical
vocabulary for investigating systems exhibiting both

discrete-time characteristics and non-local

(memory-dependent) phenomena. This exposition
systematically examines the mathematical
construction and practical utility of five major
classes of fractional quantum calculi, tracing the
field's trajectory from its foundational principles to

its contemporary, highly generalized instantiations.

2. THE THEORETICAL FOUNDATION: CORE
PRINCIPLES OF FRACTIONAL QUANTUM
CALCULUS

The rigorous construction of fractional operators
within the quantum calculus paradigm rests
fundamentally upon two indispensable
mathematical constructs: the Gamma Function
I'(!) and the generalized Falling Factorial
Function.

2.1. The Generalization Principle

The transition from integer order m to fractional
order a is universally effected through the
generalization of the formula for the m-fold
iterated sum (or integral) using the Gamma
function. Within a discrete system, the fractional
sum of order a is defined as the foundational
operator, with the fractional difference serving as
its inverse operator.

2.2. The Two Principal Operators

All fractional quantum operators adhere to two
canonical formulations, which determine how the
temporal history of the function is incorporated

into the operator:

® Riemann-Liouville (R-L) Fractional
Difference: This operator is defined as an
integer-order difference applied to a
fractional-order sum. It is predominantly
employed in theoretical investigations and
exhibits dependence on the initial

summation point.



Journal of Applied Science and Emerging Technology (JASET) Vol. 24, No. 3 [2025]: €900007

® Caputo Fractional Difference: Defined as a
fractional-order sum of an integer-order
difference, the Caputo formulation possesses
a marked advantage in applied mathematical
modeling: it admits initial conditions
structurally analogous to those employed in
classical integer-order calculus (namely, the
specification of the function and its integer-
order derivatives at an initial time), thereby
facilitating application to boundary value

problems and initial value problems.

3. THE FOUNDATIONAL TRIUMVIRATE:
PRIMARY FRACTIONAL DIFFERENCE
OPERATORS

The early development phase of fractional quantum
calculus centered upon the fractional generalizations
of three primary quantum operators.

3.1. Fractional Difference Calculus (FDC)

This constitutes the cornerstone of discrete
fractional analysis, constructed upon the
h-difference operator defined as
Apf(t) = w (with h = 1 for the classical
discrete difference). Figure 1 shows the shift in

f(t)-value and the shift in t-value of Fractional

Difference Calculus.
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Figure 1 Displays the shift in f(t)-value and the shift in t-value
of Fractional Difference Calculus (as shown in (Sitthiwirattham,
2020)).

Construction: The theoretical edifice rests upon

the discrete Gamma function and the associated h-

falling factorial, denoted t®".

Applications: This framework proves indispensable
for modeling phenomena evolving on uniform
temporal grids where memory effects play a
significant role, exemplified in financial
mathematics, discrete-time control systems, and
difference equations arising from the calculus of
variations (Ferreira, 2011).

3.2. Fractional q-Difference Calculus (FgDC)
This calculus is constructed upon the Jackson g-
difference operator, which operates on a
geometric time scale characterized by the
progression (t, qt, q°t, ...). Figure 2 demonstrates
the shift in f(t)-value and the shift in t-value of g-

Difference Calculus.
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Figure 2 Displays the shift in f(t)-value and the shift in t-value of
Fractional g-Difference Calculus (as shown in (Sitthiwirattham,

2020)).

Construction: The theoretical framework employs
the g-analogue of the Gamma function and the
fractionalg-Falling Factorial. The foundational
fractional g-Integral (Kac & Cheung, 2002, Ernst,
2012) constitutes the precursor to both the R-L

and Caputo g-difference operators.

Applications: This formalism possesses
considerable relevance in theoretical physics,
particularly in quantum field theory and molecular
physics, and is applicable to any system exhibiting
geometric progression or inherent scaling
symmetry. Furthermore, it proves instrumental in
solving advanced boundary value problems for
fractional g-differential equations (Cermak &

Nechvatal, 2010).
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3.3. Fractional Hahn Difference Calculus (FHDC)
The Hahn operator D, ,, represents a synthesis of
the h-difference and g-difference operators,
thereby creating a more versatile affine time
scale. The shift in f(t)-value and the shift in t-
value of Fractional Hahn Difference Calculus is

shown in Figure 3.
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Figure 3 Displays the shift in f(t)-value and the shift in t-value of
Fractional Hahn Difference Calculus (as shown in

(Sitthiwirattham, 2020)).

Construction: Introduced by Brikshavana and
Sitthiwirattham in 2017 (Brikshavana &
Sitthiwirattham, 2017), this calculus develops its
integral and differential operators (Riemann-
Liouville and Caputo forms) utilizing the g-Gamma
function and the fractional (q, w)-falling factorial.

Applications: The fractional Hahn difference
calculus serves as a unifying theoretical platform,
offering a systematic approach to generalize results
from both FDC and FgDC It has proven instrumental
in the investigation of complex nonlocal boundary
value problems incorporating fractional Hahn integral
boundary conditions (Brikshavana & Sitthiwirattham,

2018).

4. THE ADVANCING FRONTIER: ADVANCED
GENERALIZATIONS AND CONTEMPORARY
EXTENSIONS

Recent scholarly developments have substantially
enlarged the scope of fractional quantum calculus
by introducing progressively more general or

specialized difference operators, thereby

significantly amplifying the field's analytical
capabilities.

4.1. Fractional Symmetric Hahn Difference
Calculus (FSHC)

The Symmetric Hahn Difference Operator,
denoted Eq_m, represents a sophisticated extension
of the classical Hahn operator, engineered to
simplify analytical procedures through the
manifestation of distinct symmetrical properties.
Construction: Developed by Patanarapeelert and
Sitthiwirattham in 2019 (Patanarapeelert &
Sitthiwirattham, 2019), this calculus formulates the
fractional symmetric Hahn integral alongside the
corresponding Riemann-Liouville and Caputo

symmetric difference operators.

Applications: This theoretical framework proves
essential for addressing highly intricate nonlocal
boundary value problems of symmetric character,
specifically those involving sequential Caputo
fractional Hahn integrodifference equations and
nonlocal Robin-type boundary conditions
(Patanarapeelert & Sitthiwirattham, 2018,
Soontharanon & Sitthiwirattham, 2022). The
symmetric character of the operator substantially
simplifies the analytical techniques employed for

establishing existence and uniqueness results.

4.2. Fractional (p, q)-Calculus (FpgC)

The (p, q)-calculus, characterized by the parameter
constraint 0 < g <p <1, represents the most
contemporary and maximally generalized
formulation, inherently containing standard gq-

calculus as a particular limiting case (when p = 1).

Construction: Introduced by Soontharanon and
Sitthiwirattham in 2020 (Soontharanon &
Sitthiwirattham, 2020), this calculus is grounded in
the (p,q)-difference operator and defines the
fractional (p,q)-integral with corresponding
Riemann-Liouville and Caputo operators. The

theoretical development necessitates employment
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of the generalized (p, q)-Gamma and (p, q)-falling

factorial functions.

Applications: The fractional (p,q)-calculus
framework provides two-parameter flexibility,
conferring substantial advantages in both
approximation theory and operator-theoretic
investigations. Its principal applications encompass
demonstrating convergence properties for iterates
of (p, q)-Bernstein operators, and establishing a
diverse array of inequalities, for example
Opial-type integral, trapezoid and midpoint-type
inequalities. These developments yield tighter
analytical bounds for discrete systems
(Nasiruzzaman et al., 2019, Neang et al., 2021).
Furthermore, applications to elastic beam analysis
and related structural mechanics problems
underscore the practical utility of this framework in

engineering contexts (Etemad et al., 2024).

5. THE MATHEMATICAL TOOLKIT:
COMPARATIVE ANALYSIS OF FQC

The significance of fractional quantum calculus
transcends the boundaries of pure mathematics; it
furnishes a high-fidelity analytical lens for
examining discrete, memory-laden phenomena in

the natural world.

Table 1 Comparative framework of five major fractional quantum

calculus types (Sitthiwirattham, 2021)

FQC Governing Time Scale Core Analytical
Type / Parameters Advantage
FDC Uniform Discrete memory
t,t+ h,t+2h,.. on regular grids
FgbC Geometric Non-uniform evolution,
t,qt, qzt, scaling symmetry
FHDC Affine Unified FDC/FgDC
O-é(,a) (®) framework
FSHC Affine/Symmetric Symmetric BVP

analysis

5.0 — Pgw(®)
FpqgC Two-Parameter Affine

p*q

Maximal parameter

n-k¢ flexibility

where of,(t) = ¢* + w[k], and pf, () = FZ#‘

The paramount contribution of fractional quantum
calculus across these diverse applications
manifests in its capacity to accurately incorporate
the non-local kernel inherent to fractional
operators, thereby transforming frequently
inadequate integer-order models into sophisticated
analytical instruments that respect the complete
temporal history and intrinsic mathematical

structure of the system.

6. CONCLUSIONS AND FUTURE
TRAJECTORIES

The field of Fractional Quantum Calculus has
progressed beyond its nascent phase to embrace
increasingly sophisticated multi-parameter
generalizations. The foundational unifying principle,
the systematic generalization of the iterated sum
or integral has demonstrated remarkable
robustness, constituting the structural foundation
for all advanced operators, spanning from the
elementary FDC to the sophisticated FpqC.

The trajectory for future mathematical inquiry
is substantial and vital for the field's continued

maturation:

® Stability and Asymptotic Analysis: The
foundational theory pertaining to the
stability characteristics and asymptotic
behavior of solutions to generalized
fractional quantum calculus remains
incompletely developed. Rigorous
mathematical investigation in this domain
constitutes a prerequisite for dependable
application in engineering and control

systems.

® General Solution Methodologies:
Whereas existence and uniqueness
theorems proliferate extensively,
comprehensive and generally applicable
analytical techniques for solving the

diverse classes of fractional quantum
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differential equations remain severely
constrained. The development of
advanced transformation methods and
series solution techniques will prove
essential for realizing the complete

potential of these mathematical models.

® FSHC and FpgC Expansion and
Specialization: Additional exploration of
the distinctive advantages inherent to the
two-parameter in domains extending
beyond approximation theory, such as
non-local dynamical systems and
fractional integral transforms, represents a
particularly promising avenue for

investigation.

The classical inheritance of traditional calculus is
undergoing a profound transformation, being
forged into an innovative mathematical apparatus
precisely calibrated to represent the fundamental
discreteness and memory characteristics intrinsic

to contemporary scientific inquiry.
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