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ABSTRACT  
This paper provides a comprehensive and rigorous exposition of Fractional Quantum Calculus (FQC),  

a sophisticated mathematical framework that systematically extends classical integer-order quantum calculus to the realm 
of arbitrary fractional orders. We delineate the construction of five interconnected yet distinct types of fractional difference 
operators: the foundational Fractional Difference Calculus (FDC), Fractional 𝑞-Difference Calculus (FqDC), and Fractional 
Hahn Difference Calculus (FHDC), complemented by the advanced generalizations Fractional Symmetric Hahn Difference 
Calculus (FSHC) and Fractional (𝑝, 𝑞)-Calculus (FpqC). The unifying principle undergirding all five frameworks involves the 
non-integer generalization of iterated summation, leading to the derivation of both Riemann-Liouville and Caputo operators. 
Fractional quantum calculus furnishes an indispensable analytical instrument for modeling intricate physical and biological 
phenomena characterized by inherent non-locality, memory-dependent behavior, and discrete dynamical evolution, 
capabilities that transcend the limitations of conventional integer-order mathematical models. 
 
KEYWORDS: Fractional quantum calculus, Fractional difference calculus, Fractional 𝑞-difference calculus, Fractional Hahn 

difference calculus, Symmetric Hahn difference, (𝑝, 𝑞)-calculus, Non-local phenomena, Memory effects, Discrete systems 
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1. INTRODUCTION: UNIFYING THE DISCRETE, 
THE QUANTUM, AND THE FRACTIONAL 
The mathematical landscape of Fractional 
Calculus (FC) traces its intellectual lineage to the 
foundational philosophical inquiries of Leibniz and 
de l'Hôpital in the waning years of the seventeenth 
century (Miller & Ross, 1989, Gray & Zhang, 1988). 
What began as an abstract theoretical speculation 
has matured into a robust and indispensable 
analytical tool for elucidating the behavior of 
complex systems across diverse scientific domains, 
including viscoelasticity, anomalous diffusion 
phenomena, and chaotic dynamics (Anastassiou, 
2009, Ferreira & Torres, 2011). The distinctive merit 
of fractional calculus lies in its inherent capacity to 
encapsulate the temporal history and memory 
characteristics of dynamical systems, a feature 
conspicuously absent from the classical integer-
order derivative formalism (L'Hôpital, 1695, Leibniz, 
1695). 

In parallel, the necessity to model phenomena 
occurring on discrete temporal scales or non-
un i fo rmly d is t r ibuted gr ids catalyzed the 
emergence of Quantum Calculus , a calculus 
architecture constructed independently of the 
limiting process (Al-Salam, 1966, Agarwal, 1969). 
This framework encompasses several fundamental 
quantum operators: the ℎ-difference operator 
(operative on uniformly spaced time scales), the 𝑞-
difference operator or Jackson derivative (operative 
on geometric time scales), and the Hahn difference 
operator (synthesizing both uniform and geometric 
scaling). 

The transformative synthesis emerges from the 
convergence of these two mathematical paradigms: 
Fractional Quantum Calculus .  This novel 
theoretical structure furnishes a unified analytical 
vocabulary for investigating systems exhibiting both 
discrete-t ime characterist ics and non-local 

(memory-dependent) phenomena. This exposition 
systematically examines the mathematical 
construction and practical utility of five major 
classes of fractional quantum calculi, tracing the 
field's trajectory from its foundational principles to 
its contemporary, highly generalized instantiations. 
 

2. THE THEORETICAL FOUNDATION: CORE 
PRINCIPLES OF FRACTIONAL QUANTUM 
CALCULUS 
The rigorous construction of fractional operators 
within the quantum calculus paradigm rests 
f u ndamen t a l l y  upon  two  i nd i s pens ab le 
mathematical constructs: the Gamma Function 
Γ(⋅) and the general ized Fal l ing Factor ia l 
Function. 
2.1. The Generalization Principle 
The transition from integer order 𝑚 to fractional 
order 𝛼 i s universally effected through the 
generalization of the formula for the 𝑚-fold 
iterated sum (or integral) using the Gamma 
function. Within a discrete system, the fractional 
sum of order 𝛼 is defined as the foundational 
operator, with the fractional difference serving as 
its inverse operator. 
2.2. The Two Principal Operators 
All fractional quantum operators adhere to two 
canonical formulations, which determine how the 
temporal history of the function is incorporated 
into the operator: 

• Riemann-Liouvil le (R-L) Fractional 
Difference: This operator is defined as an 
integer-order difference applied to a 
fractional-order sum. It is predominantly 
employed in theoretical investigations and 
exh ib i ts  dependence on the in i t ial 
summation point. 
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• Caputo Fractional Difference: Defined as a 
fractional-order sum of an integer-order 
difference, the Caputo formulation possesses 
a marked advantage in applied mathematical 
modeling: it admits initial conditions 
structurally analogous to those employed in 
classical integer-order calculus (namely, the 
specification of the function and its integer-
order derivatives at an initial time), thereby 
facilitating application to boundary value 
problems and initial value problems. 

 

3. THE FOUNDATIONAL TRIUMVIRATE: 
PR IMARY FRACT IONAL D IFFERENCE 
OPERATORS 
The early development phase of fractional quantum 
calculus centered upon the fractional generalizations 
of three primary quantum operators. 
3.1. Fractional Difference Calculus (FDC) 
This constitutes the cornerstone of discrete 
f ract ional analys i s ,  const ructed upon the  
ℎ- d i f f e r e n c e  o p e r a t o r  d e fi n e d  a s  
Δℎ𝑓(𝑡) =

𝑓(𝑡+ℎ)−𝑓(𝑡)

ℎ
 (with ℎ = 1 for the classical 

discrete difference). Figure 1 shows the shift in 
𝑓(𝑡)-value and the shift in 𝑡-value of Fractional 
Difference Calculus. 
 

Construction: The theoretical edifice rests upon 
the discrete Gamma function and the associated ℎ-

falling factorial, denoted 𝑡(𝛼,ℎ). 
 

Applications: This framework proves indispensable 
for modeling phenomena evolving on uniform 
temporal grids where memory effects play a 
s i g n i fi c an t  r o l e ,  e xemp l i fied  i n  fi n anc i a l 
mathematics, discrete-time control systems, and 
difference equations arising from the calculus of 
variations (Ferreira, 2011). 
3.2. Fractional 𝑞-Difference Calculus (FqDC) 
This calculus is constructed upon the Jackson 𝑞-
d i f fe rence operator ,  wh ich operates on a 
geometric time scale  characterized by the 
progression (𝑡, 𝑞𝑡, 𝑞2𝑡, … ). Figure 2 demonstrates 
the shift in 𝑓(𝑡)-value and the shift in 𝑡-value of q-
Difference Calculus. 
 

Construction: The theoretical framework employs 
the 𝑞-analogue of the Gamma function and the 
fractional𝑞-Falling Factorial. The foundational 
fractional 𝑞-Integral (Kac & Cheung, 2002, Ernst, 
2012) constitutes the precursor to both the R-L 
and Caputo 𝑞-difference operators. 
 

App l i c a t ions :  Th i s  fo rma l i sm pos se s ses 
considerable relevance in theoretical physics, 
particularly in quantum field theory and molecular 
physics, and is applicable to any system exhibiting 
geometr ic  progress ion or inherent scal ing  
symmetry. Furthermore, it proves instrumental in 
solving advanced boundary value problems for 
fractional 𝑞-differential equations (Čermák & 
Nechvatál, 2010). 
 

 

Figure 1 Displays the shift in 𝑓(𝑡)-value and the shift in 𝑡-value                                       
              of Fractional Difference Calculus (as shown in (Sitthiwirattham,  
              2020)). 

 

Figure 2 Displays the shift in 𝑓(𝑡)-value and the shift in 𝑡-value of 
              Fractional q-Difference Calculus (as shown in (Sitthiwirattham,  
              2020)). 
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3.3. Fractional Hahn Difference Calculus (FHDC) 
The Hahn operator 𝐷𝑞,𝜔 represents a synthesis of 
the ℎ-difference and 𝑞-difference operators, 
thereby creating a more versatile affine time 
scale. The shift in 𝑓(𝑡)-value and the shift in 𝑡-
value of Fractional Hahn Difference Calculus is 
shown in Figure 3. 

Construction: Introduced by Brikshavana and 
S i t t h iw i r a t t h am i n  2 0 1 7  ( B r i k s h a v ana  & 
Sitthiwirattham, 2017), this calculus develops its 
integral and differential operators (Riemann -
Liouville and Caputo forms) utilizing the 𝑞-Gamma 
function and the fractional (𝑞, 𝜔)-falling factorial. 
 

Applications: The fractional Hahn difference 
calculus serves as a unifying theoretical platform, 
offering a systematic approach to generalize results 
from both FDC and FqDC It has proven instrumental 
in the investigation of complex nonlocal boundary 
value problems incorporating fractional Hahn integral 
boundary conditions (Brikshavana & Sitthiwirattham, 
2018). 
 

4. THE ADVANCING FRONTIER: ADVANCED 
GENERALIZATIONS AND CONTEMPORARY 
EXTENSIONS 
Recent scholarly developments have substantially 
enlarged the scope of fractional quantum calculus 
by introducing progressively more general or 
spec ia l i zed d i f fe rence operators ,  thereby 

significantly amplifying the field's analytical 
capabilities. 

 

4.1. Fractional Symmetric Hahn Difference 
Calculus (FSHC) 
The Symmetric Hahn Difference Operator , 
denoted 𝐷̃𝑞,𝜔 , represents a sophisticated extension 
of the classical Hahn operator, engineered to 
s impli fy analyt ical procedures through the 
manifestation of distinct symmetrical properties. 
Construction: Developed by Patanarapeelert and 
Sitth iwirattham in 2019 (Patanarapeelert & 
Sitthiwirattham, 2019), this calculus formulates the 
fractional symmetric Hahn integral alongside the 
corresponding Riemann-Liouville and Caputo 
symmetric difference operators. 
 

Applications: This theoretical framework proves 
essential for addressing highly intricate nonlocal 
boundary value problems of symmetric character, 
specifically those involving sequential Caputo 
fractional Hahn integrodifference equations and 
nonlocal  Robin -type boundary condi t ions 
(Patanarapeelert  & S i t th iwi rat tham, 2018 , 
Soontharanon & Sitthiwirattham, 2022 ). The 
symmetric character of the operator substantially 
simplifies the analytical techniques employed for 
establishing existence and uniqueness results. 

 

4.2. Fractional (𝑝, 𝑞)-Calculus (FpqC) 
The (𝑝, 𝑞)-calculus, characterized by the parameter 
constraint  0 < 𝑞 < 𝑝 ≤ 1, represents the most 
contemporary and maximally general ized 
formulation, inherently containing standard 𝑞-
calculus as a particular limiting case (when 𝑝 = 1). 

 

Construction: Introduced by Soontharanon and 
S i t th iw i ra t tham in  2020 ( Soontharanon & 
Sitthiwirattham, 2020), this calculus is grounded in 
the (𝑝, 𝑞)-difference operator and defines the 
fractional (𝑝, 𝑞)-integral with corresponding 
Riemann-Liouville and Caputo operators. The 
theoretical development necessitates employment 

 
Figure 3 Displays the shift in 𝑓(𝑡)-value and the shift in 𝑡-value of   
              F ract iona l  Hahn D i f fe rence Ca lculus  ( a s  shown in  
              (Sitthiwirattham, 2020)). 
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of the generalized (𝑝, 𝑞)-Gamma and (𝑝, 𝑞)-falling 
factorial functions. 

 

Applications:  The fract ional (𝑝, 𝑞)-calculus 
framework provides two-parameter flexibility, 
conferr ing substant ia l  advantages in  both 
approximation theory and operator -theoretic 
investigations. Its principal applications encompass 
demonstrating convergence properties for iterates 
of (𝑝, 𝑞)-Bernstein operators, and establishing a 
d iverse ar ray of  inequal i t ies ,  fo r  example                       
Opial-type integral, trapezoid and midpoint-type 
inequalities. These developments yield tighter 
an a l y t i c a l  bound s  f o r  d i s c r e t e  s y s t ems 
(Nasiruzzaman et al., 2019, Neang et al., 2021). 
Furthermore, applications to elastic beam analysis 
and related structural mechanics problems 
underscore the practical utility of this framework in 
engineering contexts (Etemad et al., 2024). 
 

5 .  THE  MATHE MAT I CAL  TOOL K I T : 
COMPARATIVE ANALYSIS OF FQC 
The significance of fractional quantum calculus 
transcends the boundaries of pure mathematics; it 
furn ishes a h igh -fidel i ty analyt ical lens for 
examining discrete, memory-laden phenomena in 
the natural world.  

 
 

where  𝜎𝑞,𝜔𝑘 (𝑡) ≔ 𝑞𝑘𝑡 +𝜔[𝑘]𝑞 and  𝜌𝑞,𝜔𝑘 (𝑡) ≔
𝑡−𝜔[𝑘]𝑞

𝑞𝑘
. 

 

The paramount contribution of fractional quantum 
calculus across these diverse applicat ions 
manifests in its capacity to accurately incorporate 
the non-local kernel  inherent to fractional 
operators, thereby transforming frequently 
inadequate integer-order models into sophisticated 
analytical instruments that respect the complete 
temporal history and intrinsic mathematical 
structure of the system. 

6 .  C O N C L U S I O N S  A N D  F U T U R E 
TRAJECTORIES 
The field of Fractional Quantum Calculus has 
progressed beyond its nascent phase to embrace 
increasingly sophist icated mult i -parameter 
generalizations. The foundational unifying principle, 
the systematic generalization of the iterated sum 
or  in tegra l  has  demonst rated remarkable 
robustness, constituting the structural foundation 
for all advanced operators, spanning from the 
elementary FDC to the sophisticated FpqC. 

The trajectory for future mathematical inquiry 
is substantial and vital for the field's continued 
maturation: 

• Stability and Asymptotic Analysis: The 
foundational theory pertaining to the 
stability characteristics and asymptotic 
behavior of solutions to generalized 
fractional quantum calculus r e m a i n s 
incompletely  deve loped.  R i gorous 
mathematical investigation in this domain 
constitutes a prerequisite for dependable 
application in engineering and control 
systems. 

• General  Solut ion Methodolog ies : 
Whereas ex i s tence and un iqueness 
theo rems p ro l i f e r a te  ex tens i ve ly , 
comprehensive and generally applicable 
analytical techniques for solving  the 
diverse classes of fractional quantum 

Table 1 Comparative framework of five major fractional quantum 
calculus types (Sitthiwirattham, 2021) 

FQC 
Type 

Governing Time Scale 
/ Parameters 

Core Analytical  
Advantage 

FDC Uniform 

𝑡, 𝑡 + ℎ, 𝑡 + 2ℎ,… 

Discrete memory  
on regular grids 

FqDC Geometric 

 𝑡, 𝑞𝑡, 𝑞2𝑡, … 

Non-uniform evolution,  
scaling symmetry 

FHDC Affine 

𝜎𝑞,𝜔
𝑘 (𝑡) 

Unified FDC/FqDC  
framework 

FSHC Affine/Symmetric 

σq,ω
𝑘 (𝑡) − 𝜌𝑞,𝜔

𝑘 (𝑡) 

Symmetric BVP  
analysis 

FpqC Two-Parameter Affine 

𝑝𝑘𝑞𝑛−𝑘𝑡 

Maximal parameter  
flexibility 
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differential equations remain severely 
cons t r a i ned .  The  deve lopment  o f 
advanced transformation methods and 
series solution techniques will prove 
essential for realiz ing the complete 
potential of these mathematical models. 

• F SHC  and  FpqC  E xpan s i on  and 
Specialization: Additional exploration of 
the distinctive advantages inherent to the 
two-parameter in domains extending 
beyond approximation theory, such as 
non - loca l  dynamica l  s y s tems  and 
fractional integral transforms, represents a 
pa r t i cu la r l y  p romi s i n g  avenue  fo r 
investigation. 

 

The classical inheritance of traditional calculus is 
undergoing a profound transformation, being 
forged into an innovative mathematical apparatus 
precisely calibrated to represent the fundamental 
discreteness and memory characteristics intrinsic 
to contemporary scientific inquiry. 
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