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ABSTRACT  

This study presents an enhanced framework for accurately estimating the Average Run Length (ARL) in Statistical Process 

Control (SPC) systems especially for control charts, which are essential for monitoring, maintaining, and improving process 

quality in industrial and economic applications.  The ARL, a key performance metric in SPC, indicates the average number of 

samples taken before a control signal is triggered, with ARL₀ representing false alarms and ARL₁ indicating true detections. 

This paper reviews and compares four prominent ARL evaluation methods: Monte Carlo Simulation, Markov Chain Approach, 

Numerical Integral Equation, and Explicit Formulas. Each method’s strengths and limitations are discussed in terms of 

accuracy, and flexibility. The findings highlight the need for method selection based on the complexity of monitored 

processes, particularly in autocorrelation and non-normality are prevalent. Furthermore, integrating these methods with                

AI-driven optimization techniques - such as machine learning algorithms for data analysis and adaptive control - offers 

promising avenues for enhancing the precision and responsiveness of process monitoring in dynamic and complex 

environments. 
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Journal of Applied Science and Emerging Technology (JASET) Vol. 24, No. 1 [2025]: e900005 

2 

In modern industrial and economic systems, 

process monitoring and quality control have 

become critical for ensuring stability, minimising 

costs, and maximising efficiency. The application of 

Statistical Quality Control (SQC) tools has expanded 

beyond manufacturing to areas such as healthcare, 

environmental science, and econometrics. Among 

these tools, control charts are fundamental 

instruments for detecting shifts in process 

behaviour over time. 

Introduced by Shewhart (1931), the classical 

control chart focuses on detecting significant 

deviations by monitoring sample statistics against 

predetermined control limits. However, classical 

methods like the Shewhart chart often lack 

sensitivity to small or gradual process shifts. This 

limitation led to the development of more 

sophisticated techniques, such as the Cumulative 

Sum (CUSUM) introduced by Page (1954) and 

Exponentially Weighted Moving Average (EWMA) 

charts proposed by Roberts (1959), which enhance 

sensitivity and allow for earlier detection of shifts. 

The performance of any control chart is 

commonly evaluated using the Average Run Length 

(ARL), which represents the expected number of 

samples taken before a signal indicates a potential 

process change. The ARL0 refers to the expected 

run length when the process is in-control, and the 

ARL1 refers to when the process is out-of-control. 

Optimising ARL values is crucial: a high ARL0 

minimises false alarms, while a low ARL1 ensures 

prompt detection of actual process changes. 

Given the importance of ARL, several analytical and 

numerical methods have been developed to 

evaluate it accurately, especially in econometric 

applications where data often exhibit 

autocorrelation, non-normality, and structural 

breaks.  

The ARL is a probabilistic metric that quantifies 

the average number of observations needed before 

a control chart signals. Formally: 

ARL0: Expected number of samples before a false 

alarm when the process is in control. 

ARL1: Expected number of samples until a true 

signal when the process is out of control. 

The choice of ARL evaluation method depends on 

factors such as the type of control chart, the 

probability distributions: discrete and continuous, 

and the nature of the monitored process (stationary 

vs. non-stationary). 

Methods for Evaluating Average Run Length 

1. Monte Carlo Simulation (MC) 

Monte Carlo Simulation is one of the most 

flexible and widely used methods for ARL 

estimation, especially when analytical solutions are 

intractable. 

Process: Simulate a large number of process runs 

(typically 10,000 or more) under both in-control 

and out-of-control conditions. For each simulation, 

count the number of observations until a control 

limit is breached. 

Strengths: High flexibility, applicable to complex 

models including non-linear, non-normal, or 

dependent data. 

Limitations: Computationally intensive; requires 

significant time for high-precision results. 

Example: Sales et al. (2020) used the Monte Carlo 

method to evaluate ARL in Poisson mixed integer 

autoregressive processes for crime and network 

data. See details in the reference; Saengsura et. al. 

(2024), Talordphop et. al. (2025). 

2. Markov Chain Approach (MCA) 

The Markov Chain Approach proposed by Brook & 

Evans (1972) is a powerful technique that models 

the transition probabilities between different 

process states. 
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Process: Define discrete states (e.g., in-control, out-

of-control), establish a transition probability matrix, 

and solve for steady-state probabilities. 

Strengths: Efficient for processes that can be 

discretised into finite states; suitable for CUSUM and 

EWMA charts. 

Limitations: May not converge for some high-

dimensional or continuous-state processes; 

assumes Markovian properties.  

Example: Lucas and Saccucci (1990) applied MCA 

to evaluate ARL for EWMA charts. Chananet et al. 

(2015) studied MCA to evaluate ARL on EWMA and 

CUSUM control charts based on the ZINB process. 

3. Numerical Integral Equation (NIE) Method 

The NIE method involves formulating ARL 

estimation as an integral equation, which is then 

solved numerically. 

Process: Represent ARL as a Fredholm integral 

equation, discretise using numerical techniques 

(e.g., Simpson’s Rule), and solve iteratively. 

Strengths: High precision, especially for continuous 

control charts; applicable to time series with 

continuous distributions. 

Limitations: Limited to continuous distributions; 

requires careful numerical implementation. 

Example: Crowder (1987) used NIE for the EWMA 

chart, achieving highly accurate ARL estimates. For 

more information, see the following references: 

Bualuang & Peerajit (2023), Saesuntia et. al. (2023).  

4. Explicit Formulas 

Explicit formulas provide closed-form expressions 

for ARL based on assumptions about the data and 

control chart structure. 

Process: Derive ARL using mathematical tools like 

probability theory, the central limit theorem, or 

Laplace transforms. 

Strengths: Extremely fast computation; no need for 

simulation or iteration. 

Limitations: Valid only for specific distributions 

(e.g., normal, exponential); lacks flexibility for 

complex or non-standard processes. 

Example: Sukparungsee and Areepong (2017) 

derived explicit ARL formulas for EWMA charts in 

autoregressive processes. Refer to the following 

sources for more details: Phanyaem (2022), 

Petcharat (2022), Suriyakat & Petcharat (2022), 

Supharakonsakun & Areepong (2023), Areepong & 

Sukparungsee (2023), Areepong & Peerajit (2024), 

Neammai et. al. (2025).  

In practice, the choice of method depends on 

the trade-off between accuracy, flexibility, and 

computational cost. Table 1 shows the comparative 

analysis of four methods. For example, in 

econometric models involving autocorrelated or 

heteroskedastic data, Monte Carlo or NIE methods 

may be preferred due to their robustness. 

 Evaluating Average Run Length (ARL) is central 

to assessing and improving the effectiveness                   

of control charts in process monitoring. While 

traditional control charts suffice for simple, well-

behaved data, modern applications - especially in 

econometrics - require more sophisticated evaluation 

techniques. 

 Monte Carlo simulations give unparalleled 

flexibility, although at the time consuming, whilst 

Markov Chain and NIE approaches deliver analytical 

rigour under specific constraints. Explicit formulas are 

Table 1 Comparative Analysis of ARL Evaluation Methods 

Method Accuracy Flexibility Best Use Cases 

MC High (with samples) Very High (all data types) Complex models, unknown distributions 

MCA Medium to High Medium (discrete states) CUSUM/EWMA, simple discrete processes 

NIE Very High Medium (continuous only) Continuous distributions, time series models 

Explicit Very High Low (specific assumptions) Standard distributions, quick estimation 
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essential for obtaining rapid and precise results under 

conventional assumptions. 

  As data complexity grows, integrating these 

methods with AI-driven optimisation and real-time 

analytics could further enhance their applicability 

in dynamic systems. 
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