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ABSTRACT

This study presents an enhanced framework for accurately estimating the Average Run Length (ARL) in Statistical Process
Control (SPC) systems especially for control charts, which are essential for monitoring, maintaining, and improving process
quality in industrial and economic applications. The ARL, a key performance metric in SPC, indicates the average number of
samples taken before a control signal is triggered, with ARLq representing false alarms and ARL1q indicating true detections.
This paper reviews and compares four prominent ARL evaluation methods: Monte Carlo Simulation, Markov Chain Approach,
Numerical Integral Equation, and Explicit Formulas. Each method’s strengths and limitations are discussed in terms of
accuracy, and flexibility. The findings highlight the need for method selection based on the complexity of monitored
processes, particularly in autocorrelation and non-normality are prevalent. Furthermore, integrating these methods with
Al-driven optimization techniques - such as machine learning algorithms for data analysis and adaptive control - offers
promising avenues for enhancing the precision and responsiveness of process monitoring in dynamic and complex

environments.

KEYWORDS: Statistical process control, Average run length, Markov chain approach, Numerical integral equation,

Explicit formulas.

Please cite this article as: Y.Areepong and S.Sukparungsee, “ Enhanced Frameworks for Accurate ARL Estimation in Statistical Process

Control Systems,” Journal of Applied Science and Emerging Technology, vol 24, no 1, pp. 1-4, ID. 900005, April 2025

1



Journal of Applied Science and Emerging Technology (JASET) Vol. 24, No. 1 [2025]: €900005

In modern industrial and economic systems,
process monitoring and quality control have
become critical for ensuring stability, minimising
costs, and maximising efficiency. The application of
Statistical Quality Control (SQC) tools has expanded
beyond manufacturing to areas such as healthcare,
environmental science, and econometrics. Among
charts are fundamental

these tools, control

instruments for detecting shifts in  process
behaviour over time.

Introduced by Shewhart (1931), the classical
control chart focuses on detecting significant
deviations by monitoring sample statistics against
predetermined control limits. However, classical
methods like the Shewhart chart often lack
sensitivity to small or gradual process shifts. This
limitation led to the development of more
sophisticated techniques, such as the Cumulative
Sum (CUSUM) introduced by Page (1954) and
Exponentially Weighted Moving Average (EWMA)
charts proposed by Roberts (1959), which enhance
sensitivity and allow for earlier detection of shifts.

The performance of any control chart is
commonly evaluated using the Average Run Length
(ARL), which represents the expected number of
samples taken before a signal indicates a potential
process change. The ARL, refers to the expected
run length when the process is in-control, and the
ARL; refers to when the process is out-of-control.
Optimising ARL values is crucial: a higsh ARL,
minimises false alarms, while a low ARL; ensures
prompt detection of actual process changes.

Given the importance of ARL, several analytical and
numerical methods have been developed to
evaluate it accurately, especially in econometric
data  often  exhibit

applications  where

autocorrelation, non-normality, and structural

breaks.

The ARL is a probabilistic metric that quantifies
the average number of observations needed before
a control chart signals. Formally:

ARL,: Expected number of samples before a false
alarm when the process is in control.

ARL;: Expected number of samples until a true
signal when the process is out of control.

The choice of ARL evaluation method depends on
factors such as the type of control chart, the
probability distributions: discrete and continuous,
and the nature of the monitored process (stationary
vs. non-stationary).

Methods for Evaluating Average Run Length

1. Monte Carlo Simulation (MC)

Monte Carlo Simulation is one of the most
flexible and widely used methods for ARL
estimation, especially when analytical solutions are
intractable.

Process: Simulate a large number of process runs
(typically 10,000 or more) under both in-control
and out-of-control conditions. For each simulation,
count the number of observations until a control
limit is breached.

Strengths: High flexibility, applicable to complex
models including non-linear, non-normal, or
dependent data.

Limitations: Computationally intensive; requires
significant time for high-precision results.

Example: Sales et al. (2020) used the Monte Carlo
method to evaluate ARL in Poisson mixed integer
autoregressive processes for crime and network
data. See details in the reference; Saengsura et. al.
(2024), Talordphop et. al. (2025).

2. Markov Chain Approach (MCA)

The Markov Chain Approach proposed by Brook &
Evans (1972) is a powerful technique that models
the transition probabilities between different

process states.
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Table 1 Comparative Analysis of ARL Evaluation Methods

Method Accuracy Flexibility Best Use Cases
MC High (with samples) Very High (all data types) Complex models, unknown distributions
MCA Medium to High Medium (discrete states) CUSUM/EWMA, simple discrete processes
NIE Very High Medium (continuous only) Continuous distributions, time series models
Explicit Very High Low (specific assumptions) Standard distributions, quick estimation

Process: Define discrete states (e.g., in-control, out-
of-control), establish a transition probability matrix,
and solve for steady-state probabilities.

Strengths: Efficient for processes that can be
discretised into finite states; suitable for CUSUM and
EWMA charts.

Limitations: May not converge for some high-
dimensional  or  continuous-state  processes;
assumes Markovian properties.

Example: Lucas and Saccucci (1990) applied MCA
to evaluate ARL for EWMA charts. Chananet et al.
(2015) studied MCA to evaluate ARL on EWMA and
CUSUM control charts based on the ZINB process.
3. Numerical Integral Equation (NIE) Method
The NIE method involves formulating ARL
estimation as an integral equation, which is then
solved numerically.

Process: Represent ARL as a Fredholm integral
equation, discretise using numerical techniques
(e.g., Simpson’s Rule), and solve iteratively.
Strengths: High precision, especially for continuous
control charts; applicable to time series with
continuous distributions.

Limitations: Limited to continuous distributions;
requires careful numerical implementation.
Example: Crowder (1987) used NIE for the EWMA
chart, achieving highly accurate ARL estimates. For
more information, see the following references:
Bualuang & Peerajit (2023), Saesuntia et. al. (2023).
4. Explicit Formulas

Explicit formulas provide closed-form expressions

for ARL based on assumptions about the data and

control chart structure.

Process: Derive ARL using mathematical tools like
probability theory, the central limit theorem, or
Laplace transforms.

Strengths: Extremely fast computation; no need for
simulation or iteration.

Limitations: Valid only for specific distributions
(e.g, normal, exponential); lacks flexibility for
complex or non-standard processes.

Example: Sukparungsee and Areepong (2017)
derived explicit ARL formulas for EWMA charts in
autoregressive processes. Refer to the following
sources for Phanyaem (2022),

Petcharat (2022), Suriyakat & Petcharat (2022),

more details:

Supharakonsakun & Areepong (2023), Areepong &
Sukparungsee (2023), Areepong & Peerajit (2024),
Neammai et. al. (2025).

In practice, the choice of method depends on
the trade-off between accuracy, flexibility, and
computational cost. Table 1 shows the comparative
analysis of four methods. For example, in
econometric models involving autocorrelated or
heteroskedastic data, Monte Carlo or NIE methods
may be preferred due to their robustness.

Evaluating Average Run Length (ARL) is central
to assessing and improving the effectiveness
of control charts in process monitoring. While
traditional control charts suffice for simple, well-
behaved data, modemn applications - especially in
econometrics - require more sophisticated evaluation
techniques.

Monte Carlo simulations give unparalleled
flexibility, although at the time consuming, whilst
Markov Chain and NIE approaches deliver analytical

rigour under specific constraints. Explicit formulas are
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essential for obtaining rapid and precise results under
conventional assumptions.

As data complexity grows, integrating these
methods with Al-driven optimisation and real-time
analytics could further enhance their applicability

in dynamic systems.
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