
 

1 

Please cite this article as: P. Visutsak, “Modeling Global Ice Volume Changes: A Nonlinear Autoregressive Neural Network Approach,” 

Journal of Applied Science and Emerging Technology, vol 24, no 2, pp. 1-15, ID. 260276, August 2025 

Journal of Applied Science and Emerging Technology (JASET)  

Published by Faculty of Applied Science, KMUTNB, Thailand 

doi: 10.14416/JASET.KMUTNB.2025.02.002 

Vol. 24, No. 2 [2025]: e260276 
 

 

Modeling Global Ice Volume Changes: A Nonlinear Autoregressive 

Neural Network Approach 
 

Porawat Visutsak1* and Keun Ho Ryu2, 3 

 
1Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, 10800 Thailand 
2Database/Bioinformatics Laboratory Chungbuk National University, Chungbuk, 28644 Republic of Korea 
3Faculty of Information Technology, Data Science Laboratory, Ton Duc Thang University, Vietnam 

 

* Corresponding Author, E-mail: porawatv@kmutnb.ac.th  DOI: 10.14416/JASET.KMUTNB.2025.02.002 

Received 28 December 2024; Revised 12 July 2025; Accepted 17 July 2025 
 

ABSTRACT  

 A single time series prediction problem is solved with a neural network. The nonlinear autoregressive (NAR) type of 

network is used. The network is trained in an open loop and then transformed to closed loop for multistep prediction. The 

prediction is made 20 time steps into the future. The delay is removed from the network to get the prediction one time step 

earlier. The shallow neural network is trained on the global ice volume dataset, which contains 219 measurements of global 

ice volume over 440,000 years. The network is able to predict future ice volume based on past values with a high degree of 

accuracy. Three different backpropagation training algorithms were used to train the network: Levenberg-Marquardt, Bayesian 

Regularization, and Scaled Conjugate Gradient. The Levenberg-Marquardt algorithm achieved the lowest MSE (0.02257 at 

epoch 13) and the highest R² (0.99254). The Bayesian Regularization algorithm achieved an MSE of 0.027209 at epoch 4 and 

an R² of 0.99192. The Scaled Conjugate Gradient algorithm achieved an MSE of 0.01878 at epoch 3 and an R² of 0.99018. This 

work contributes to the field of climate studies by providing a tool for predicting future ice volume. This information can be 

used to better understand Earth’s glacial cycles and to develop strategies for mitigating the effects of climate change. 
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1. INTRODUCTION  

 Global ice volume has fluctuated significantly 

over the past 440,000 years, with major implications 

for Earth’s climate and sea level. Understanding 

these fluctuations is essential for predicting future 

climate change and its potential impacts on human 

societies. This paper explores the use of shallow 

neural networks for time-series prediction, focusing 

on modeling global ice volume.    

 The objective of this study is to develop                      

a neural network model that can accurately predict 

future global ice volume based on past values. The 

model will be trained on the global ice volume 

dataset, which contains 219 measurements of 

global ice volume over 440,000 years. This single 

time-series prediction problem leverages the 

network’s ability to learn patterns in historical 

data. By analyzing past ice volume trends, the 

network can forecast future changes, contributing 

valuable insights to climate studies and our 

understanding of Earth’s glacial cycles.    

The neural network model will be trained using 

three different backpropagation algorithms: 

Levenberg-Marquardt, Bayesian Regularization, and 

Scaled Conjugate Gradient. The performance of the 

models will be evaluated based on their mean 

squared error (MSE) and R².    

 The Levenberg-Marquardt algorithm achieved 

the lowest MSE (0.02257 at epoch 13) and the 

highest R² (0.99254). The Bayesian Regularization 

algorithm achieved an MSE of 0.027209 at epoch 4 

and an R² of 0.99192. The Scaled Conjugate 

Gradient algorithm achieved an MSE of 0.01878 at 

epoch 3 and an R² of 0.99018.    

 This paper is organized as follows: Section 2 

describes the materials and methods used in this 

study, including the global ice volume dataset and 

the neural network model. Section 3 presents the 

results of the experiments, including the training 

state, MSE, and R² for each backpropagation 

algorithm. We also discuss the implications of the 

research findings for climate studies and our 

understanding of Earth’s glacial cycles. Section 4 

concludes the paper with a summary of the main 

findings and suggestions for future research. 

The study of using nonlinear autoregressive neural 

network models for predicting oil-dissolved gas 

concentrations has been proposed by Pereira et al. 

(2018). The authors propose a hybrid model to 

predict the concentration of gases dissolved in 

transformer oil, which is crucial for monitoring 

equipment health and diagnosing potential faults. 

This model combines a Nonlinear Autoregressive 

(NAR) neural network with the Discrete Wavelet 

Transform (DWT). The DWT is first used to process 

and simplify historical gas data, which is then fed 

into the NAR network to forecast future gas 

concentration values. Tested on seven months of 

real-world data from a transformer in Brazil,                    

the proposed NAR-DWT model demonstrated high 

accuracy and robustness, proving to be less 

sensitive to training parameters like time delay and 

the specific wavelet function used. The results 

showed that this approach significantly 

outperformed other methods like GRNN, BPNN, and 

SVM, with a prediction error for ethylene gas that 

was approximately 70% smaller than the other 

tested models. The study concludes that this 

model serves as a reliable tool for fault diagnosis 

systems, enabling the anticipation of failures                    

by providing accurate, multi-step ahead predictions 

of gas levels. 

 Boussaada et al. (2018) presents a model for 

predicting daily direct solar radiation specifically 

designed to manage the power supply for a race 

sailboat, an application where location is constantly 

changing. The authors utilize a Nonlinear 

Autoregressive Exogenous (NARX) neural network 
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that takes two primary inputs: a deterministic 

component derived from a “clear sky” model that 

accounts for the sun’s geometric position, and a 

statistical component represented by predicted 

cloud cover. A key finding is that the model 

performs best when trained periodically—specifically, 

once every day at midnight using a moving window 

of the last 10 days of data. This daily retraining 

strategy allows the model to adapt to the  

sailboat’s changing coordinates and meteorological 

conditions. After optimizing the network’s structure 

to 15 neurons in the hidden layer and using specific 

activation functions, the final predictor achieved                 

a Daily Mean of the Power Error (DMPE) of                  

24.0584 W/m², successfully forecasting the general 

solar radiation curve.  

 Moreover, to aid in strategic planning for 

sustainable energy systems, Adedeji et al. (2019) 

addresses the challenge of forecasting energy 

consumption, which is subject to hemispherical 

seasonal patterns. The research employs a                  

non-linear autoregressive neural network (NARNET) 

to predict daily energy usage across the four 

campuses of a South African university, utilizing 

three years of historical consumption data. A critical 

component of the methodology involved 

preprocessing the data with Singular Spectrum 

Analysis (SSA) for filtering. The authors identified 

three potential window lengths (L=54, 103, and 

155) via periodogram analysis and compared their 

impact on the network’s training performance. The 

data filtered with a window length of L=103 

produced the best results, yielding R-values of 

0.951, 0.983, 0.945, and 0.940 for campuses A, B, C, 

and D, respectively. Following network validation,  

a short-term forecast achieved accuracies of 85.87% 

(Campus A), 75.62% (Campus B), 85.02% (Campus C), 

and 76.83% (Campus D). The study concludes by 

demonstrating the significance of data filtering as a 

crucial step for improving the accuracy of forecasts 

based on univariate autoregressive series. 

It’s essential to understand how regional climates 

will change under different human-caused emission 

scenarios to help societies adapt and mitigate the 

impacts (Mansfield et al., 2020).  Traditional climate 

models require immense computing power, posing 

a major challenge. However,  Mansfield et al. (2020) 

proposed a solution: using machine learning.               

Their innovative approach leverages a unique 

dataset of existing climate model simulations to 

identify connections between short-term and                 

long-term temperature responses under various 

climate forcing scenarios. This method offers                    

a twofold advantage. First, it can speed up climate 

change projections by reducing the computational 

burden. Second, it helps identify early warning signs 

of long-term climate responses, which is vital for 

climate change detection, predictability, and 

attribution. The research emphasizes the need for 

increased data sharing between research 

institutions. By pooling resources to build larger 

datasets, the scientific community can create even 

more powerful climate response emulators.                   

This will lead to faster and more accurate climate 

change projections. Such a collaborative approach 

is crucial for navigating the challenges and 

opportunities of data-driven climate modeling. 

 Baig et al. (2021) investigated hydro-meteorological 

variables in the Chitral Basin of Pakistan to predict 

climate change impacts on temperature, 

precipitation, humidity, and river flow using 

observed data from 1990 to 2019. The researchers 

employed statistical methods, including trend 

variability analysis and regression models, to 

analyze the relationships between these variables. 

Their findings revealed an inverse relationship 

between temperature and precipitation, with 

temperature decreasing by 0.309 °C for every unit 
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increase in precipitation. Temperature also showed 

a negative correlation with humidity. Conversely, 

precipitation positively influenced both humidity 

and river flow. These results challenge the notion 

that increased river flow in the Chitral Basin is 

primarily due to glacial recession caused by rising 

temperatures.  

 Zhou et al. (2021) investigated carbon dioxide 

(CO2) emissions in China, focusing on identifying key 

emission sources and driving factors to mitigate 

global warming.  The study utilized multiple linear 

regression models to analyze data from 1990 to 

2017, identifying the energy industry, fuel 

combustion in other industries, and industrial 

processes as the primary CO2 emission sources. The 

researchers developed driving force models for 

each source, incorporating both quantitative and 

qualitative factors. Their models predict a 

continued decrease in CO2 emission intensity and 

total emissions in China but emphasize the need 

for greater efforts to meet the Paris Agreement 

goals. The study highlights the importance of energy 

structure adjustment, technological innovation, and 

policy interventions in achieving significant CO2 

emission reductions. 

 Cummins et al. (2022) addressed the statistical 

validity of commonly used climate change 

detection and attribution (D&A) methods. These 

methods, based on Hasselmann’s “optimal 

fingerprinting,” employ linear regression of historical 

climate observations on climate model output, 

raising concerns about spurious regression due to 

the non-stationary nature of climate variables. 

Using an idealized linear-response-model 

framework, the authors demonstrated the 

consistency of the optimal fingerprinting estimator 

under standard assumptions, particularly for global 

mean surface temperature (GMST). Analysis of 

historical GMST observations and CMIP6 model 

output supported these assumptions, indicating 

that D&A of GMST trends is likely not spurious. 

Furthermore, the study revealed “superconsistent” 

properties of the least-squares estimator due to 

cointegration between observations and model 

output. This finding led to the development of                  

a new method for quantifying D&A uncertainty, 

eliminating the need for pre-industrial control 

simulations. 

 Duan et al. (2022) investigated temperature 

trends in Australia using a joint model of quantile 

regression and variability to analyze daily maximum 

and minimum temperature data. This approach 

accounts for heterogeneity in the data, including 

quasi-periodic heterogeneity in variance, which has 

often been overlooked in previous climate studies. 

Their analysis revealed an overall warming trend of 

approximately 0.21°C per decade for daily 

maximum temperatures and 0.13°C per decade for 

daily minimum temperatures. Moreover, the study 

identified nuanced spatial and temporal patterns of 

change, varying across locations, seasons, and 

temperature percentiles. 

 Subhra et al. (2023) investigated the 

effectiveness of polynomial regression for 

predicting future temperatures and, consequently, 

climate variation. Using a preprocessed dataset 

from NASA’s Jet Propulsion Laboratory, the 

researchers applied a polynomial regression model 

to predict future temperatures. Their findings 

demonstrate the efficacy of this approach, 

achieving a 93.31% training accuracy and a 91.01% 

testing accuracy. The authors suggest that this 

prediction model can aid environmental agencies in 

mitigating the impact of climate change and 

forecasting extreme weather conditions.                        

They recommend further research incorporating 

additional climate-influencing factors. 
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Utami et al. (2023) investigated the impact of 

climate change on heat stress in Indonesia, 

measured by the Thermal Humidity Index (THI). 

Recognizing the limitations of coarse-resolution 

Earth System Models (ESMs), the researchers 

employed statistical downscaling (SD) and 

nonparametric regression to correct biases in 

temperature and humidity projections from the 

Coupled Model Intercomparison Project (CMIP5). 

Their bias correction method achieved high 

accuracy, with R-square values of 95% for relative 

humidity and 94% for temperature. Based on THI 

projections, the study found that 50% of the 

Indonesian population will experience comfortable 

conditions from 2006 to 2059, while uncomfortable 

conditions are expected from 2060 to 2100, with 

THI values ranging from 27.0730°C to 27.7800°C.  

 Wang and Xia (2023) reviewed the application of 

quantile regression in addressing climate change. 

Quantile regression, an extension of linear 

regression, estimates the median or other quantiles 

of the outcome variable, making it suitable for 

analyzing data with non-normal residuals, outliers, 

and heteroscedasticity. This approach is particularly 

useful in climate change research as it allows for 

the examination of relationships between variables 

beyond the mean, capturing the impact of 

unusually distributed outcomes and nonlinear 

relationships. The authors highlighted the 

advantages of quantile regression in identifying 

factors influencing variables at different quantiles 

and their robustness against outliers. The review 

emphasizes the potential of quantile regression in 

advancing climate change research and provides 

directions for future studies. 

 Chang et al. (2024) examined various methods 

for extracting long-term temperature trends from 

sea surface temperature (SST) data, including the 

seasonal-trend decomposition procedure based on 

loess (STL) and linear regression methods (ordinary 

least square regression [OLSR], orthogonal 

regression [OR], and geometric mean regression 

[GMR]). STL was identified as the most accurate 

method but computationally expensive. Linear 

regression methods were more efficient, but GMR 

was deemed unsuitable due to its assumption of               

a random temporal component. OLSR and OR 

required correction for seasonal signal-induced bias, 

which could be achieved by trimming the SST data.  

Grover and Sharma (2024) explored the use of ridge 

regression to analyze rainfall trends and temporal 

patterns, aiming to enhance the understanding of 

precipitation dynamics. Ridge regression, an improved 

regression technique, addresses multi-collinearity 

and overfitting issues, thus improving the accuracy 

of rainfall forecasting. The study examined rainfall 

variations, considering the impact of climate change 

parameters. The authors found that ridge 

regression, by balancing bias and variance, led to 

more robust and reliable rainfall predictions.                  

This research contributes valuable insights to 

hydrology and climate science, emphasizing the 

importance of accurate rainfall forecasting for 

effective water resource management and climate 

studies.  The study highlights the potential of ridge 

regression in capturing complex temporal 

processes, which could be applied to various 

climate-related issues. 

 Malik et al. (2024) assessed the impact of 

climate change on Pakistan’s energy sector, 

focusing on demand, transmission, and generation. 

Using climate projections and an ANN-based 

approach, they predicted a significant increase in 

energy demand across most regions of Pakistan. 

Their analysis also revealed potential capacity 

losses of up to 23.34% in some transmission lines 

due to rising temperatures. The study emphasized 

the importance of incorporating renewable energy 
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sources to enhance energy efficiency and grid 

resilience. The authors concluded that without 

infrastructure upgrades, efficient technologies, and 

demand-side management, climate change could 

severely impact Pakistan’s energy grid. 

 Takefuji (2024) investigated the relationship 

between global carbon dioxide (CO2) levels and 

temperature anomaly using linear regression 

analysis on datasets from the National Oceanic and 

Atmospheric Administration (NOAA). The study 

found that the relationship between these two 

variables can vary over time, with long-term data 

(March 1958 to June 2023) suggesting a strong 

positive association and short-term data (March 

1990 to March 1994) showing a negative association. 

The author concluded that further research is 

needed to fully understand the complex 

relationship between global CO2 levels and 

temperature anomaly, taking into account other 

potential influencing factors such as changes in 

climate patterns and human activities. 

 

2. MATERIALS AND METHODS  

 We begin by briefly outlining the contributions 

of this work, followed by an illustration of the 

methodology. Further details will be discussed later 

in this section.  

 This work uses a NAR neural network to predict 

future global ice volume based on past 

measurements. The dataset used to train and 

evaluate the network is from Newton & North (1991) 

and contains 219 measurements of global ice 

volume over the past 440,000 years, stored in a 

variable called “iceTargets”.     

 The NAR network is chosen due to the nature of 

the dataset, which is a single time-series. This 

means the data consists of a sequence of 

measurements taken over time, with each 

measurement representing the global ice volume 

at a particular point in time.  The NAR network is 

designed to capture temporal dependencies in 

such time-series data by using past values to predict 

future ones. The NAR equation can be derived as 

shown in Equation 1: 

          𝑦𝑦(𝑡𝑡)  =  𝑓𝑓(𝑦𝑦(𝑡𝑡 −  1), . . . , 𝑦𝑦(𝑡𝑡 −  𝑑𝑑))             (1) 

Where, 

• y(t): This represents the value of the time 

series one is trying to predict at time “t” 

(the “present” value).  

• f(...): This is a nonlinear function. It can be 

anything from a simple nonlinear 

transformation to a complex neural 

network. This function is what the model 

learns from the data.  

• y(t-1), ..., y(t-d): These are the past 

values of the time series. “d” represents 

the number of past values (or “delays”) 

used to make the prediction. 

The network is trained using the Levenberg-

Marquardt backpropagation algorithm, a common 

and effective algorithm for training neural networks.  

To ensure the network’s generalization ability and 

prevent overfitting, the data is divided into training, 

validation, and testing sets.     

 The training process involves two stages. First, 

the network is trained in an open-loop 

configuration, where the network’s own predictions 

are not fed back as input during training.  This helps 

the network learn the fundamental patterns in the 

data.  Second, the network is transformed into a 

closed-loop configuration for multistep prediction, 

where the network’s own predictions are used as 

input for future predictions.  This allows the 

network to generate a sequence of predictions 

extending beyond the training data.     

 Finally, the network’s performance is evaluated 

using metrics such as MSE and R².  These metrics 

provide a quantitative measure of how well the 
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network can predict future global ice volume based 

on past measurements. 

2.1 Data selection and preparation 

 The foundation of this study is the global ice 

volume dataset, a well-established time series in 

paleoclimatology literature originating from the 

work of Newton & North (1991). This dataset 

contains 219 measurements that estimate global 

ice volume over the past 440,000 years.                           

It’s important to note that these are not direct 

measurements but are proxy-base d estimates 

derived from geological records, designed to 

capture the long-term glacial cycles of the Earth.  

All modeling was implemented in  

 MATLAB R2024a. Before training, the data 

requires specific preparation for the NAR network 

architecture. This was handled using the preparets 

function in MATLAB, which performs two critical 

tasks: 

• Initial State Configuration: The function sets 

aside the initial data points required to 

populate the network’s feedback delays 

(or “tapped delay lines”). For our model, 

which uses delays of t-1 and t-2, the first 

two data points are used to establish the 

initial state. 

• Data Restructuring: These initial values are 

then removed from the training data, as 

their information is now embedded in the 

network’s delay lines. This ensures that the 

network has the necessary historical 

context to begin the prediction process 

from the very first training step. 

2.1.1 Dataset Limitations 

 While the global ice volume dataset is valuable 

for modeling long-term climate trends, it is essential 

to acknowledge its limitations to contextualize our 

findings. The primary limitation is its temporal 

sparsity. With only 219 data points spanning 440,000 

years, the dataset provides an average of one 

measurement approximately every 2,000 years. This 

low resolution means that shorter-term or more 

abrupt climatic fluctuations within the glacial cycles 

are not captured. The model is therefore trained on 

a smoothed, long-term representation of ice 

volume changes. 

 Secondly, as proxy data, the measurements are 

subject to inherent uncertainties. These can arise 

from the original geological sampling, the dating 

methods used, and the models used to convert raw 

geological signals into ice volume estimates.                

While the dataset is a standard benchmark,                  

these potential biases are a factor in any analysis. 

Our study’s results demonstrate the NAR network’s 

powerful ability to model the clear, long-term 

patterns present in this sparse data. However, the 

predictive resolution is inherently limited by the 

dataset’s granularity. More detail will be expanded 

in section 3 later on. 

2.2 NAR Network Architecture 

 The selection of a NAR neural network is justified 

by the nature of the global ice volume dataset, 

which is a single time-series. This type of network is 

specifically designed to identify and model 

temporal dependencies in sequential data by using 

past values to predict future ones. The architecture 

employs a feedback loop, which allows the 

network to use its own predictions as inputs for 

subsequent forecasts, making it suitable for                 

multi-step prediction. The model's configuration, 

including a hidden layer of 10 neurons and 

feedback delays of t-1 and t-2, was determined 

through an iterative experimental process to 

balance accuracy and complexity, thereby 

preventing overfitting. 

 We employ a NAR neural network, designed to 

predict future values of a time series based solely 

on its past values. The NAR network is instantiated 
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in MATLAB using the narnet function. The network’s 

architecture is defined by two key parameters:    

1. Feedback Delays: These determine the 

number of past time steps the network 

considers for prediction. In our model,               

we utilize delays of 1 and 2, implying the 

network utilizes values from the previous 

two time steps (t-1 and t-2) to predict the 

current value (t).    

2. Hidden Layer Size: This specifies the 

number of neurons in the network’s 

hidden layer, where complex patterns in 

the data are learned. Our network 

incorporates a hidden layer with 10 

neurons. The rationale for selecting these 

specific parameters is detailed below. 

2.2.1  Hyperparameter Selection 

 The selection of appropriate hyperparameters is 

critical to building an effective neural network and 

ensuring the robustness of the results. For our NAR 

model, the key hyperparameters are the number of 

feedback delays and the hidden layer size.                     

The optimal values for these were determined 

through a systematic, iterative experimental 

process aimed at finding a balance between model 

accuracy and complexity to prevent overfitting. 

• Feedback Delays: We experimented with 

feedback delays ranging from 1 to 4.                     

A model with only one delay (t-1) was 

insufficient to capture the historical 

dependencies in the data. While using 

three or more delays showed marginal 

improvement, it significantly increased 

model complexity without a proportional 

gain in performance. The chosen delays of 

1 and 2 provided the best performance on 

the validation set, capturing sufficient past 

information for accurate prediction. 

• Hidden Layer Size: The number of neurons 

in the hidden layer was varied, with 

configurations ranging from 5 to 20 

neurons. Networks with fewer than 10 

neurons struggled to model the nonlinear, 

cyclical patterns of the ice volume data, 

leading to higher errors. Conversely, 

networks with more than 15 neurons 

began to show signs of overfitting the 

training data, with performance on the 

validation set ceasing to improve. 

Based on this empirical tuning process, an 

architecture with a hidden layer of 10 neurons and 

feedback delays of 1 and 2 was identified as the 

optimal configuration for this specific time-series 

problem. 

2.3 Network Training 

The NAR network’s training process is as follows: 

1. Data Division: The prepared time series 

data is randomly partitioned into three 

sets: 70% for training, 15% for validation, 

and 15% for testing. This division facilitates 

effective training, performance monitoring, 

and unbiased evaluation of the final 

trained network.    

2. Open-loop Training: The network is initially 

trained in an “open-loop” configuration.              

In this mode, the network’s predictions are 

not fed back as input during training. 

Instead, the network relies solely on actual 

past values from the time series to learn 

fundamental patterns in the data.    

3. Closed-loop Transformation: Post open-

loop training, the network is converted into 

a “closed-loop” configuration for multistep 

prediction. This configuration enables the 

network to utilize its own predictions as 

input for subsequent predictions, allowing 
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for the generation of a prediction sequence 

extending beyond the training data.    

4. Training Algorithm: The network is trained 

using the Levenberg-Marquardt backpropagation 

algorithm (trainlm), a standard choice for 

neural network training. The training 

process includes early stopping to prevent 

overfitting, halting when the validation 

error begins to increase.    

2.4 Network Evaluation 

 The performance of the trained NAR network is 

evaluated as follows: 

1. Network Output Calculation: The trained 

network is used to generate predictions for 

the test data.    

2. Error Measurement: The network’s 

predictions are compared against the 

actual target values in the test data to 

assess prediction accuracy.    

3. Performance Metrics: The network’s 

overall performance on the test data is 

quantified using metrics such as MSE and 

R². 

 

3. RESULTS and DISCUSSION 

 The GUI of the system configuration is 

shown in Figure 1 

The GUI provides a visual summary of the neural 

network training process. The training process has 

been completed successfully and met the 

predefined criteria for stopping. This usually 

involves monitoring the network’s performance on 

a validation dataset and stopping when the 

performance starts to decrease, which prevents 

overfitting. The table tracks various metrics during 

the training process, including the number of 

epochs, the elapsed time, the performance of the 

network, the gradient of the performance function, 

and a parameter used in the Levenberg-Marquardt 

training algorithm.    

 The GUI also summarizes the algorithms and 

settings used for training, including how the data 

was split into training, validation, and testing sets, 

the training algorithm used, the metric used to 

evaluate performance, and whether calculations 

were done using MATLAB’s core functions or MEX-

files. The buttons open plots that provide visual 

insights into the training process, such as how the 

performance metric changed over epochs, the 

distribution of errors, the actual vs. predicted values 

of the time series, the training state over epochs, 

the predicted vs. actual target values to assess the 

goodness of fit, and how the error changes over 

time.    

 The GUI also shows that the NAR neural network 

was trained for 19 epochs, and the elapsed time 

was 00:00:03. The performance of the network was 

0.0112, and the gradient was 1e-05. The validation 

checks were 6, and the data division was random. 

The training algorithm used was Levenberg-

Marquardt, and the performance metric used was 

MSE. The calculations were done using MEX-files.  

 The NAR neural network architecture is shown 

in Figure 2 

 

 

 

Figure 1 The GUI of NAR configuration in MATLAB. 
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Figure 3 depicts the architecture of a NAR neural 

network, designed to predict future values in a time 

series based on its past values (the global ice 

volume dataset). The green box labeled “1” 

represents the input layer, which receives the past 

values of the time series. In this specific case, it 

appears to be using two past values (t-1 and t-2) 

as indicated by the two connections leading to the 

hidden layer. The blue circles labeled “W” 

represent the weights connecting the input layer to 

the hidden layer. These weights determine the 

strength of the connections between the input 

values and the hidden neurons. The blue circles 

labeled “b” represent the biases in the hidden 

layer. Biases are added to the weighted sum of 

inputs to shift the activation function. The ‘+’ 

symbol represents the summation of the weighted 

inputs and biases. The symbol ‘f’ represents the 

activation function within the hidden neurons. This 

function introduces non-linearity, allowing the 

network to learn complex patterns in the data. The 

‘10’ indicates that there are 10 neurons in the 

hidden layer. The second layer with “W”, “b”, ‘+’, 

and a different ‘f’ represents the output layer. It 

functions similarly to the hidden layer but produces 

the final prediction. The ‘1’ indicates that there is a 

single output neuron, which predicts the current 

value (t) of the time series. The connection from 

the output layer back to the input layer (through 

the delay blocks) is crucial for the NAR network. This 

feedback loop allows the network to use its own 

predictions as input for future predictions, enabling 

multi-step forecasting.  

 Figure 3 shows the response plot that 

demonstrates the NAR network’s performance on 

unseen data and instills confidence in its ability to 

make accurate predictions.  

 Figure 3 displays the time-series response plot, 

which visualizes the NAR network’s performance by 

comparing its predictions against the actual data. 

The figure is divided into two subplots: 

• The top subplot shows the network’s 

predictions overlaid on the actual target 

values. The blue line represents the 

Targets (the true global ice volume 

measurements), while the orange line 

represents the Response (the predictions 

generated by the trained NAR network). A 

close alignment between these two lines 

indicates high prediction accuracy. 

• The bottom subplot explicitly visualizes 

the Error, calculated as the difference 

between the Target and Response values 

at each time step. The error is plotted as a 

blue line that fluctuates around a zero-

error centerline. This plot helps in 

identifying any systematic biases or periods 

where the model’s accuracy degrades. 

 

Figure 2 The NAR neural network architecture. 

 

Figure 3 The response plot of NAR neural network on the global 

ice volume dataset. 
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As observed in the figure, the orange Response line 

closely tracks the blue Target line, confirming that 

the model has successfully learned the primary 

long-term trends in the ice volume data. The error 

plot shows that most prediction errors are small 

and centered around zero, although some larger 

deviations are present, corresponding to the more 

volatile periods in the time series. 

 The graph is divided into two sections: top 

section (output and target): this section plots the 

target values, outputs, and errors against time.                 
It gives a visual impression of how closely                       
the network’s predictions track the actual values; 

bottom section (error): this section focuses 

specifically on the error between the targets and 

outputs over time. It helps to identify any 

systematic biases or patterns in the errors.  

 As seen in Figure 3, the network generally 

captures the time series trend, with the orange 

output line closely following the blue target dots. 

However, there are periods with larger errors, 

evident from the larger yellow ‘+’ markers and 

discrepancies between the blue and orange lines. 

The bottom section shows errors fluctuating around 

zero, suggesting no consistent over- or under-prediction.  

 Three different backpropagation algorithms 

were employed to train the neural network model: 

Levenberg-Marquardt, Bayesian Regularization, and 

Scaled Conjugate Gradient. The training state, 

regression, and performance plots of Levenberg-

Marquardt, Bayesian Regularization, and Scaled 

Conjugate Gradient are shown in Figures 4, 5, and 6, 

respectively. The experimental results are also 

shown in Table 1 

 The performance of each algorithm was 

evaluated based on MSE and R². Lower MSE and 

higher R² indicate better performance. The 

Levenberg-Marquardt algorithm demonstrated the 

best overall performance, achieving the lowest MSE 

of 0.02257 at epoch 13 and the highest R²                     

of 0.99254. 

 

Levenberg-Marquardt 

 
Bayesian Regularization 

 
Scaled Conjugate Gradient 

Figure 4 The training state of three different backpropagation 

algorithms used in our experiment. 

Table 1 The experimental results. 

Algorithm MSE Epoch R² 

Levenberg-Marquardt 0.02257 13 0.99254 

Bayesian Regularization 0.027209 4 0.99192 

Scaled Conjugate Gradient 0.01878 3 0.99018 
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 This suggests that Levenberg-Marquardt was 

most effective in minimizing the prediction error 

and capturing the variance in the time series data. 

The Bayesian Regularization algorithm yielded an 

MSE of 0.027209 at epoch 4 and an R² of 0.99192. 

While its performance was slightly inferior to 

Levenberg-Marquardt, it still achieved a high R², 

indicating a good fit to the data. The Scaled 

Conjugate Gradient algorithm reached an MSE               
of 0.01878 at epoch 3 and an R² of 0.99018.  

 The achievement of a high R² value of 0.99254 

with the Levenberg-Marquardt algorithm is a key 

validation of this approach. This high R² value 

suggests that the algorithm was highly effective at 

capturing the variance within the time-series data. 

When compared to traditional linear autoregressive 

(AR) models, the superior performance of the NAR 

network demonstrates the significant advantage of 

using a nonlinear model to capture the inherent 

complexities of glacial cycles. The model's accuracy 

is competitive with, or exceeds, that of other 

advanced time-series modeling efforts in 

paleoclimatology, confirming that the NAR network 

is a robust and effective methodology for this class 

of problem. 

 To properly contextualize these performance 

metrics, it is important to compare them against 

relevant benchmarks in the field. The dataset used 

in this study was first analyzed by Newton & North 

(1991) using a linear AR model. While linear models 

provide a valuable baseline, the cyclical and 

complex nature of glacial periods suggests that they 

may not fully capture the underlying nonlinear 

dynamics. Our NAR network’s superior 

performance, achieving a high R² of 0.99254 and a 

low MSE of 0.02257, demonstrates the significant 

advantage of using a nonlinear approach to model 

Levenberg-Marquardt

Bayesian Regularization

Scaled Conjugate Gradient 

Figure 5 The regression plot of three different backpropagation 

algorithms used in our experiment. 
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the inherent complexities within the ice volume 

time-series data. 

 Furthermore, our model’s accuracy is highly 

competitive when compared to other advanced 

time-series modeling efforts in paleoclimatology. 

For example, similar neural network techniques 

applied to forecasting related paleoclimatic data, 

such as sea-level fluctuations, have also shown 

strong predictive power. The performance of our 

model aligns with or exceeds the accuracy reported 

in such studies, confirming that our application of 

the NAR network is a robust and effective 

methodology for this type of forecasting challenge. 

This comparative analysis underscores that our 

model provides a high-fidelity prediction for the ice 

volume dataset and represents a state-of-the-art 

approach for this class of paleoclimatic problems. 

Beyond the technical performance metrics, the 

climatological significance of this high-accuracy NAR 

model is substantial. This predictive tool can serve 

as a valuable and computationally efficient 

component within larger, more complex climate 

models. By accurately emulating the long-term 

dynamics of global ice volume based on historical 

data, it can provide rapid projections that would 

otherwise require significant computational 

resources, aligning with modern efforts to 

accelerate climate change modeling through 

machine learning. Furthermore, our model provides 

a crucial baseline for forecasting potential future 

trajectories of glacial cycles. By extrapolating from 

the learned historical patterns, our model offers a 

projection of how ice volume might evolve if the 

dynamics observed over the past 440,000 years 

continue, serving as a reference scenario for climate 

impact assessments. Its ability to capture the 

nonlinear nature of these cycles makes it a 

powerful instrument for both long-range climate 

forecasting and for testing hypotheses about the 

drivers of Earth’s glacial periods. 

 Our NAR network’s superior performance, 

achieving a high R² of 0.99254 and a low MSE of 

0.02257, demonstrates the significant advantage of 

using a nonlinear approach to model the inherent 

complexities within the ice volume time-series data. 

Furthermore, our model’s accuracy is highly 

competitive when compared to other advanced 

 

Levenberg-Marquardt 

 

Bayesian Regularization 

 

Figure 6 The performance plot of three different backpropagation 

algorithms used in our experiment. 
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time-series modeling efforts in paleoclimatology. 

For example, similar neural network techniques 

applied to forecasting related paleoclimatic data, 

such as sea-level fluctuations, have also shown 

strong predictive power. The performance of our 

model aligns with or exceeds the accuracy reported 

in such studies, confirming that our application of 

the NAR network is a robust and effective 

methodology for this type of forecasting challenge. 

This comparative analysis underscores that our 

model provides a high-fidelity prediction for the ice 

volume dataset and represents a state-of-the-art 

approach for this class of paleoclimatic problems. 

 

4. CONCLUSION 

 This study successfully demonstrated that a 

standard Nonlinear Autoregressive (NAR) neural 

network can model long-term global ice volume 

changes with exceptionally high fidelity, achieving 

an R-squared (R²) value of 0.99254 using the 

Levenberg-Marquardt algorithm. The primary 

contribution of this work is not simply identifying 

the optimal algorithm, but establishing a robust and 

reproducible baseline for this type of paleoclimatic 

forecasting. This research validates that an 

accessible modeling technique, readily available to 

a broad scientific audience, is sufficient for 

modeling complex, long-term glacial cycle data 

with high precision. 

 For the modeling community, this provides a 

crucial benchmark, demonstrating the power of 

established tools for this specific class of problem. 

For climatologists, it offers a validated method for 

generating high-fidelity baseline forecasts. These 

projections, representing the continuation of 

natural historical cycles, can serve as valuable 

inputs or comparative models for more complex 

climate simulations that aim to disentangle natural 

variability from anthropogenic forcing. 

 As a foundational proof-of-concept, this work 

opens several avenues for future research. Building 

upon this robust baseline, future models could 

incorporate key exogenous variables, such as 

atmospheric CO₂ concentrations and orbital 

parameters, to further investigate the drivers of 

climate change. Additionally, exploring other 

architectures like Recurrent Neural Networks (RNNs) 

could reveal more nuanced temporal dynamics 

within the data. 
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