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ABSTRACT

A single time series prediction problem is solved with a neural network. The nonlinear autoregressive (NAR) type of
network is used. The network is trained in an open loop and then transformed to closed loop for multistep prediction. The
prediction is made 20 time steps into the future. The delay is removed from the network to get the prediction one time step
earlier. The shallow neural network is trained on the global ice volume dataset, which contains 219 measurements of global
ice volume over 440,000 years. The network is able to predict future ice volume based on past values with a high degree of
accuracy. Three different backpropagation training algorithms were used to train the network: Levenberg-Marquardt, Bayesian
Regularization, and Scaled Conjugate Gradient. The Levenberg-Marquardt algorithm achieved the lowest MSE (0.02257 at
epoch 13) and the highest R2 (0.99254). The Bayesian Regularization algorithm achieved an MSE of 0.027209 at epoch 4 and
an R? of 0.99192. The Scaled Conjugate Gradient algorithm achieved an MSE of 0.01878 at epoch 3 and an R? of 0.99018. This
work contributes to the field of climate studies by providing a tool for predicting future ice volume. This information can be

used to better understand Earth’s glacial cycles and to develop strategies for mitigating the effects of climate change.
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1. INTRODUCTION

Global ice volume has fluctuated significantly
over the past 440,000 years, with major implications
for Earth’s climate and sea level. Understanding
these fluctuations is essential for predicting future
climate change and its potential impacts on human
societies. This paper explores the use of shallow
neural networks for time-series prediction, focusing
on modeling global ice volume.

The objective of this study is to develop

a neural network model that can accurately predict
future global ice volume based on past values. The
model will be trained on the global ice volume
dataset, which contains 219 measurements of
global ice volume over 440,000 years. This single
time-series  prediction problem leverages the
network’s ability to learn patterns in historical
data. By analyzing past ice volume trends, the
network can forecast future changes, contributing
valuable insights to climate studies and our
understanding of Earth’s glacial cycles.
The neural network model will be trained using
three  different  backpropagation  algorithms:
Levenberg-Marquardt, Bayesian Regularization, and
Scaled Conjugate Gradient. The performance of the
models will be evaluated based on their mean
squared error (MSE) and R2.

The Levenberg-Marquardt algorithm achieved
the lowest MSE (0.02257 at epoch 13) and the
highest R? (0.99254). The Bayesian Regularization
algorithm achieved an MSE of 0.027209 at epoch 4
and an R? of 0.99192. The Scaled Conjugate
Gradient algorithm achieved an MSE of 0.01878 at
epoch 3 and an R? of 0.99018.

This paper is organized as follows: Section 2
describes the materials and methods used in this
study, including the global ice volume dataset and

the neural network model. Section 3 presents the

results of the experiments, including the training

state, MSE, and R? for each backpropagation
algorithm. We also discuss the implications of the
research findings for climate studies and our
understanding of Earth’s glacial cycles. Section 4
concludes the paper with a summary of the main
findings and suggestions for future research.

The study of using nonlinear autoregressive neural
network models for predicting oil-dissolved gas
concentrations has been proposed by Pereira et al.
(2018). The authors propose a hybrid model to
predict the concentration of gases dissolved in
transformer oil, which is crucial for monitoring
equipment health and diagnosing potential faults.
This model combines a Nonlinear Autoregressive
(NAR) neural network with the Discrete Wavelet
Transform (DWT). The DWT is first used to process
and simplify historical gas data, which is then fed
into the NAR network to forecast future gas
concentration values. Tested on seven months of
real-world data from a transformer in Brazil,
the proposed NAR-DWT model demonstrated high
accuracy and robustness, proving to be less
sensitive to training parameters like time delay and
the specific wavelet function used. The results
showed that this approach

outperformed other methods like GRNN, BPNN, and

significantly

SVM, with a prediction error for ethylene gas that
was approximately 70% smaller than the other
tested models. The study concludes that this
model serves as a reliable tool for fault diagnosis
systems, enabling the anticipation of failures
by providing accurate, multi-step ahead predictions
of gas levels.

Boussaada et al. (2018) presents a model for
predicting daily direct solar radiation specifically
designed to manage the power supply for a race
sailboat, an application where location is constantly
utilize a Nonlinear

changing. The authors

Autoregressive Exogenous (NARX) neural network
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that takes two primary inputs: a deterministic
component derived from a “clear sky” model that
accounts for the sun’s geometric position, and a
statistical component represented by predicted
cloud cover. A key finding is that the model
performs best when trained periodically—specifically,
once every day at midnight using a moving window
of the last 10 days of data. This daily retraining
strategy allows the model to adapt to the
sailboat’s changing coordinates and meteorological
conditions. After optimizing the network’s structure
to 15 neurons in the hidden layer and using specific
activation functions, the final predictor achieved
a Daily Mean of the Power Error (DMPE) of
24.0584 W/m?2, successfully forecasting the general
solar radiation curve.

Moreover, to aid in strategic planning for
sustainable energy systems, Adedeji et al. (2019)
addresses the challenge of forecasting energy
consumption, which is subject to hemispherical
seasonal patterns. The research employs a
non-linear autoregressive neural network (NARNET)
to predict daily energy usage across the four
campuses of a South African university, utilizing
three years of historical consumption data. A critical
component of the methodology involved
preprocessing the data with Singular Spectrum
Analysis (SSA) for filtering. The authors identified
three potential window lengths (L=54, 103, and
155) via periodogram analysis and compared their
impact on the network’s training performance. The
data filtered with a window length of =103
produced the best results, yielding R-values of
0.951, 0.983, 0.945, and 0.940 for campuses A, B, C,
and D, respectively. Following network validation,
a short-term forecast achieved accuracies of 85.87%
(Campus A), 75.62% (Campus B), 85.02% (Campus C),
and 76.83% (Campus D). The study concludes by

demonstrating the significance of data filtering as a

crucial step for improving the accuracy of forecasts
based on univariate autoregressive series.
It’s essential to understand how regional climates
will change under different human-caused emission
scenarios to help societies adapt and mitigate the
impacts (Mansfield et al., 2020). Traditional climate
models require immense computing power, posing
a major challenge. However, Mansfield et al. (2020)
proposed a solution: using machine learning.
Their innovative approach leverages a unique
dataset of existing climate model simulations to
identify connections between short-term and
long-term temperature responses under various
climate forcing scenarios. This method offers
a twofold advantage. First, it can speed up climate
change projections by reducing the computational
burden. Second, it helps identify early warning signs
of long-term climate responses, which is vital for
climate change detection, predictability, and
attribution. The research emphasizes the need for
increased data sharing between  research
institutions. By pooling resources to build larger
datasets, the scientific community can create even
more powerful climate response emulators.
This will lead to faster and more accurate climate
change projections. Such a collaborative approach
is crucial for navigating the challenges and
opportunities of data-driven climate modeling.

Baig et al. (2021) investigated hydro-meteorological
variables in the Chitral Basin of Pakistan to predict
climate  change

impacts on  temperature,

precipitation, humidity, and river flow using
observed data from 1990 to 2019. The researchers
employed statistical methods, including trend
variability analysis and regression models, to
analyze the relationships between these variables.
Their findings revealed an inverse relationship
between temperature and precipitation, with

temperature decreasing by 0.309 °C for every unit
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increase in precipitation. Temperature also showed
a negative correlation with humidity. Conversely,
precipitation positively influenced both humidity
and river flow. These results challenge the notion
that increased river flow in the Chitral Basin is
primarily due to glacial recession caused by rising
temperatures.

Zhou et al. (2021) investigated carbon dioxide
(CO2) emissions in China, focusing on identifying key
emission sources and driving factors to mitigate
global warming. The study utilized multiple linear
regression models to analyze data from 1990 to
2017, identifying the

energy industry, fuel

combustion in other industries, and industrial
processes as the primary CO2 emission sources. The
researchers developed driving force models for
each source, incorporating both quantitative and
qualitative factors. Their models predict a
continued decrease in CO2 emission intensity and
total emissions in China but emphasize the need
for greater efforts to meet the Paris Agreement
goals. The study highlights the importance of energy
structure adjustment, technological innovation, and
policy interventions in achieving significant CO2
emission reductions.

Cummins et al. (2022) addressed the statistical
validity of commonly used climate change
detection and attribution (D&A) methods. These
methods, based on Hasselmann’s “optimal
fingerprinting,” employ linear regression of historical
climate observations on climate model output,
raising concerns about spurious regression due to
the non-stationary nature of climate variables.
idealized

Using  an linear-response-model

framework, the authors demonstrated the
consistency of the optimal fingerprinting estimator
under standard assumptions, particularly for global
mean surface temperature (GMST). Analysis of

historical GMST observations and CMIP6 model

output supported these assumptions, indicating
that D&A of GMST trends is likely not spurious.
Furthermore, the study revealed “superconsistent”
properties of the least-squares estimator due to
cointegration between observations and model
output. This finding led to the development of
a new method for quantifying D&A uncertainty,
eliminating the need for pre-industrial control
simulations.

Duan et al. (2022) investigated temperature
trends in Australia using a joint model of quantile
regression and variability to analyze daily maximum
and minimum temperature data. This approach
accounts for heterogeneity in the data, including
quasi-periodic heterogeneity in variance, which has
often been overlooked in previous climate studies.
Their analysis revealed an overall warming trend of
approximately 0.21°C  per decade for daily
maximum temperatures and 0.13°C per decade for
daily minimum temperatures. Moreover, the study
identified nuanced spatial and temporal patterns of
change, varying across locations, seasons, and
temperature percentiles.
(2023)

Subhra et al investigated  the

effectiveness  of polynomial regression  for
predicting future temperatures and, consequently,
climate variation. Using a preprocessed dataset
from NASA’s Jet Propulsion Laboratory, the
researchers applied a polynomial regression model
to predict future temperatures. Their findings
demonstrate the efficacy of this approach,
achieving a 93.31% training accuracy and a 91.01%
testing accuracy. The authors suggest that this
prediction model can aid environmental agencies in
mitigating the impact of climate change and
forecasting extreme weather conditions.
They recommend further research incorporating

additional climate-influencing factors.
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Utami et al. (2023) investigated the impact of
climate change on heat stress in Indonesia,
measured by the Thermal Humidity Index (THI).
Recognizing the limitations of coarse-resolution
Earth System Models (ESMs), the researchers
employed  statistical downscaling  (SD) and
nonparametric regression to correct biases in
temperature and humidity projections from the
Coupled Model Intercomparison Project (CMIP5).
Their bias correction method achieved high
accuracy, with R-square values of 95% for relative
humidity and 94% for temperature. Based on THI
projections, the study found that 50% of the
Indonesian population will experience comfortable
conditions from 2006 to 2059, while uncomfortable
conditions are expected from 2060 to 2100, with
THI values ranging from 27.0730°C to 27.7800°C.

Wang and Xia (2023) reviewed the application of
quantile regression in addressing climate change.
Quantile regression, an extension of linear
regression, estimates the median or other quantiles
of the outcome variable, making it suitable for
analyzing data with non-normal residuals, outliers,
and heteroscedasticity. This approach is particularly
useful in climate change research as it allows for
the examination of relationships between variables
beyond the mean, capturing the impact of
unusually distributed outcomes and nonlinear
relationships.  The authors highlighted the
advantages of quantile regression in identifying
factors influencing variables at different quantiles
and their robustness against outliers. The review
emphasizes the potential of quantile regression in
advancing climate change research and provides
directions for future studies.

Chang et al. (2024) examined various methods
for extracting long-term temperature trends from
sea surface temperature (SST) data, including the

seasonal-trend decomposition procedure based on

loess (STL) and linear regression methods (ordinary

least square regression [OLSR], orthogonal
regression [OR], and geometric mean regression
[GMR]). STL was identified as the most accurate
method but computationally expensive. Linear
regression methods were more efficient, but GMR
was deemed unsuitable due to its assumption of
a random temporal component. OLSR and OR
required correction for seasonal signal-induced bias,
which could be achieved by trimming the SST data.
Grover and Sharma (2024) explored the use of ridge
regression to analyze rainfall trends and temporal
patterns, aiming to enhance the understanding of
precipitation dynamics. Ridge regression, an improved
regression technique, addresses multi-collinearity
and overfitting issues, thus improving the accuracy
of rainfall forecasting. The study examined rainfall
variations, considering the impact of climate change
parameters. The authors found that ridge
regression, by balancing bias and variance, led to
more robust and reliable rainfall predictions.
This research contributes valuable insights to
hydrology and climate science, emphasizing the
importance of accurate rainfall forecasting for
effective water resource management and climate
studies. The study highlights the potential of ridge
regression in  capturing complex temporal
processes, which could be applied to various
climate-related issues.

Malik et al. (2024) assessed the impact of
climate change on Pakistan’s energy sector,
focusing on demand, transmission, and generation.
Using climate projections and an ANN-based
approach, they predicted a significant increase in
energy demand across most regions of Pakistan.
Their analysis also revealed potential capacity
losses of up to 23.34% in some transmission lines
due to rising temperatures. The study emphasized

the importance of incorporating renewable energy
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sources to enhance energy efficiency and grid
resilience. The authors concluded that without
infrastructure upgrades, efficient technologies, and
demand-side management, climate change could
severely impact Pakistan’s energy grid.

Takefuji (2024) investigated the relationship
between global carbon dioxide (CO2) levels and
temperature anomaly using linear regression
analysis on datasets from the National Oceanic and
Atmospheric  Administration (NOAA). The study
found that the relationship between these two
variables can vary over time, with long-term data
(March 1958 to June 2023) suggesting a strong
positive association and short-term data (March
1990 to March 1994) showing a negative association.
The author concluded that further research is
needed understand  the

to  fully complex

relationship between global CO2 levels and
temperature anomaly, taking into account other
potential influencing factors such as changes in

climate patterns and human activities.

2. MATERIALS AND METHODS

We begin by briefly outlining the contributions
of this work, followed by an illustration of the
methodology. Further details will be discussed later
in this section.

This work uses a NAR neural network to predict
future global ice volume based on past
measurements. The dataset used to train and
evaluate the network is from Newton & North (1991)
and contains 219 measurements of global ice
volume over the past 440,000 years, stored in a
variable called “iceTargets”.

The NAR network is chosen due to the nature of
the dataset, which is a single time-series. This
means the data consists of a sequence of

measurements taken over time, with each

measurement representing the global ice volume

at a particular point in time. The NAR network is
designed to capture temporal dependencies in
such time-series data by using past values to predict
future ones. The NAR equation can be derived as
shown in Equation 1:
y@©) = fOyt = 1),...,y(t — d)) (1
Where,
® y(t): This represents the value of the time
series one is trying to predict at time “t”

(the “present” value).

® f(...): This is a nonlinear function. It can be

anything from a simple nonlinear

transformation to a complex neural
network. This function is what the model

learns from the data.

® y(t-1), ..., y(t-d): These are the past
values of the time series. “d” represents
the number of past values (or “delays”)
used to make the prediction.
The network is trained using the Levenberg-
Marquardt backpropagation algorithm, a common
and effective algorithm for training neural networks.
To ensure the network’s generalization ability and
prevent overfitting, the data is divided into training,
validation, and testing sets.

The training process involves two stages. First,
the network is trained in an open-loop
configuration, where the network’s own predictions
are not fed back as input during training. This helps
the network learn the fundamental patterns in the
data. Second, the network is transformed into a
closed-loop configuration for multistep prediction,
where the network’s own predictions are used as
input for future predictions. This allows the
network to generate a sequence of predictions
extending beyond the training data.

Finally, the network’s performance is evaluated
using metrics such as MSE and R?. These metrics

provide a quantitative measure of how well the
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network can predict future global ice volume based
on past measurements.
2.1 Data selection and preparation

The foundation of this study is the global ice
volume dataset, a well-established time series in
paleoclimatology literature originating from the
work of Newton & North (1991). This dataset
contains 219 measurements that estimate global
ice volume over the past 440,000 vyears.
It’s important to note that these are not direct
measurements but are proxy-base d estimates
derived from geological records, designed to
capture the long-term glacial cycles of the Earth.
All modeling was implemented in

MATLAB R2024a. Before training, the data
requires specific preparation for the NAR network
architecture. This was handled using the preparets
function in MATLAB, which performs two critical
tasks:

¢ |Initial State Configuration: The function sets
aside the initial data points required to
populate the network’s feedback delays
(or “tapped delay lines”). For our model,
which uses delays of t-1 and t-2, the first
two data points are used to establish the
initial state.

e Data Restructuring: These initial values are
then removed from the training data, as
their information is now embedded in the
network’s delay lines. This ensures that the
network has the necessary historical
context to begin the prediction process
from the very first training step.

2.1.1 Dataset Limitations

While the global ice volume dataset is valuable
for modeling long-term climate trends, it is essential
to acknowledge its limitations to contextualize our
findings. The primary limitation is its temporal

sparsity. With only 219 data points spanning 440,000

years, the dataset provides an average of one
measurement approximately every 2,000 years. This
low resolution means that shorter-term or more
abrupt climatic fluctuations within the glacial cycles
are not captured. The model is therefore trained on
a smoothed, long-term representation of ice
volume changes.

Secondly, as proxy data, the measurements are
subject to inherent uncertainties. These can arise
from the original geological sampling, the dating
methods used, and the models used to convert raw
ice volume estimates.

geological signals into

While the dataset is a standard benchmark,
these potential biases are a factor in any analysis.
Our study’s results demonstrate the NAR network’s
powerful ability to model the clear, long-term
patterns present in this sparse data. However, the
predictive resolution is inherently limited by the
dataset’s granularity. More detail will be expanded
in section 3 later on.
2.2 NAR Network Architecture

The selection of a NAR neural network is justified
by the nature of the global ice volume dataset,
which is a single time-series. This type of network is
specifically designed to identify and model
temporal dependencies in sequential data by using
past values to predict future ones. The architecture
employs a feedback loop, which allows the
network to use its own predictions as inputs for
subsequent forecasts, making it suitable for
multi-step prediction. The model's configuration,
including a hidden layer of 10 neurons and
feedback delays of t-1 and t-2, was determined
through an

iterative experimental process to

balance accuracy and complexity, thereby
preventing overfitting.

We employ a NAR neural network, designed to
predict future values of a time series based solely

on its past values. The NAR network is instantiated
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in MATLAB using the narnet function. The network’s
architecture is defined by two key parameters:

1. Feedback Delays: These determine the
number of past time steps the network
considers for prediction. In our model,
we utilize delays of 1 and 2, implying the
network utilizes values from the previous
two time steps (t-1 and t-2) to predict the
current value (r).

2. Hidden Layer Size: This specifies the
number of neurons in the network’s

hidden layer, where complex patterns in
network

the data are learned. Our

incorporates a hidden layer with 10
neurons. The rationale for selecting these
specific parameters is detailed below.

2.2.1 Hyperparameter Selection

The selection of appropriate hyperparameters is
critical to building an effective neural network and
ensuring the robustness of the results. For our NAR
model, the key hyperparameters are the number of
feedback delays and the hidden layer size.

The optimal values for these were determined

through a systematic, iterative experimental

process aimed at finding a balance between model

accuracy and complexity to prevent overfitting.

® Feedback Delays: We experimented with

feedback delays ranging from 1 to 4.

A model with only one delay (t-1) was

insufficient to capture the historical
dependencies in the data. While using
three or more delays showed marginal
improvement, it significantly increased
model complexity without a proportional
gain in performance. The chosen delays of
1 and 2 provided the best performance on
the validation set, capturing sufficient past

information for accurate prediction.

® Hidden Layer Size: The number of neurons
in the hidden layer was varied, with

configurations ranging from 5 to 20

neurons. Networks with fewer than 10

neurons struggled to model the nonlinear,

cyclical patterns of the ice volume data,

leading to higher errors. Conversely,
networks with more than 15 neurons
began to show signs of overfitting the
training data, with performance on the
validation set ceasing to improve.

Based on this empirical tuning process, an

architecture with a hidden layer of 10 neurons and

feedback delays of 1 and 2 was identified as the

optimal configuration for this specific time-series

problem.

2.3 Network Training

The NAR network’s training process is as follows:

1. Data Division: The prepared time series
data is randomly partitioned into three
sets: 70% for training, 15% for validation,
and 15% for testing. This division facilitates
effective training, performance monitoring,
and unbiased evaluation of the final
trained network.

2. Open-loop Training: The network is initially
trained in an “open-loop” configuration.
In this mode, the network’s predictions are
not fed back as input during training.
Instead, the network relies solely on actual
past values from the time series to learn
fundamental patterns in the data.

3. Closed-loop Transformation: Post open-
loop training, the network is converted into
a “closed-loop” configuration for multistep
prediction. This configuration enables the

network to utilize its own predictions as

input for subsequent predictions, allowing
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for the generation of a prediction sequence

extending beyond the training data.

4. Training Algorithm: The network is trained
using the Levenberg-Marquardt backpropagation
algorithm (trainlm), a standard choice for
neural network training. The training

process includes early stopping to prevent
overfitting, halting when the validation
error begins to increase.

2.4 Network Evaluation

The performance of the trained NAR network is
evaluated as follows:

1. Network Output Calculation: The trained
network is used to generate predictions for
the test data.

network’s

2. FError Measurement: The

predictions are compared against the
actual target values in the test data to
assess prediction accuracy.

3. Performance Metrics: The network’s

overall performance on the test data is

quantified using metrics such as MSE and

R2.

3. RESULTS and DISCUSSION
The GUI of the system configuration is

shown in Figure 1

| Network Diagram

Training Results

Training finished: Met validation criterion @

Unit Initial Value | Stopped Value
Epoch 0 19 1000
Elapsed Time - 00:00:03 -
Performance 3 00112 0

Target Value

Gradient 977 0.00828 1e-07
Mu 0.001 1e-05 1e+10

Validation Checks 0 6 6

Figure 1 The GUI of NAR configuration in MATLAB.

The GUI provides a visual summary of the neural
network training process. The training process has
been

completed successfully and met the

predefined criteria for stopping. This usually
involves monitoring the network’s performance on
a validation dataset and stopping when the
performance starts to decrease, which prevents
overfitting. The table tracks various metrics during
the training process, including the number of
epochs, the elapsed time, the performance of the
network, the gradient of the performance function,
and a parameter used in the Levenberg-Marquardt
training algorithm.

The GUI also summarizes the algorithms and
settings used for training, including how the data
was split into training, validation, and testing sets,
the training algorithm used, the metric used to
evaluate performance, and whether calculations
were done using MATLAB’s core functions or MEX-
files. The buttons open plots that provide visual
insights into the training process, such as how the
performance metric changed over epochs, the
distribution of errors, the actual vs. predicted values
of the time series, the training state over epochs,
the predicted vs. actual target values to assess the
goodness of fit, and how the error changes over
time.

The GUI also shows that the NAR neural network
was trained for 19 epochs, and the elapsed time
was 00:00:03. The performance of the network was
0.0112, and the gradient was 1e-05. The validation
checks were 6, and the data division was random.
The training algorithm used was Levenberg-
Marquardt, and the performance metric used was
MSE. The calculations were done using MEX-files.

The NAR neural network architecture is shown

in Figure 2
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Figure 2 The NAR neural network architecture.
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Figure 3 The response plot of NAR neural network on the global

ice volume dataset.

Figure 3 depicts the architecture of a NAR neural
network, designed to predict future values in a time
series based on its past values (the global ice
volume dataset). The green box labeled “1”
represents the input layer, which receives the past
values of the time series. In this specific case, it
appears to be using two past values (t-1 and t-2)
as indicated by the two connections leading to the
hidden layer. The blue circles labeled “W?”
represent the weights connecting the input layer to
the hidden layer. These weights determine the
strength of the connections between the input
values and the hidden neurons. The blue circles
labeled “b” represent the biases in the hidden
layer. Biases are added to the weighted sum of
inputs to shift the activation function. The ‘+’
symbol represents the summation of the weighted
inputs and biases. The symbol ‘f* represents the
activation function within the hidden neurons. This

function introduces non-linearity, allowing the

10

network to learn complex patterns in the data. The
‘10’ indicates that there are 10 neurons in the
hidden layer. The second layer with “W”, “b”, ‘+°,
and a different ‘f* represents the output layer. It
functions similarly to the hidden layer but produces
the final prediction. The ‘1’ indicates that there is a
single output neuron, which predicts the current
value (t) of the time series. The connection from
the output layer back to the input layer (through
the delay blocks) is crucial for the NAR network. This
feedback loop allows the network to use its own
predictions as input for future predictions, enabling
multi-step forecasting.

Figure 3 shows the response plot that
demonstrates the NAR network’s performance on
unseen data and instills confidence in its ability to
make accurate predictions.

Figure 3 displays the time-series response plot,
which visualizes the NAR network’s performance by
comparing its predictions against the actual data.
The figure is divided into two subplots:

e The top subplot shows the network’s
predictions overlaid on the actual target
values. The blue line represents the
Targets (the true global ice volume

measurements), while the orange line

represents the Response (the predictions

generated by the trained NAR network). A

close alignment between these two lines

indicates high prediction accuracy.

e The bottom subplot explicitly visualizes
the Error, calculated as the difference
between the Target and Response values
at each time step. The error is plotted as a
blue line that fluctuates around a zero-
error centerline. This plot helps in

identifying any systematic biases or periods

where the model’s accuracy degrades.
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Figure 4 The training state of three different backpropagation

algorithms used in our experiment.

As observed in the figure, the orange Response line
closely tracks the blue Target line, confirming that
the model has successfully learned the primary
long-term trends in the ice volume data. The error
plot shows that most prediction errors are small
and centered around zero, although some larger
deviations are present, corresponding to the more

volatile periods in the time series.

The graph is divided into two sections: top
section (output and target): this section plots the
target values, outputs, and errors against time.
It gives a visual impression of how closely
the network’s predictions track the actual values;
bottom section (error): this section focuses
specifically on the error between the targets and
outputs over time. It helps to identify any
systematic biases or patterns in the errors.

As seen in Figure 3, the network generally
captures the time series trend, with the orange
output line closely following the blue target dots.
However, there are periods with larger errors,
evident from the larger yellow ‘+’ markers and
discrepancies between the blue and orange lines.
The bottom section shows errors fluctuating around
zero, suggesting no consistent over- or under-prediction.

Three different backpropagation algorithms
were employed to train the neural network model:
Levenberg-Marquardt, Bayesian Regularization, and
Scaled Conjugate Gradient. The training state,
regression, and performance plots of Levenberg-
Marquardt, Bayesian Regularization, and Scaled
Conjugate Gradient are shown in Figures 4, 5, and 6,
respectively. The experimental results are also

shown in Table 1

The performance of each algorithm was
evaluated based on MSE and R2. Lower MSE and

higher R? indicate better performance. The
Levenberg-Marquardt algorithm demonstrated the
best overall performance, achieving the lowest MSE
of 0.02257 at epoch 13 and the highest R?

of 0.99254.

Table 1 The experimental results.

Algorithm MSE Epoch R?
Levenberg-Marquardt 0.02257 13 0.99254
Bayesian Regularization 0.027209 4 0.99192
Scaled Conjugate Gradient ~ 0.01878 3 0.99018
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Figure 5 The regression plot of three different backpropagation

algorithms used in our experiment.
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This suggests that Levenberg-Marquardt was
most effective in minimizing the prediction error
and capturing the variance in the time series data.
The Bayesian Resularization algorithm yielded an
MSE of 0.027209 at epoch 4 and an R? of 0.99192.
While its performance was slightly inferior to
Levenberg-Marquardt, it still achieved a high R?
indicating a good fit to the data. The Scaled
Conjugate Gradient algorithm reached an MSE
of 0.01878 at epoch 3 and an R? of 0.99018.

The achievement of a high R? value of 0.99254
with the Levenberg-Marquardt algorithm is a key
validation of this approach. This high R? value
suggests that the algorithm was highly effective at
capturing the variance within the time-series data.
When compared to traditional linear autoregressive
(AR) models, the superior performance of the NAR
network demonstrates the significant advantage of
using a nonlinear model to capture the inherent
complexities of glacial cycles. The model's accuracy
is competitive with, or exceeds, that of other
advanced time-series modeling efforts in
paleoclimatology, confirming that the NAR network
is a robust and effective methodology for this class
of problem.

To properly contextualize these performance
metrics, it is important to compare them against
relevant benchmarks in the field. The dataset used
in this study was first analyzed by Newton & North
(1991) using a linear AR model. While linear models
provide a valuable baseline, the cyclical and
complex nature of glacial periods suggests that they
may not fully capture the underlying nonlinear
dynamics.  Our  NAR  network’s  superior
performance, achieving a high R? of 0.99254 and a
low MSE of 0.02257, demonstrates the significant

advantage of using a nonlinear approach to model
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Figure 6 The performance plot of three different backpropagation

algorithms used in our experiment.

the inherent complexities within the ice volume
time-series data.

Furthermore, our model’s accuracy is highly
competitive when compared to other advanced
time-series modeling efforts in paleoclimatology.
For example, similar neural network techniques
applied to forecasting related paleoclimatic data,

such as sea-level fluctuations, have also shown
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strong predictive power. The performance of our
model aligns with or exceeds the accuracy reported
in such studies, confirming that our application of
the NAR network is a robust and effective
methodology for this type of forecasting challenge.
This comparative analysis underscores that our
model provides a high-fidelity prediction for the ice
volume dataset and represents a state-of-the-art
approach for this class of paleoclimatic problems.

Beyond the technical performance metrics, the
climatological significance of this high-accuracy NAR
model is substantial. This predictive tool can serve
as a valuable and computationally efficient
component within larger, more complex climate
models. By accurately emulating the long-term
dynamics of global ice volume based on historical

data, it can provide rapid projections that would

otherwise  require  significant  computational
resources, aligning with modern efforts to
accelerate climate change modeling through

machine learning. Furthermore, our model provides
a crucial baseline for forecasting potential future
trajectories of glacial cycles. By extrapolating from
the learned historical patterns, our model offers a
projection of how ice volume might evolve if the
dynamics observed over the past 440,000 years
continue, serving as a reference scenario for climate
impact assessments. Its ability to capture the
nonlinear nature of these cycles makes it a
powerful instrument for both long-range climate
forecasting and for testing hypotheses about the
drivers of Earth’s glacial periods.

Our
achieving a high R? of 0.99254 and a low MSE of

NAR network’s superior performance,
0.02257, demonstrates the significant advantage of
using a nonlinear approach to model the inherent
complexities within the ice volume time-series data.
model’s accuracy is highly

Furthermore, our

competitive when compared to other advanced
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time-series modeling efforts in paleoclimatology.
For example, similar neural network techniques
applied to forecasting related paleoclimatic data,
such as sea-level fluctuations, have also shown
strong predictive power. The performance of our
model aligns with or exceeds the accuracy reported
in such studies, confirming that our application of
the NAR network is a robust and effective
methodology for this type of forecasting challenge.
This comparative analysis underscores that our
model provides a high-fidelity prediction for the ice
volume dataset and represents a state-of-the-art

approach for this class of paleoclimatic problems.

4. CONCLUSION

This study successfully demonstrated that a
standard Nonlinear Autoregressive (NAR) neural
network can model long-term global ice volume
changes with exceptionally high fidelity, achieving
an R-squared (R?) value of 0.99254 using the
Levenberg-Marquardt  algorithm. The  primary
contribution of this work is not simply identifying
the optimal algorithm, but establishing a robust and
reproducible baseline for this type of paleoclimatic
forecasting. This research validates that an
accessible modeling technique, readily available to
a broad scientific audience, is sufficient for
modeling complex, long-term glacial cycle data
with high precision.

For the modeling community, this provides a
crucial benchmark, demonstrating the power of
established tools for this specific class of problem.
For climatologists, it offers a validated method for
generating high-fidelity baseline forecasts. These
projections, representing the continuation of
natural historical cycles, can serve as valuable
inputs or comparative models for more complex
climate simulations that aim to disentangle natural

variability from anthropogenic forcing.
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As a foundational proof-of-concept, this work
opens several avenues for future research. Building
upon this robust baseline, future models could

incorporate key exogenous variables, such as

atmospheric  CO3 concentrations and orbital

parameters, to further investigate the drivers of

climate change. Additionally, exploring other

architectures like Recurrent Neural Networks (RNNs)
could reveal more nuanced temporal dynamics

within the data.
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