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ABSTRACT

This paper proposes an explicit formula for calculating the average run length (ARL) of an exponentially weighted moving
average (EWMA) control chart for monitoring process mean shifts. The study focuses on the AR(1) model with quadratic trends,
because this model combines two essential components in time series analysis including the autocorrelation and long-term trend
analysis. It is useful for producing accurate and insightful data predictions. Additionally, it is used in various contexts such as economic
forecasting, financial analysis, and environmental studies. Furthermore, the study presents a technique for estimating the ARL using
the numerical integral equation (NIE) method. This enables a comparison between the results of the explicit formula and the numerical
integral equation method. The two ARL solutions obtained from the explicit formula and numerical integral equation method are very
similar identical with an absolute percentage difference of less than 0.001. Thereby, the explicit formula accurately corresponds to the

NIE method. Additionally, the explicit formulas are more computationally efficient as they require fewer computations compared to

the NIE approach
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1. INTRODUCTION

Control charts are important tools for statistical process
control. In 1931, Shewhart introduced the Shewhart
control chart, which is used to detect a large shift in the
process mean or variance. It is especially effective when
the observations have a normal distribution (Shewhart,
1931). Subsequently, Page introduced the Cumulative
Sum (CUSUM) control chart. It is adept at identifying
small shifts in statistical parameters and complex patterns
like autocorrelation (Page, 1954). Recently, Robert
proposed the exponentially weighted moving average
(EWMA) control chart (Robert, 1959). The CUSUM
and EWMA control charts are more effective in
identifying small changes and complex patterns within
processes, whereas the Shewhart control chart is effective
in detecting large shifts.

Statistical quality control techniques will be used in this

research to manage process variability. In general, the

effectiveness of control chart research frequently depends
on an initial assumption that the data has a normal
distribution. However, in many real-world scenarios,
data usually displays a time series trend. Therefore, for
efficient process change monitoring, choosing a suitable
control chart is important. Therefore, the average run
length (ARL) of EWMA control charts is of interest to
the researchers, and they are working on creating a
precise formula and estimation technique for it.

The ARL is a critical metric for assessing control chart
effectiveness in detecting shifts in process mean. It
represents the average number of subgroups needed
before a control chart detects an out-of-control process.
ARL comprises two components: ARL,, the average
number of samples from a stable process before a false

out-of-control signal, and ARL,, the average number
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of samples within control limits before an out-of-
control signal is triggered.

Three common methods for estimating the ARL are
Monte Carlo simulations (MC), Markov Chain approach
(MCA), and Integral Equation approach (IE). Roberts
(1959) used the MC method to calculate the ARL for
the EWMA control chart, which is useful for validating
analytical results but can be time-consuming. Crowder
(1987) introduced a numerical procedure for EWMA
run length computation, extending to non-normal cases
and one-sided EWMA control charts. Later, Lucas and
Saccucci (1990) showed that the EWMA control scheme,
used to monitor process mean shifts by using the MCA
method. They proposed a design procedure for EWMA
control chart with different parameter values that can
efficiently detect small shifts in a process. The limitations
of both MCA and MC methods have caused researchers
to reconsider their research on the IE approach. Analytical
solutions for average delay and ARL on EWMA control
charts with observations of exponential distribution were
proposed by Areepong and Novikov (2009). After that,
Mititelu et al. (2010) used the Fredholm integral
equations to derive explicit formulas for ARL in special
control charts like CUSUM and EWMA, requiring
fewer computations.

Control charts are commonly formulated assuming
observations are independent and identically distributed.
When a process displays indications of autocorrelation,
it becomes essential to make use of specialized control
charts. Vanbrackle and Reynolds (1997) discovered that
correlation has a significant impact on the ARL and
steady state ARL of EWMA and CUSUM control charts,
even though independence is assumed in control chart
evaluation. They provided numerical evaluations for
control chart design using integral equation and MCA
methods. Busaba et al. (2012) proposed the numerical
integral equation (NIE) method to approximate the ARL,
and ARL, in the CUSUM procedure. They used the first
order autoregressive (AR(1)) model with exponential
white noise, which showed an excellent agreement
between the NIE method and the explicit formula. Later,
Petcharat et al. (2013) used a moving average (MA)
model to provide explicit formulas of ARL for EWMA

and CUSUM control charts. Phanyaem (2022) used
the IE and NIE methods to evaluate the ARL of the
CUSUM chart on the SARX(P,r), model. The Fredholm
integral equation was employed, and NIE methods like
the midpoint rule, the trapezoidal rule, Simpson’s rule,
and the Gaussian rule were used to approximate the
ARL. Recently, Petcharat (2022) constructs the ARL
for a CUSUM control chart using the Fredholm integral
equation approach and Banach's Fixed Point theorem to
ensure the solution’s existence and uniqueness based on
SAR(P), with the trend process. Subsequently, Karoon
and Areepong (2023) confirmed the efficacy of the
double exponential weighted moving average (DEWMA )
control chart in monitoring process quality by creating
an explicit ARL formula using an autoregressive model
with trend. Furthermore, Karoon et al. (2023) studied
the ARL of the double exponentially weighted moving
average (double EWMA) control chart for observational
data following exponential white noise in a time series
model with an autoregressive process. Supharakonsakun
and Areepong (2023) developed a double exponentially
weighted moving average (DEWMA) control chart to
detect small shifts in a moving average of order ¢ (MA(q))
process with exponential white noise. Karoon et al. (2024)
show the effectiveness of the extended exponentially
weighted moving average (EEWMA) control chart in
detecting small shifts, particularly when the observations
are autocorrelated with exponential white noise, using
explicit formulas for the ARL. Recently, Sunthornwat et
al. (2024) developed a specific formula for the ARL for
the autoregressive process with a quadratic trend on a
modified exponentially weighted moving average (EWMA)
control chart. Most recently, Phanthuna et al. (2024)
presented a double-modified exponentially weighted
moving average (DMEWMA) chart for an autoregressive
(AR) process.

In this paper, we propose the explicit formula for ARL
of the EWMA control chart for an AR(1) with quadratic
trend model. This paper presents a new contribution that
has not been explored before. The proposed ARL of the
EWMA control chart is compared with NIE approaches.
The paper is structured as follows: Section 2 explains

the materials used; Sections 3 and 4 describe the methods
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employed; Section 5 presents the proposed method’s

results, and Section 6 provides concluding remarks.

2. MATERIALS AND METHODS

This section explains the features of AR(1) with quadratic
trend model, which is used on the EWMA control chart
for monitoring process mean shifts. The last section
examines the characteristics of the ARL that are essential

to the assessment of control chart performance.

2.1 AR(1) with Quadratic Trend model

The AR(1) with quadratic trend model is a time series
model that combines the AR(1) model with quadratic
trend component. In time series analysis, it is common
to assume that white noise follows a normal distribution.
However, the choice of using an exponential distribution
or other types of distributions for error terms depends
on the characteristics of the data being studied. In this
case, we are assuming that the white noise follows an
exponential distribution. An exponential distribution for
the white noise error term is important when the time
series data or the underlying process is inherently non-
negative. The model analyzes the serial correlation of
time series data using AR model and quadratic trend;
coefficients C, ¢, B, and f, are estimated statistically using
techniques such as maximum likelihood estimation.

An AR(1) model with quadratic trend can be represented

by equation (1).

Y=c+gY +ft+ 4t +¢;t=12,. (1)
where C is a suitable constant, ¢ is an autoregressive
coefficient, f, is a linear coefficient, f, is a quadratic
coefficient, t is the times and ¢ is the exponential
white noise sequence of independent and identically

distributed random variables.

2.2 EWMA Control Chart

An EWMA control chart is a statistical tool used in
process control to monitor the mean or variance of a
process over time, an alternative to conventional control
charts like the Shewhart control chart. The EWMA
statistic is calculated as a weighted average of the current
observation and the previous EWMA statistic. It provides
more weight for current observations, making it sensitive

to changes or trends in the process.

The EWMA statistic is represented by equation (2).
E = 1-A)E_+AY,;t=1.2,.. (2)

where E, , is a previous EWMA statistic and 4 is an

exponential smoothing parameter with 0<A<1.

The upper and lower control limits of the EWMA control

chart are as follows:

7 7
UCL = u+L f— LCL= u-L /—
TN H=9N222

where 4 and O are the mean and standard deviation of

the process and L is a suitable control width limit.

3. INTEGRAL EQUATION METHOD

In this section, we derive analytical formulas for ARL
using the Fredholm Integral Equation of the second kind.
The lower and upper control limits are determined as zero
and b respectively. The function H (u) is defined as the
ARL of EWMA control chart for the AR(1) with quadratic
trend model.

ARL=H(u) = E_(ry) <.

where 7, =inf {t>0;E, >b},b>u.

The function H (u) is extended into the Fredholm Integral
Equations of the second kind.

H(u) =1+E.[I{0< E, <b}H(E)]+ P.{E,= O}H(0).
Where P represents the probability measure and E
represents the expectation corresponding to the initial value
of E,=u.

The EWMA statistics E; represents a state of being in-

control, which can be visualized as equation (3)

0< (A-A)E,+Ac+ AgY_, + 1Bt + AB,t7 <h. (3)
In the event that Y, produces an out-of-control state
for E,, then

(1-A)E,+AC+ AgY,_, + ABt+ 15,12 > b. (4)
or 1-A)E, + Ac+AgY,, + ABt+ AB,t* <O0.

For an initial value E; = U, then equation (4) can be

rewritten as follows:
0< A-A)u+Ac+AdY  +ABt+ Bt <b.
Following Champ and Rigdon’s method (1991), the

initial value E, =u, and ¢ U Exp(e). The function

H (u) can be rewritten as follows:
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H(u) :1+i H(E,) f (¢)dé,. (5)
=1+ Ioh H(A-A)u+Ac+AgY,, + Aft+ ﬁﬂztz)f (2)dz.

Equation (5) is changed the variable of integration, then

H (u) is obtained as:

H(u) =1+%.:[H(z)f (Lﬂ]—c—qﬁ\(,_l—m—ﬁyjdz.

b i{zf(lfﬂ)u
:l+£IH(Z) 1e a
/10 a

2 _C_¢YH _ﬂlt_ﬂztz }

dz.

The Fredholm Integral Equation of the second kind can
be derived as follows:
b Lz {(1—/1)11 +(‘:Jr(p\(l,ﬁﬂltht?)}
Hu)= 1+E£H(z)e dagl Aa @ dz

{(H)u L(c+¢Yt,1+ﬁ1t+ﬁztz)}
If we assume that C(u)=¢e ra “ )
then we can rewrite the equation as follows:

cw)b _r
H(u)=1+£fH(z)e Aadz, 0<u<b.
Aa 0

b -z
Let k = IH (2)e 4adz, then we have

0
H(u) = 1+%k. (6)
Aa
For solving k we obtain
b _z
k =jH(z)e Aa gz
0
b _z
= I(1+LC(z)je Aa iz
0 Aa

b _Z bC _z
.[e radz + Iﬂke Aadz
0 0 Ao

b z b z

= Ie_ﬁdz +LJ.C(z)e_Edz
Aa
0 0
b _ 2 ARV ALY A -z_z
= _fe Aadz +— e a Ie Ao Aadz
0 Aa 0
b cHY+BH B _z
= —dae 42 1)+ —e @ e @dz
( ) Aa I
0
b c+Y BB b
=—dla(e ** -1)—- —e a (ex -1.

A

As a result, the following formula can be utilized to

determine a constant K :
_b
—ia(e Aa —1) (7)
crg¥ Bt b '
1+=e @ (e -1
A

Next, substitute equation (7) into equation (6) to derive

the explicit formula of ARL for the AR(1) with quadratic

trend model.
@-Au b
Aa Aa _
H(u)= 1- Ae (e 2 1
B C+oY,_ +St+ 55t _E
Ae a +(e 2 -1

If the exponential parameter (¢r) is determined with ¢,
before the start of the process, then the ARL is called
ARL,. Similarly, if the exponential parameter (&) is
assigned to o, = ¢y (1+ ), where ¢, > ¢, and 0 is the
shift sizes in an out-of-control process, then the ARL

is called ARL,.

The ARL solution demonstrates the uniqueness of the
integral equation for explicit formulas using Banach's
Fixed-point Theorem. The theorem applies to a metric
space consisting of continuous functions on a closed
interval (C(1),||]|,) where I denote the compact interval.
The norm ||H||,,= Sup,,|H (u)| and the operator T are
defined on this space. If there exists a number 0<¢ <1
such that the operator T is a contraction, then the theorem

holds true
||T(H1)—T(H2)||w £q||H1—H2|| for all Hy,H, €l.

Let C(l;) as a continuous function on I; =[0,b] and

define the operator T as

{(H)u ‘ <c+¢n,1+ﬁ1t+ﬁzt2)}b z
T(HW) = L+-el 2 “ [H@)e 4adz.
la
0
According to the Banach Fixed Point Theorem, if the

operator T is a contraction, then fixed point equations
T(H(u))=H(u) has a unique solution. So, in this case,
if T is a contraction, then the integral equation can be
written asT( H(U))Z H(u), and it will have a unique

solution.
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Theorem: Banach’s Fixed-point Theorem

In the complete metric space (X,d) where T : X — X
is a mapping satisfying the criteria of a contraction
mapping with contraction constant (<1 such that
||T(H1) —T(H2)||OO < q"Hl - H2||,there is a unique function
H()e X for which T(H())=H(u) has a unique
fixed point in X.

Proof:

For any given U € | and H;,H, e C(l), we have the
inequality "T(Hl)_T(Hz)"w < CI||H1— H2|| where g < 1.

According to (11), we obtain

[T (H) =T (H,)[, = Sup, o, [H:(2) - H. (@)

(1-Au Y +Bt+ Bt

z

e Aa b “a
:SUPUE[O,b] da g(Hl(Z)*HZ(Z))e *dz
(-2 __c+dY + B+t
: b 2
e Aa o
< Sup J'e Aedz|[Hy —Ho|,
ue[0,b] Ao 0
(-2 _c+fY +ptHpt b
< Sup 1e %a @ (A-e 2@)[Hy - Hy|,
ue[O,b]
< QHHliHZHw’
Q-2 Y +B+p b
where q= Sup |e 4« @ (1-e 4o)|<l.

uef0,b]

4. NUMERICAL INTEGRATION METHOD

The section addresses the numerical integration of ARL
of the EWMA control chart for AR(1) with quadratic
trend model. We will use Gauss-Legendre Quadrature rule
to approximate the ARL integral equation. Consequently,
the following H(u) can be used to define the integral

equation in (5).

A () :1+%3H(z)f [ﬁ—c—qﬁ H—ﬂlt—ﬂztszz.

The quadrature rule is a mathematical method that allows
for the numerical integration of integral equations using
finite sums. The approximation for an integral has the

following form:

b m
JW(z)f(z)dz:ijf(aj).
0 j=1

The numerical approximation H(a)is used to solve the

integral equation through a linear algebraic method.

1-2)a

I:l(al)z1+%iwjl:|(aj)f(a"_ S —c—¢YH—,Blt—ﬁ2t2].

Thus,

- IS S a,-(1-A)a
H(a1)~1+l;WjH(a’)f[/1

_C_¢Yl—l _At_ﬂztz}'

- n - —-1-4
H (8.2) zl+%ZWJH (aj)f [%‘C—Wﬂ _lglt _ﬁztz]'
H(a,) zl+%iij~(aj)f [a‘_(lﬂ_l)a”‘—c—qﬁ\(u —ﬂlt—ﬂztz].
It can be rewritten in matrix form.
mel = (Im - Rmxm)illmxl'
H(a,)
where  H,_, = 4 (.aZ) v L =
H(a,) 1
a—(@1-21)a
and [R]ij ~ %Wj f (%_C_¢Yu _ﬂ1t_ﬂztzj'

The numerical integral equation for the ARL of the

EWMA control chart is provided below.

PR T S a,-(1-Au
H(u)~l+ﬂ;WjH(aj)f[l

_C_¢ 11_ﬁ1t_ﬂztzj'

5. NUMERICAL RESULTS
The study analyzed the explicit formulas and the NIE
approach used for detecting changes in the process mean
on an EWMA control chart for AR(1) with a quadratic
trend model. It compared the findings obtained through
numerical integration, especially the absolute percentage
difference, with the accuracy and reliability of ARL
values calculated from explicit formulas. The absolute
percentage difference of ARL can be calculated by
|H (u)-H )
H(u)

Diff (%) = %100,

Tables 1 through 6 display the numerical results for
ARL, = 370. The ARL, of the EWMA control chart
for the AR(1) with a quadratic trend model was analyzed
using two different methods: the explicit formula and the
NIE method. The analysis used an EWMA control chart
and determined an exponential smoothing parameter

(4 =0.10,0.15). In-control state: exponential parameter
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of white noise process (a,) = 1. Out-of-control state:
(a,) ranges from 1.01, 1.03, 1.05, 1.10, 1.20, 1.30,
1.40, 1.50 and 2.00, respectively. The study examined
AR(1) with quadratic trend model when the autoregressive
coefficient parameter (¢) = 0.10, 0.20 and 0.30. The
linear (f,) and the quadratic (f,) coefficients parameter;
(p,=0.20, 8, =0.30), (B, =0.30,4, =0.50), and (4, =0.50,
f, =0.80), respectively. The comparison analysis showed
that the ARL values obtained by the explicit formula
and the NIE methods were highly similar. It is important
to mention that the absolute percentage difference of
ARL calculated resulted in a value of zero, which
suggests that there was no noticeable difference between
the ARL values derived from both methods. However,
the CPU time of the explicit formula is faster than the
NIE method by around 1-2 seconds.

Table 1 ARL for the explicit formulas and the NIE method on EWMA control
chart for AR(1) with quadratic trend model with a, =1, A=0.10,¢=0.10,

3, =0.20, 8, =0.30, b=0.00242 and ARL, = 370.283

a, Explicit NIE
ARL CPU time ARL CPU time
1.01 333.273 0.001 333.273 2.199
1.03 271.597 0.001 271.597 2.247
1.05 223.023 0.001 223.023 2.278
1.10 140.524 0.001 140.524 2.184
1.20 62.5586 0.001 62.5586 2.246
1.30 31.6155 0.001 31.6155 2.152
1.40 17.7351 0.001 17.7351 2.278
1.50 10.8692 0.001 10.8692 2.309
2.00 2.48567 0.001 2.48567 2.246

Table 2 ARL for the explicit formulas and the NIE method on EWMA control
chart for AR(1) with quadratic trend model with ¢, =1, 4 =0.15, ¢ =0.10,

8, =0.20, 3, =0.30, b=0.05016 and ARL, = 370.006

a, Explicit NIE
ARL CPU time ARL CPU time
1.01 337.264 0.001 337.264 2.309
1.03 282.224 0.001 282.224 2.231
1.05 238.224 0.001 238.224 2.230
1.10 161.300 0.001 161.300 2.324
1.20 82.9552 0.001 82.9552 2.231
1.30 47.9105 0.001 47.9105 2.247
1.40 30.1893 0.001 30.1893 2.138
1.50 20.3680 0.001 20.3680 2.325

2.00 5.564718 0.001 5.54718 2.262

Table 3 ARL for the explicit formulas and the NIE method on EWMA control
chart for AR(1) with quadratic trend model with ¢, =1, 2 =0.10, ¢ = 0.20,

B, =0.30, 3, =0.50, b= 0.001615 and ARL, = 370.059

Q, Explicit NIE
ARL CPU time ARL CPU time
1.01 331.688 0.001 331.688 0.609
1.03 268.137 0.001 268.137 0.578
1.05 218.49 0.001 218.49 0.531
1.10 135.226 0.001 135.226 0.438
1.20 58.3912 0.001 58.3912 0.406
1.30 28.8007 0.001 28.8007 0.328
1.40 15.8592 0.001 15.8592 0.453
1.50 9.59491 0.001 9.59491 0.344
2.00 2.20971 0.001 2.20971 0.500

Table 4 ARL for the explicit formulas and the NIE method on EWMA control
chart for AR(1) with quadratic trend model with ¢, =1, 2 =0.15, ¢ = 0.20,

,=0.30, 4, =0.50, b= 0.03270 and ARL, = 370.097

a, Explicit NIE
ARL CPU time ARL CPU time
1.01 334.368 0.001 334.368 1.890
1.03 275.320 0.001 275.320 1.843
1.05 229.104 0.001 229.104 1.781
1.10 150.532 0.001 150.532 1.828
1.20 74.1248 0.001 74.1248 1.953
1.30 41.5329 0.001 41.5329 1.890
1.40 25.6008 0.001 25.6008 1.828
1.50 16.9977 0.001 16.9977 2.328
2.00 4.52274 0.001 4.52274 1.812

Table 5 ARL for the explicit formulas and the NIE method on EWMA control
chart for AR(1) with quadratic trend model with ¢, =1, 1 =0.10, ¢ = 0.30,

B, =050, 5, =0.80, b= 0.000884 and ARL, = 370.395

a, Explicit NIE
ARL CPU time ARL CPU time
1.01 329.93 0.001 329.93 1.859
1.03 263.526 0.001 263.526 1.765
1.05 212.276 0.001 212.276 1.625
1.10 127.923 0.001 127.923 1.734
1.20 52.7900 0.001 52.7900 1.875
1.30 25.1230 0.001 25.1230 1.859
1.40 13.4700 0.001 13.4700 1.891
1.50 8.00802 0.001 8.00802 1.875
2.00 1.89231 0.001 1.89231 1.750
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Table 6 ARL for the explicit formulas and the NIE method on EWMA control
chart for AR(1) with quadratic trend model with ¢, =1, 2 =0.15, ¢ = 0.30,

B.=0.50, 5, =0.80, b= 0.01750 and ARL, = 370.087

a, Explicit NIE
ARL CPU time ARL CPU time

1.01 330.059 0.001 330.059 2.000
1.03 265.537 0.001 265.537 1.843
1.05 216.521 0.001 216.521 1.828
1.10 136.464 0.001 136.464 1.687
1.20 63.3354 0.001 63.3354 1.875
1.30 34.0676 0.001 34.0676 1.766
1.40 20.3922 0.001 20.3922 2.172
1.50 13.2606 0.001 13.2606 1.906
2.00 3.46240 0.001 3.46240 1.859
§ J
§ J
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[Tg=g
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=
o
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Figure 1 Comparison of ARL, of EWMA control charts under AR(1) with

quadratic trend model (¢=0.10, 3 =0.20, 8, =0.30) when 1 =0.10 and 0.15
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Figure 2 Comparison of ARL, of EWMA control charts under AR(1) with

quadratic trend model (¢=0.20, 8, =0.30, 8, =0.50) when 2=0.10 and 0.15
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Figure 3 Comparison of ARL, of EWMA control charts under AR(1) with

quadratic trend model (¢=0.30, 8, =0.50, 3, =0.80) when 1=0.10 and 0.15

6. DISCUSSION

The study aimed to calculate the ARL value to detect
process mean shifts in an AR(1) with quadratic trend
model, using explicit formulas and the NIE method.
Establishing the existence and uniqueness of the ARL
is crucial for ensuring the accuracy and reliability of any
statistical analysis. The validation of explicit formulas
has proven beyond doubt that the ARL can be calculated
with precision, providing a solid foundation for making
informed decisions and driving positive outcomes. This
study provides valuable insights into the effectiveness
of ARL analysis for monitoring mean shifts. By comparing
explicit formulas and the NIE method, the study
highlights the benefits and limitations of each approach.
This research can help organizations make informed
decisions about which method to use in their own
monitoring processes. A numerical investigation was
conducted to determine the in-control ARL for different
parameter configurations and levels of process mean
shift. The results showed that there was no significant
difference between the absolute percentage difference of
the ARLs derived from explicit formulas and those
obtained through the NIE method. These findings
suggest that either method can be used with confidence
to calculate ARLs. Although both methods produced
similar results, we observed that the explicit formulas
exhibited a significant advantage in computational
efficiency. The explicit formulas required considerably

less processing time compared to the NIE method.

Hence, if you are working on a project that requires
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speedy calculations, then the explicit formulas may be

the more practical option to use.
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