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ABSTRACT 

 This paper proposes an explicit formula for calculating the average run length (ARL) of an exponentially weighted moving 

average (EWMA) control chart for monitoring process mean shifts. The study focuses on the AR(1) model with quadratic trends, 

because this model combines two essential components in time series analysis including the autocorrelation and long-term trend 

analysis. It is useful for producing accurate and insightful data predictions. Additionally, it is used in various contexts such as economic 

forecasting, financial analysis, and environmental studies. Furthermore, the study presents a technique for estimating the ARL using 

the numerical integral equation (NIE) method. This enables a comparison between the results of the explicit formula and the numerical 

integral equation method. The two ARL solutions obtained from the explicit formula and numerical integral equation method are very 

similar identical with an absolute percentage difference of less than 0.001. Thereby, the explicit formula accurately corresponds to the 

NIE method. Additionally, the explicit formulas are more computationally efficient as they require fewer computations compared to 

the NIE approach 
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1. INTRODUCTION  

Control charts are important tools for statistical process 

control. In 1931, Shewhart introduced the Shewhart 

control chart, which is used to detect a large shift in the 

process mean or variance. It is especially effective when 

the observations have a normal distribution (Shewhart, 

1931). Subsequently, Page introduced the Cumulative 

Sum (CUSUM) control chart. It is adept at identifying 

small shifts in statistical parameters and complex patterns 

like autocorrelation (Page, 1954). Recently, Robert 

proposed the exponentially weighted moving average 

(EWMA) control chart (Robert, 1959). The CUSUM 

and EWMA control charts are more effective in 

identifying small changes and complex patterns within 

processes, whereas the Shewhart control chart is effective 

in detecting large shifts. 

Statistical quality control techniques will be used in this  

research to manage process variability. In general, the  

effectiveness of control chart research frequently depends 

on an initial assumption that the data has a normal 

distribution. However, in many real-world scenarios, 

data usually displays a time series trend. Therefore, for 

efficient process change monitoring, choosing a suitable 

control chart is important. Therefore, the average run 

length (ARL) of EWMA control charts is of interest to 

the researchers, and they are working on creating a 

precise formula and estimation technique for it. 

The ARL is a critical metric for assessing control chart 

effectiveness in detecting shifts in process mean. It 

represents the average number of subgroups needed 

before a control chart detects an out-of-control process. 

ARL comprises two components: ARL0, the average 

number of samples from a stable process before a false 

out-of-control signal, and ARL1, the average number 
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of samples within control limits before an out-of-

control signal is triggered. 

Three common methods for estimating the ARL are 

Monte Carlo simulations (MC), Markov Chain approach 

(MCA), and Integral Equation approach (IE). Roberts 

(1959) used the MC method to calculate the ARL for 

the EWMA control chart, which is useful for validating 

analytical results but can be time-consuming. Crowder 

(1987) introduced a numerical procedure for EWMA 

run length computation, extending to non-normal cases 

and one-sided EWMA control charts. Later, Lucas and 

Saccucci (1990) showed that the EWMA control scheme, 

used to monitor process mean shifts by using the MCA 

method. They proposed a design procedure for EWMA 

control chart with different parameter values that can 

efficiently detect small shifts in a process. The limitations 

of both MCA and MC methods have caused researchers 

to reconsider their research on the IE approach. Analytical 

solutions for average delay and ARL on EWMA control 

charts with observations of exponential distribution were 

proposed by Areepong and Novikov (2009). After that, 

Mititelu et al. (2010) used the Fredholm integral 

equations to derive explicit formulas for ARL in special 

control charts like CUSUM and EWMA, requiring 

fewer computations. 

Control charts are commonly formulated assuming 

observations are independent and identically distributed. 

When a process displays indications of autocorrelation, 

it becomes essential to make use of specialized control 

charts. Vanbrackle and Reynolds (1997) discovered that 

correlation has a significant impact on the ARL and 

steady state ARL of EWMA and CUSUM control charts, 

even though independence is assumed in control chart 

evaluation. They provided numerical evaluations for 

control chart design using integral equation and MCA 

methods. Busaba et al. (2012) proposed the numerical 

integral equation (NIE) method to approximate the ARL0 

and ARL1 in the CUSUM procedure. They used the first 

order autoregressive (AR(1)) model with exponential 

white noise, which showed an excellent agreement 

between the NIE method and the explicit formula. Later, 

Petcharat et al. (2013) used a moving average (MA) 

model to provide explicit formulas of ARL for EWMA 

and CUSUM control charts. Phanyaem (2022) used 

the IE and NIE methods to evaluate the ARL of the 

CUSUM chart on the SARX(P,r)L model. The Fredholm 

integral equation was employed, and NIE methods like 

the midpoint rule, the trapezoidal rule, Simpson's rule, 

and the Gaussian rule were used to approximate the 

ARL. Recently, Petcharat (2022) constructs the ARL 

for a CUSUM control chart using the Fredholm integral 

equation approach and Banach's Fixed Point theorem to 

ensure the solution's existence and uniqueness based on 

SAR(P)L with the trend process. Subsequently, Karoon 

and Areepong (2023) confirmed the efficacy of the 

double exponential weighted moving average (DEWMA) 

control chart in monitoring process quality by creating 

an explicit ARL formula using an autoregressive model 

with trend. Furthermore, Karoon et al. (2023) studied 

the ARL of the double exponentially weighted moving 

average (double EWMA) control chart for observational 

data following exponential white noise in a time series 

model with an autoregressive process. Supharakonsakun 

and Areepong (2023) developed a double exponentially 

weighted moving average (DEWMA) control chart to 

detect small shifts in a moving average of order q (MA(q)) 

process with exponential white noise. Karoon et al. (2024) 

show the effectiveness of the extended exponentially 

weighted moving average (EEWMA) control chart in 

detecting small shifts, particularly when the observations 

are autocorrelated with exponential white noise, using 

explicit formulas for the ARL. Recently, Sunthornwat et 

al. (2024) developed a specific formula for the ARL for 

the autoregressive process with a quadratic trend on a 

modified exponentially weighted moving average (EWMA) 

control chart. Most recently, Phanthuna et al. (2024) 

presented a double-modified exponentially weighted 

moving average (DMEWMA) chart for an autoregressive 

(AR) process.  

In this paper, we propose the explicit formula for ARL 

of the EWMA control chart for an AR(1) with quadratic 

trend model. This paper presents a new contribution that 

has not been explored before. The proposed ARL of the 

EWMA control chart is compared with NIE approaches. 

The paper is structured as follows: Section 2 explains 

the materials used; Sections 3 and 4 describe the methods 
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employed; Section 5 presents the proposed method's 

results, and Section 6 provides concluding remarks. 
 

2. MATERIALS AND METHODS  

This section explains the features of AR(1) with quadratic 

trend model, which is used on the EWMA control chart 

for monitoring process mean shifts. The last section 

examines the characteristics of the ARL that are essential 

to the assessment of control chart performance. 
 

2.1 AR(1) with Quadratic Trend model 

The AR(1) with quadratic trend model is a time series 

model that combines the AR(1) model with quadratic 

trend component. In time series analysis, it is common 

to assume that white noise follows a normal distribution. 

However, the choice of using an exponential distribution 

or other types of distributions for error terms depends 

on the characteristics of the data being studied. In this 

case, we are assuming that the white noise follows an 

exponential distribution. An exponential distribution for 

the white noise error term is important when the time 

series data or the underlying process is inherently non-

negative. The model analyzes the serial correlation of 

time series data using AR model and quadratic trend; 

coefficients , ,
1

c    and 2
  are estimated statistically using 

techniques such as maximum likelihood estimation.  

An AR(1) model with quadratic trend can be represented 

by equation (1). 

; 1, 2,...2

t t 1 1 2 t
Y c Y t t t   

−
= + + + + =    (1) 

where c  is a suitable constant,   is an autoregressive 

coefficient,
1

  is a linear coefficient,
2

  is a quadratic 

coefficient, t  is the times and
t

  is the exponential 

white noise sequence of independent and identically 

distributed random variables. 
 

2.2 EWMA Control Chart  

An EWMA control chart is a statistical tool used in 

process control to monitor the mean or variance of a 

process over time, an alternative to conventional control 

charts like the Shewhart control chart. The EWMA 

statistic is calculated as a weighted average of the current 

observation and the previous EWMA statistic. It provides 

more weight for current observations, making it sensitive 

to changes or trends in the process. 

The EWMA statistic is represented by equation (2). 

 =  ( ) + ; =1,2,...
t t 1 t

E 1 E Y t 
−

−     (2) 

where t-1
E  is a previous EWMA statistic and   is an 

exponential smoothing parameter with 0 1  . 

The upper and lower control limits of the EWMA control 

chart are as follows: 

 =  ,UCL L
2


 


+

−
   =  ,LCL L

2


 


−

−
   

where   and  are the mean and standard deviation of 

the process and L is a suitable control width limit.  

3. INTEGRAL EQUATION METHOD 

In this section, we derive analytical formulas for ARL 

using the Fredholm Integral Equation of the second kind. 

The lower and upper control limits are determined as zero 

and b respectively. The function ( )H u is defined as the 

ARL of EWMA control chart for the AR(1) with quadratic 

trend model.  

( ) ( ) .bARL H u = =   E     

where  inf 0; , .b tt E b b u =      

The function ( )H u is extended into the Fredholm Integral 

Equations of the second kind. 

 1 1 1( ) 1 {0 } ( ) + { = 0} (0).H u I E b H E E H = +  E P  

Where EP  represents the probability measure and EE

represents the expectation corresponding to the initial value 

of 
0 .E u=  

The EWMA statistics 1E  represents a state of being in-

control, which can be visualized as equation (3) 

2

0 1 1 2
0  (1 ) + .

t
E c Y t t b    

−
 − + + +         (3) 

In the event that 1Y  produces an out-of-control state 

for 1E , then 

2

0 1 1 2
(1 ) + .

t
E c Y t t b    

−
− + + +          (4) 

or 2

0 1 1 2
(1 ) 0.

t
E c Y t t    

−
− + + + +         

For an initial value 0 ,E u=  then equation (4) can be 

rewritten as follows: 

2

1 1 2
0  (1 ) .

t
u c Y t t b    

−
 − + + + +          

Following Champ and Rigdon’s method (1991), the 

initial value 0 ,E u= and ( ).t Exp   The function 

( )H u can be rewritten as follows: 
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1 1 1

0

( ) 1 ( ) ( ) .

b

H u H E f d = +          (5) 

2

1 1 2
0

1 ((1 ) ( ) .
b

tH u c Y t t f z dz    −= + − + + + + )   

Equation (5) is changed the variable of integration, then 

( )H u is obtained as: 

2

1 1 2

0

1 (1 )
( ) 1 ( ) .

b

t

z u
H u H z f c Y t t dz


  

 
−

− − 
= + − − − − 

 
  

2

1 1 2

1 (1 )

0

1 1
1 ( ) .

t

z u
b c Y t t

H z e dz


  

 

 

−

− − 
− − − − − 

 

 
 

= +  
 
 

   

The Fredholm Integral Equation of the second kind can 

be derived as follows:  
2

1 1 2
(1 ) ( )

0

1
( ) 1 ( ) .

t
u c Y t tzb

H u H z e e dz

   

 


−
 − + + +

+ −
 = +   

If we assume that

2

1 1 2
(1 ) ( )

( ) ,

t
u c Y t t

C u e

   

 
−

 − + + +
+ 

 =  

then we can rewrite the equation as follows: 

0

( )
( ) 1 ( ) , 0 .

zb
C u

H u H z e dz u b


−
= +    

Let 

0

 = ( ) ,

zb

k H z e dz
−

  then we have 

( )
( ) 1 .

C u
H u k


= +          (6) 

For solving k  we obtain  

0

 = ( )

zb

k H z e dz
−

  

  
0

=  1 ( )

zb
k

C z e dz



− 
+ 

 
  

  
0 0

( )
=   + 

z zb b
C z

e dz ke dz 



− −

   

  
0 0

=   + ( )

z zb b
k

e dz C z e dz 



− −

 
 

2
1 1 2 (1 )

0 0

=   + .

tc Y t tz z zb b
k

e dz e e dz

   

   



−+ + + −
− −

 
 

2
1 1 2

0

= ( 1)  .

tc Y t tb zb
k

e e e dz

  

  


−+ + +
− −

− − +   

2
1 1 2

= ( 1)  . ( 1).

tc Y t tb b
k

e e e

  

  


−+ + + −
−

− − − −  

As a result, the following formula can be utilized to 

determine a constant k : 

2
1 1 2

( 1)
 = .

1
1 . .( 1)

t

b

c Y t t b

e
k

e e



  

 





−

−

+ + +
−

− −

+ −

        (7) 

Next, substitute equation (7) into equation (6) to derive 

the explicit formula of ARL for the AR(1) with quadratic 

trend model. 

2

1 1 2

(1 )

( 1)
( ) 1 .

( 1)

t

u b

c Y t t b

e e
H u

e e



 

  

 




−

−
−

+ + +
− −

−
= −

+ −

         

If the exponential parameter ( ) is determined with 0

before the start of the process, then the ARL is called 

ARL0. Similarly, if the exponential parameter ( ) is 

assigned to 1 0 (1 ),  = + where 1 0  and  is the 

shift sizes in an out-of-control process, then the ARL 

is called ARL1. 

The ARL solution demonstrates the uniqueness of the 

integral equation for explicit formulas using Banach's 

Fixed-point Theorem. The theorem applies to a metric 

space consisting of continuous functions on a closed 

interval ( ( ),|| || )C I  where I denote the compact interval.  

The norm || || = | ( )| u IH Sup H u  and the operator T are 

defined on this space. If there exists a number 0 1q   

such that the operator T is a contraction, then the theorem 

holds true 

1 2 1 2( ) ( )T H T H q H H


−  −  for all 1 2, .H H I   

Let 1( )C I  as a continuous function on  1 0,=I b  and 

define the operator T as  

2

1 1 2
(1 ) ( )

0

1
( ( )) 1 ( ) .

t
u c Y t t zb

T H u e H z e dz

   

  


−
 − + + +

+  −
 = + 

According to the Banach Fixed Point Theorem, if the 

operator T is a contraction, then fixed point equations 

( )( ) ( )T H u H u= has a unique solution. So, in this case, 

if T is a contraction, then the integral equation can be 

written as ( )( ) ( )T H u H u= , and it will have a unique 

solution. 

 

 

 



Journal of Applied Science and Emerging Technology (JASET) Vol. 23, No. 2 [2024]: e257034 

 

5 

Theorem: Banach’s Fixed-point Theorem 

In the complete metric space ( , )X d where :T X X→

is a mapping satisfying the criteria of a contraction 

mapping with contraction constant 1q  such that

1 2 1 2( ) ( ) ,T H T H q H H


−  − there is a unique function 

( )H X   for which ( ( )) ( )T H u H u= has a unique 

fixed point in .X   

Proof:   

For any given u I and 
1 2, ( ),H H C I we have the 

inequality 1 2 1 2( ) ( )T H T H q H H


−  − where q < 1. 

According to (11), we obtain 

 1 2 1 20,
( ) ( ) ( ) ( )

u b
T H T H Sup H z H z


− = −  

  ( )

2
1 1 2(1 )

1 20,
0

( ) ( )

tc Y t tu
zb

u b

e
Sup H z H z e dz

  

 




−+ + +−
+

−

= −
 

 

2
1 1 2(1 )

1 2
0, 0

tc Y t tu
zb

u b

e
Sup e dz H H

  

 




−+ + +−
+

−




 
  

 − 
 
  

  

 

2
1 1 2(1 )

1 2
0,

(1 )

tc Y t tu b

u b

Sup e e H H

  

  
−+ + +−

+ −




 
 

 − − 
 
 

 

1 2 ,q H H


 −    

where 
 

2
1 1 2(1 )

0,

(1 ) 1.

tc Y t tu b

u b

q Sup e e

  

  
−+ + +−

+ −



 
 = − 
 
  

 

 

4. NUMERICAL INTEGRATION METHOD 

The section addresses the numerical integration of ARL 

of the EWMA control chart for AR(1) with quadratic 

trend model. We will use Gauss-Legendre Quadrature rule 

to approximate the ARL integral equation. Consequently, 

the following ( )H u can be used to define the integral 

equation in (5). 

2

1 1 2

0

1 (1 )
( ) = 1 ( ) .

b

t

z u
H u H z f c Y t t dz


  

 
−

− − 
+ − − − − 

 
   

The quadrature rule is a mathematical method that allows 

for the numerical integration of integral equations using 

finite sums. The approximation for an integral has the 

following form: 

10

( ) ( ) ( ).

b m

j j
j

W z f z dz w f a

=

   

where j
b

w
m

=  and 
1

 = ;  = 1,2,..., .
2

j

b
a j j m

m

 
− 

 
 

The numerical approximation ( )
i

H a is used to solve the 

integral equation through a linear algebraic method. 

( ) 2

1 1 2

1

(1 )1
1 ( ) .

m
j i

i j j t

j

a a
H a w H a f c Y t t


  

 
−

=

− − 
 + − − − − 

 
  

Thus, 

( ) 1 2

1 1 1 2

1

(1 )1
1 ( ) .

m
j

j j t

j

a a
H a w H a f c Y t t


  

 
−

=

− − 
 + − − − − 

 
  

( ) 2 2

2 1 1 2

1

(1 )1
1 ( ) .

m
j

j j t

j

a a
H a w H a f c Y t t


  

 
−

=

− − 
 + − − − − 

 
  

 

( ) 2

1 1 2

1

(1 )1
1 ( ) .

m
j m

m j j t

j

a a
H a w H a f c Y t t


  

 
−

=

− − 
 + − − − − 

 


It can be rewritten in matrix form. 

1

1 1( ) .m m m m m

−

  = −H I R 1  

where 

1

2

1

( )

( )
 = ,

( )

m

m

H a

H a

H a



 
 
 
 
  
 

H  1

1

1
 = .

1

m

 
 
 
 
 
 

1  

and   2

1 1 2

(1 )1
[ ] .

j i

ij j t

a a
w f c Y t t


  

 
−

− − 
 − − − − 

 
R  

The numerical integral equation for the ARL of the 

EWMA control chart is provided below. 

2

1 1 2

1

(1 )1
( ) 1 ( ) .

m
j

j j t

j

a u
H u w H a f c Y t t


  

 
−

=

− − 
 + − − − − 

 
   

5. NUMERICAL RESULTS 

The study analyzed the explicit formulas and the NIE 

approach used for detecting changes in the process mean 

on an EWMA control chart for AR(1) with a quadratic 

trend model. It compared the findings obtained through 

numerical integration, especially the absolute percentage 

difference, with the accuracy and reliability of ARL 

values calculated from explicit formulas. The absolute 

percentage difference of ARL can be calculated by 

( )
( ) ( )

%   100.
( )

H u H u
Diff

H u

−
=   

Tables 1 through 6 display the numerical results for 

ARL0 = 370. The ARL1 of the EWMA control chart 

for the AR(1) with a quadratic trend model was analyzed 

using two different methods: the explicit formula and the 

NIE method. The analysis used an EWMA control chart 

and determined an exponential smoothing parameter 

( 0.10,0.15). =  In-control state: exponential parameter 
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of white noise process 
0( ) = 1. Out-of-control state: 

1( ) ranges from 1.01, 1.03, 1.05, 1.10, 1.20, 1.30, 

1.40, 1.50 and 2.00, respectively. The study examined 

AR(1) with quadratic trend model when the autoregressive 

coefficient parameter ( ) = 0.10, 0.20 and 0.30. The 

linear
1( ) and the quadratic 

2( )  coefficients parameter;   

1 2( 0.20, 0.30), = = 1 2( 0.30, 0.50), = = and 
1( 0.50, =  

2 0.80), = respectively. The comparison analysis showed 

that the ARL values obtained by the explicit formula 

and the NIE methods were highly similar. It is important 

to mention that the absolute percentage difference of 

ARL calculated resulted in a value of zero, which 

suggests that there was no noticeable difference between 

the ARL values derived from both methods. However, 

the CPU time of the explicit formula is faster than the 

NIE method by around 1-2 seconds. 

 

 

 

 

 

Table 1 ARL for the explicit formulas and the NIE method on EWMA control 

chart for AR(1) with quadratic trend model with
0

1, = 0.10, 0.10, = =  
1 2

0.20, 0.30, 0.00242b = = = and ARL0 = 370.283 

1
  Explicit  NIE 

 ARL CPU time  ARL CPU time 

1.01 333.273 0.001  333.273 2.199 

1.03 271.597 0.001  271.597 2.247 

1.05 223.023 0.001  223.023 2.278 

1.10 140.524 0.001  140.524 2.184 

1.20 62.5586 0.001  62.5586 2.246 

1.30 31.6155 0.001  31.6155 2.152 

1.40 17.7351 0.001  17.7351 2.278 

1.50 10.8692 0.001  10.8692 2.309 

2.00 2.48567 0.001  2.48567 2.246 

 

Table 2 ARL for the explicit formulas and the NIE method on EWMA control 

chart for AR(1) with quadratic trend model with
0

1, 0.15, 0.10,  = = =  
1 2

0.20, 0.30, 0.05016b = = = and ARL0 = 370.006  

1
  Explicit  NIE 

 ARL CPU time  ARL CPU time 

1.01 337.264 0.001  337.264 2.309 

1.03 282.224 0.001  282.224 2.231 

1.05 238.224 0.001  238.224 2.230 

1.10 161.300 0.001  161.300 2.324 

1.20 82.9552 0.001  82.9552 2.231 

1.30 47.9105 0.001  47.9105 2.247 

1.40 30.1893 0.001  30.1893 2.138 

1.50 20.3680 0.001  20.3680 2.325 

2.00 5.54718 0.001  5.54718 2.262 

 

Table 3 ARL for the explicit formulas and the NIE method on EWMA control 

chart for AR(1) with quadratic trend model with
0

1, 0.10, 0.20,  = = =  
1 2

0.30, 0.50, b = = =  0.001615 and ARL0 = 370.059 

1
  Explicit  NIE 

 ARL CPU time  ARL CPU time 

1.01 331.688 0.001  331.688 0.609 

1.03 268.137 0.001  268.137 0.578 

1.05 218.49 0.001  218.49 0.531 

1.10 135.226 0.001  135.226 0.438 

1.20 58.3912 0.001  58.3912 0.406 

1.30 28.8007 0.001  28.8007 0.328 

1.40 15.8592 0.001  15.8592 0.453 

1.50 9.59491 0.001  9.59491 0.344 

2.00 2.20971 0.001  2.20971 0.500 

 

 

 Table 4 ARL for the explicit formulas and the NIE method on EWMA control 

chart for AR(1) with quadratic trend model with
0

1, 0.15, 0.20,  = = =  
1 2

0.30, 0.50, b = = =   0.03270 and ARL0 = 370.097 

1
  Explicit  NIE 

 ARL CPU time  ARL CPU time 

1.01 334.368 0.001  334.368 1.890 

1.03 275.320 0.001  275.320 1.843 

1.05 229.104 0.001  229.104 1.781 

1.10 150.532 0.001  150.532 1.828 

1.20 74.1248 0.001  74.1248 1.953 

1.30 41.5329 0.001  41.5329 1.890 

1.40 25.6008 0.001  25.6008 1.828 

1.50 16.9977 0.001  16.9977 2.328 

2.00 4.52274 0.001  4.52274 1.812 

 

 

Table 5 ARL for the explicit formulas and the NIE method on EWMA control 

chart for AR(1) with quadratic trend model with
0

1, 0.10, 0.30,  = = =  
1 2

0.50, 0.80, b = = =  0.000884 and ARL0 = 370.395 

1
  Explicit  NIE 

 ARL CPU time  ARL CPU time 

1.01 329.93 0.001  329.93 1.859 

1.03 263.526 0.001  263.526 1.765 

1.05 212.276 0.001  212.276 1.625 

1.10 127.923 0.001  127.923 1.734 

1.20 52.7900 0.001  52.7900 1.875 

1.30 25.1230 0.001  25.1230 1.859 

1.40 13.4700 0.001  13.4700 1.891 

1.50 8.00802 0.001  8.00802 1.875 

2.00 1.89231 0.001  1.89231 1.750 
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Figure 1 Comparison of ARL1 of EWMA control charts under AR(1) with 

quadratic trend model 
1 2

( 0.10, 0.20, 0.30)  = = =  when 0.10 = and 0.15 

 

 
Figure 2 Comparison of ARL1 of EWMA control charts under AR(1) with 

quadratic trend model
1 2

( 0.20, 0.30, 0.50)  = = = when 0.10 = and 0.15 

 
Figure 3 Comparison of ARL1 of EWMA control charts under AR(1) with 

quadratic trend model
1 2

( 0.30, 0.50, 0.80)  = = = when 0.10 = and 0.15 

 

6. DISCUSSION 

The study aimed to calculate the ARL value to detect 

process mean shifts in an AR(1) with quadratic trend 

model, using explicit formulas and the NIE method. 

Establishing the existence and uniqueness of the ARL 

is crucial for ensuring the accuracy and reliability of any 

statistical analysis. The validation of explicit formulas 

has proven beyond doubt that the ARL can be calculated 

with precision, providing a solid foundation for making 

informed decisions and driving positive outcomes. This 

study provides valuable insights into the effectiveness 

of ARL analysis for monitoring mean shifts. By comparing 

explicit formulas and the NIE method, the study 

highlights the benefits and limitations of each approach. 

This research can help organizations make informed 

decisions about which method to use in their own 

monitoring processes. A numerical investigation was 

conducted to determine the in-control ARL for different 

parameter configurations and levels of process mean 

shift. The results showed that there was no significant 

difference between the absolute percentage difference of 

the ARLs derived from explicit formulas and those 

obtained through the NIE method. These findings 

suggest that either method can be used with confidence 

to calculate ARLs. Although both methods produced 

similar results, we observed that the explicit formulas 

exhibited a significant advantage in computational 

efficiency. The explicit formulas required considerably 

less processing time compared to the NIE method. 

Hence, if you are working on a project that requires 

Table 6 ARL for the explicit formulas and the NIE method on EWMA control 

chart for AR(1) with quadratic trend model with
0

1, 0.15, 0.30,  = = =  
1 2

0.50, 0.80, b = = =   0.01750 and  ARL0 = 370.087 

1
  Explicit  NIE 

 ARL CPU time  ARL CPU time 

1.01 330.059 0.001  330.059 2.000 

1.03 265.537 0.001  265.537 1.843 

1.05 216.521 0.001  216.521 1.828 

1.10 136.464 0.001  136.464 1.687 

1.20 63.3354 0.001  63.3354 1.875 

1.30 34.0676 0.001  34.0676 1.766 

1.40 20.3922 0.001  20.3922 2.172 

1.50 13.2606 0.001  13.2606 1.906 

2.00 3.46240 0.001  3.46240 1.859 

 

 



Journal of Applied Science and Emerging Technology (JASET) Vol. 23, No. 2 [2024]: e257034 

 

8 

speedy calculations, then the explicit formulas may be 

the more practical option to use.  

 

ACKNOWLEDGMENT(S)  

The authors gratefully acknowledge the editor and 

referees for their valuable comments and suggestions 

which greatly improve this paper.  The research was 

funding by Applied Science Faculty King Mongkut's 

University of Technology North Bangkok Contract no. 

672187 

 

REFERENCES 

Areepong, Y., & Novikov, A. A. An integral equation approach for analysis 

of control charts [Doctoral’ thesis]. University of Technology. 2009.  

Busaba, J., Sukparungsee, S., Areepong, Y., & Mititelu, G. (2012). 

Numerical approximations of average run length for AR(1) on 

exponential CUSUM. In Proceedings of the International Muti 

Conference of Engineers and Computer Scientists, Hong Kong 2012, 7-

10 March. 

Champ, C. W., & Rigdon, S. E. (1991). A a comparison of the markov 

chain and the integral equation approaches for evaluating the run length 

distribution of quality control charts. Communications in Statistics-

Simulation and Computation, 20(1), 191-204. 

Crowder, S. V. (1987). A simple method for studying run–length 

distributions of exponentially weighted moving average charts. 

Technometrics, 29(4), 401-407. 

Karoon, K., & Areepong, Y. (2023). Improving Sensitivity of the DEWMA 

Chart with Exact ARL Solution under the Trend AR (p) Model and Its 

Applications. Emerging Science Journal, 7(6), 1875-1891.  

Karoon, K., Areepong, Y., & Sukparungsee, S. (2023). Modification of 

ARL for detecting changes on the double EWMA chart in time series 

data with the autoregressive model. Connection Science, 35(1), 

2219040. 

Karoon, K., Areepong, Y., & Sukparungsee, S. (2024). On the performance 

of the extended EWMA control chart for monitoring process mean based 

on autocorrelated data. Applied Science and Engineering Progress, 

17(2), 6599-6599. 

Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving 

average control schemes: properties and enhancements. Technometrics, 

32(1), 1-12. 

Mititelu, G., Areepong, Y., Sukparungsee, S., & Novikov, A. (2010). 

Explicit analytical solutions for the average run length of CUSUM and 

EWMA charts. East-West Journal of Mathematics, 1, 253-265. 

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 

100-115.  

Peerajit, W. (2023). Statistical design of a one-sided CUSUM control chart 

to detect a mean shift in a FIMAX model with underlying exponential 

white noise. Thailand Statistician, 21(2), 397-420.  

Petcharat, K., Areepong, Y., & Sukparungsee, S. (2013). Explicit formulas 

of average run length of EWMA chart for MA (q). Far East Journal of 

Mathematic Science, 78, 291 – 300. 

Petcharat, K. (2022). The effectiveness of CUSUM control chart for trend 

stationary seasonal autocorrelated data. Thailand Statistician, 20(2), 

475-488.  

Phanyaem, S. (2022). Explicit formulas and numerical integral equation of 

ARL for SARX (P, r) L model based on CUSUM chart. Mathematics 

and Statistics, 10(1), 88-99. 

Phanthuna, P., Areepong, Y., & Sukparungsee, S. (2024). Performance 

Measurement of a DMEWMA Control Chart on an AR (p) Model with 

Exponential White Noise. Applied Science and Engineering Progress, 

17(3), 7088-7088. 

Roberts, S. W. (1959). Control chart tests based on geometric moving 

average. Technometrics, 1, 239-250. 

Shewhart, W. A. (1931). Economic control of quality of manufactured 

product. Van Nostrand, New York. 

Supharakonsakun, Y., & Areepong, Y. (2023). ARL Evaluation of a 

DEWMA Control Chart for Autocorrelated Data: A Case Study on Prices 

of Major Industrial Commodities. Emerging Science Journal, 7(5), 

1771-1786. 

Sunthornwat, R., Areepong, Y., & Sukparungsee, S. (2024). Evaluating the 

Performance of Modified EWMA Control Schemes for Serially 

Correlated Observations. Thailand Statistician, 22(3), 657-673. 

Vanbrackle,  L. N., & Reynolds, M. R. (1997). EWMA and CUSUM control 

charts in the presence of correlation. Communications in Statistics-

Simulation and Computation, 26(3), 979-1008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


