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ABSTRACT  

 The exact traveling wave solutions of the combined KdV-mKdV equation, which are the partial differential equations, were 

examined using the simple equation method with the Riccati equation and the modified extended tanh-function method. The solutions 

of the combined KdV-mKdV equation are obtained in terms of hyperbolic functions and trigonometric functions. Some solutions are 

created in the form of kink waves, which are represented by the two-dimensional graph, the three-dimensional graph, and the contour 

graph. Moreover, the results validated that the methods used in this study were powerful mathematical tools to find exact wave solutions 

to nonlinear models encountered in various areas of science and engineering. 
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1. INTRODUCTION  

 In many branches of natural science, accurate 

solutions of non-linear partial differential equations 

(NLPDEs) are essential to comprehending the 

qualitative aspects of numerous processes and 

phenomena. In the present, researchers have discovered 

numerous potent techniques for resolving the nonlinear 

partial differential equation, such as the simple equation 

method (Sanjun & Chankaew, 2022), the tanh-coth 

method (Kumar & Pankaj, 2015), the sin-cosine 

method (Raslan et al., 2017), the (G′/G)-expansion 

method (Akbar et al., 2018), the modified extended 

tanh-function method (Zahran & Khater, 2016), the 

Exp-expansion method (He & Wu, 2006), the unified 

method (Abdel-Gawad et al., 2022), the Riccati-

Bernoulli sub-ODE method (Yang et al., 2015), etc. 

 The combined KdV-mKdV equation (Khan 

et al., 2023), 

2
0,

t x x xxx
u muu nu u u+ + + =              

where ( )u u x, t , m=  and n  are real constants, 

which is a useful tool in the study of water waves. It 

helps researchers understand and forecast the actions of 

many wave phenomena, such as solitary waves, wave 

breaking, turbulence, interactions between waves and 

structures, and tsunamis (Yuan et al., 2023). Many 

analytical methods have been used to investigate this 

equation. from multiple authors, such as in 2010 (Lu 

& Shi, 2010) using the expansion approach of Jacobi 

elliptic functions; in 2012 (Naher & Abdullah, 2012) 

using the improved (G′/G)-expansion method; in 

2014 (Huang et al., 2014) using the complex method; 

in 2016 (Hu et al., 2016) using the consistent tanh 

expansion (CTE) method; in 2022 (Ekici & Ünal, 

2022) using the rational (G′/G)-expansion method 

(Ekici & Ünal, 2022); and in 2023 using the 

Bernoulli sub-ODE method (Khan et al., 2023).  

      (1)                      
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 Two different methods are used in this article. 

The first method is called the simple equation method 

with Riccati equation, which was first proposed to 

construct exact traveling wave solutions of the 

Kodomtsev-Petviashvili (KP) equation, the (2 + 1)-

dimensional breaking soliton equation, and the modified 

generalized Vakhnenko equation in 2016 (Nofal, 

2016). In 2024, (Thadee & Phoosree, 2024) used 

the simple equation method with the Riccati equation to 

find the exact traveling wave solutions of fourth-order 

fractional water wave equations. And the modified 

extended tanh-function method that executes this 

method has broad applicability to many other nonlinear 

evolution equations. In mathematical physics, the 

modified extended tanh-function method was used to 

investigate exact solutions to various equations, such as 

the Hirota-Satsuma-coupled KdV system in 2007 

(El-Wakil & Abdou, 2007). The fisher-type 

equation, the ZK-BBM equation, generalized the 

Burgers–Fisher equation in 2007 (El-Wakil & Abdou, 

2007). The Bogoyavlenskii equation in 2016 (Zahran 

& Khater, 2016). And the conformable time fractional 

Drinfel'd–Sokolov–Wilson equation (Bashar et al., 

2023).          
 In this work, we solve the combined KdV-

mKdV equation using the simple equation method with 

the Riccati equation and the modified extended tanh-

function method for finding the traveling wave solutions 

of the combined KdV-mKdV equation. We have shown 

the new exact solutions and obtained the wave solutions 

for the wave effects in a two-dimensional graph, a 

three-dimensional graph, and a contour graph in 

Section. 4. Moreover, we compared the solutions and 

got the new simpler form,which is shown in Section. 5. 

Finally, Section. 6 concludes with observations and 

results. 

  

2. MATERIALS AND METHODS  

 Let there be a NLPDE, say, in two 

independent variables x  and t , is given by: 

( ), , , , ,... 0,
t x xx xt

G u u u u u =  

where G  is in general a polynomial function of 

( ),u x t  and its arguments; the subscripts denote the 

partial derivatives. Start by considering combining the 

independent variables x  and t  into one variable, .  

We suppose that 

( ) ( ), ,u x t u =  .x t = −  

The traveling wave transformation Eq. (3) permits us 

to reduce Eq. (2) to the following ordinary differential 

equation (ODE): 

 ( ), , , ,... 0,Q u u u u   =  

where Q  is a polynomial in ( )u  and its total 

derivatives, where ( ) ( )
2

2
, ,

du d u
u u

d d
 

 
 = =  

and so on. 

2.1 The simple equation method with the Riccati 

equation 

 We outline the fundamental steps of the simple 

equation method with the Riccati equation (Nofal, 

2016) as follows:  

Step 1. Start by considering Eqs. (2)-(4). 

Step 2. Suppose that the solution of Eq. (4) is in the 

following form:  

( ) ( )
0

.

N

i

i

i

u a Z 
=

=  

Which ( )0,1,2,...,
i

a i N=  are constants that need to 

be determined such that 0
N

a   and ( )Z   conform 

to the following the Riccati equation,  

( ) ( )2
,Z Z    = +  

   (2) 

(3)       

   (4) 

(5) 

   (6) 
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where and   are non-zero constants. The two-

case solutions of Eq. (6) can be explained here:  

Case 1: 0  , 

( )
( )0

ln
tanh ,

2

V
Z


 



 −
= − − − 

 
  

where 0
0   and 1.V =  

Case 2: 0  , 

( ) ( )( )0
tan ,Z


   


= +  

where 0
  is a constant. 

Step 3. The balance number N  may be achieved by 

striking a balance between the derivative of the highest-

order and the highest nonlinear terms that exist in Eq. 

(4). 

Step 4. For the terms that were all in the same power 

of ,Z  we added up all of the coefficients and set them 

to zero. We obtained ,   and .
i

a  Thus, the 

solutions to Eq. (2) that include traveling waves are 

constructed. 

2.2 The modified extended tanh-function method 

 We describe the main steps of the modified 

extended tanh-function method (Zahran & Khater, 

2016). 

Step 1. Start by considering Eqs. (2)-(4). 

Step 2. Suppose that the solution of Eq. (4) in the 

following form:  

( ) ( )   −

=

= + +0

1

,

N

i i

i i

i

u a a b  

where 
i

a and 
i

b are constants that need to be 

determined such that  0
N

a  or  0
N

b  and   

satisfy the Riccati equation, 

2   = +  

where   is a constant.  Eq. (6) admits several types 

of solutions according to the following: 

Case 1:  If 0,   then 

( )tanh ,  = − − −  

or 

( )coth .  = − − −  

Case 2: If 0,  then 

( )tan ,  =  

or 

( )cot .  = −  

 

Case 3: If 0, =  then 

1
.


= −  

Step 3. The balance number N  may be achieved by 

striking a balance between the derivative of the highest-

order and the highest nonlinear terms that exist in Eq. 

(4). 

Step 4. Substitute Eq. (9) and its derivative as well as 

Eq. (10) into Eq. (4). Then by setting the coefficients 

of ,( 0, 1, 2,...),
i

i =   and equating them to zero, 

we obtain a system of algebraic equations, which can 

be solved to obtain the values of , ,
i i

a b   and .   

Step 5.  Substitute the values of , , ,
i i

a b     and the 

solutions of Eq. (10) into Eq. (9) and we obtain the 

exact solutions of Eq. (2). 

3. APPLICATIONS 

 We next want to solve the combined KdV-

mKdV equation using the simple equation method with 

the Riccati equation and the modified extended tanh-

function method. 

  The combined KdV-mKdV equation is 

2
0,

t x x xxx
u muu nu u u+ + + =  

 

where ( )u u x, t , m=  and n  are real constants. 

Using ( ) ( , )u u x t =  and the traveling wave variable 

    (7) 

    (8) 

    (9) 

   (10) 

   (11) 

   (12) 

   (13) 

   (14)   

   (15) 

   (16) 
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,x t = −  we will transform it into an ODE. When 

the transformation is put into equation (16), the 

outcome is 

2
0.u muu nu u u    − + + + =  

Integrating Eq. (17) with the zero constant, we get:  

3

2
0.

2 3

m nu
u u u − + + + =  

The proposed procedures are used in the following 

sections to achieve the desired results. 

3.1 Solutions with the simple equation method with 

the Riccati equation 

 Next, we balanced the highest-order 

derivative terms u  with the highest nonlinear terms  

3u  in Eq. (18). Then 1N = . We have the solution 

to Eq. (18) as follows: 

( )
0 1

,u a a Z = +  

where Z  satisfies Eq. (6). Therefore, the expressions 

for 
2

,u u  and 
3

u are expressed as: 

2 3

1 1
2 2 ,u a Z a Z  = +

2 2 2 2

0 0 1 1
2 ,u a a a Z a Z= + +  

  3 3 2 2 2 3 3

0 0 1 0 1 1
3 3 .u a a a Z a a Z a Z= + + +  

Substituting Eqs. (19)-(22) into Eq. (18), the 

outcome is 

( )

2 3

0 0 0

2

1 0 1 0 1 1

2 2 2 3 2 3

1 0 1 1 1

2 2

2

2 0.
2 3

m n
a a a

a ma a na a a Z

m n
a na a Z a a Z



 



 − + + 
 

+ − + + +

   + + + + =   
   

 

 

Then we set each coefficient of 
i

Z to zero, where 

0,1,2,3,i =  yields 

( )

( )

( )

( )

0 2 3

0 0 0

1 2

1 0 1 0 1 1

2 2 2

1 0 1

3 3 2

1 1

: 0,
2 2

: 2 0,

: 0,
2

: 2 0.
3

m n
Z a a a

Z a ma a na a a

m
Z a na a

n
Z a a

 

  



 

− + + =

− + + + =

+ =

+ =

 

After solving this collection of mathematical equations,   

we get  

2

0 1

6
, ,

2 8

m m
a a

n n n
 

− − −
= =  =  and 

2

.
16

m

n
 =  

By Eqs. (7), (8), (28) and  = − ,x t  the exact 

solutions of the combined KdV-mKdV equation are 

shown for two cases with an arbitrary constant 0
.  

Case 1: 0  , 

( )
2 2

0

1

ln6
, tanh ,

2 4 16 8 2

Vm m m m
u x t x t

n n n n

   
= − + − + −       

 

 
 

( )
2 2

0

2

ln6
, tanh ,

2 4 16 8 2

Vm m m m
u x t x t

n n n n

   
= − − − + −       

 

 

where 0
0   and 1.V =   

Case 2: 0  , 

( )
2 2

3

6
, tan ,

2 4 16 8

m m m m
u x t x t

n n n n

 − −  
= + +  

  

 

 

 

( )
2 2

4

6
, tan ,

2 4 16 8

m m m m
u x t x t

n n n n

 − −  
= − +  

  

 

 

where 0
  is a constant. 

   (22) 

   (17) 

   (18) 

   (19) 

   (20) 

   (21) 

   (23) 

 (24) 

 (25) 

 (26) 

 (27) 

 (28)    

 (29) 

 (31) 

 (30) 

 (32) 
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  (34) 

  (35) 

   (36) 

   (37)            

   (38)            

(40)            

(41)            

(42) 

(43) 

 (45)            

(46)            

 (47)            

 (48)            

(49) 

(50) 

   (39)            

(44) 

3.2 Solutions with the modified extended tanh function 

method  

 According to the procedure that will be 

described, the balancing number N  is a positive 

integer, which can be defined by balancing the highest-

order derivative terms u  with the highest nonlinear 

terms 
3

u  in Eq. (18). Thus, 1N = . We have the 

solution to Eq. (18) as follows: 

( ) 1

0 1 1
u a a b  −= + +  

where   satisfies Eq. (10). Therefore, the expressions 

for 
2

,u u  and 
3

u are expressed as: 

( ) 3 2 3 1

1 1 1 1
2 2 2 2 ,u a a b b       − − = + + +  

( )2 2 1 2 2

0 0 1 0 1 1

2 2

1 1 1

2 2

2 ,

u a a a a b a

a b b

   



−

−

= + + +

+ +
 

( )3 3 2 2 1 2 2

0 0 1 0 1 0 1 0 1 1

2 2 2 2 1 3 3 3 3

0 1 1 1 1 1 1 1

3 3 3 6

3 3 3 .

u a a a a b a a a a b

a b a b a b a b

   

    

−

− − −

= + + + +

+ + + + +
 

 

Substituting Eqs. (33)-(36) into Eq. (18), the 

outcome is 

( )

( )

2 3

0 0 1 1 0 0 1 1

1 2

1 0 1 0 1 1 1 1

2 2 1

1 0 1 0 1 1 1 1

2 2 2 2 2 2

1 0 1 1 0 1

3 3 3 2 3

1 1 1 1

2
2 3

2

2

2 2

2 2 0.
3 3

m n
a a ma b a na a b

a ma a na a na b a

b ma b na b na b b

m m
a na a b na b

n n
a a b b



  

  

 

  

−

−

−

 − + + + + 
 

+ − + + + +

+ − + + + +

   + + + +   
   

   + + + + =   
   

 

Then we set each coefficient of 
i to zero, where 

0, 1, 2, 3,i =     yields 

0 2 3

0 0 1 1 0 0 1 1
; 2 0,

2 3

m n
a a ma b a na a b − + + + + =  

1 2 2

1 0 1 0 1 1 1 1
; 2 0,a ma a na a na b a  − + + + + =

     

1 2 2

1 0 1 0 1 1 1 1
; 2 0,b ma b na b na b b  − − + + + + =    

2 2 2

1 0 1
; 0,

2

m
a na a + =                        

2 2 2

1 0 1
; 0,

2

m
b na b− + =                                    

3 3

1 1
; 2 0,

3

n
a a + =                                         

3 3

1 1
; 2 0.

3

n
b b − + =  

After we solve this set of algebraic equations, we get 

 
2

0 1 1

6 6
, , ,

2 96

m m
a a b

n n n n
 

− − −
= = = − =  and 

2

,
6

m

n
 = −      

or 
2

0 1 1

6 6
, , ,

2 96

m m
a a b

n n n n
 

− − −
= = − = =  and 

2

.
6

m

n
 = −  

By Eqs. (11)-(14), (45)-(46), and  = − ,x t  

the exact solutions of the combined KdV-mKdV 

equation can be classified into the following cases 

according to Section 2.2: 

Case 1:  If 0,   then 

( )
2 2

5 2 2

1 1
, 1 tanh ,

2 2 96 6
2 tanh

96 6

m m m
u x t x t

n n n m m
x t

n n

 
 

− −   = + + +  −   
+  

  

 

 

( )
2 2

6 2 2

1 1
, 1 tanh ,

2 2 96 6
2 tanh

96 6

m m m
u x t x t

n n n m m
x t

n n

 
 

− −   = − + −  −   
+  

  

 

 

( )
2 2

7 2 2

1 1
, 1 coth ,

2 2 96 6
2coth

96 6

m m m
u x t x t

n n n m m
x t

n n

 
 

− −   = + + +  −   
+  

  

 

 

( )
2 2

8 2 2

1 1
, 1 coth .

2 2 96 6
2coth

96 6

m m m
u x t x t

n n n m m
x t

n n

 
 

− −   = − + −  −   
+  

  

 

   (33) 
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(52) 

(53) 

 (54) 

(51) 

Case 2: If 0,   then 

( )
2 2

9
2 2

, 1 tan ,
2 2 96 6

2tan
96 6

m I m m I
u x t x t

n n n m m
x t

n n

 
 

−   = + + −     
+   

  

 

 

( )
2 2

10
2 2

, 1 tan ,
2 2 96 6

2tan
96 6

m I m m I
u x t x t

n n n m m
x t

n n

 
 

−   = − + +     
+   

  

 

 

( )
2 2

11
2 2

, 1 cot ,
2 2 96 6

2cot
96 6

m I m m I
u x t x t

n n n m m
x t

n n

 
 

−   = + + −     
+   

  

 

 

 

( )
2 2

12
2 2

, 1 cot .
2 2 96 6

2cot
96 6

m I m m I
u x t x t

n n n m m
x t

n n

 
 

−   = − + +     
+   

  

 

             

4. GRAPHICAL REPRESENTATION OF 

SOME OBTAINED SOLUTIONS 

 The physical graphs of some solutions to the 

combined KdV-mKdV equation are shown in this 

section. 

4.1 Graphical representation of the combined KdV- 

mKdV equation with the simple equation method  

with the Riccati equation 

 We set some parameters to get the example 

graph of the wave effects of the combined KdV-mKdV 

equation by = = − =
0

2, 2, 2m n  in the interval 

0 , 100x t  , which is displayed in Figures 1 and 

2. It produces a kink wave solution. 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

( )
2 2

0

1

6 ln
, tanh .

2 4 16 8 2

m m m m
u x t x t

n n n n

   
= − + − + −       

 

 Figures 1 Kink wave solution of ( )
1

,u x t  in 3D,  

 2D, and contour 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

( )
2 2

0

2

6 ln
, tanh .

2 4 16 8 2

m m m m
u x t x t

n n n n

   
= − − − + −       

 

 Figures 2 Kink wave solution of ( )
2

,u x t  in 3D,  

 2D, and contour. 
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4.2 Graphical representation of the combined KdV- 

mKdV equation with the modified extended tanh  

function method 

 Next, we represent the shape of some solution 

to the combined KdV-mKdV equation with the 

modified extended tanh function method by setting 

some parameters 2, 1m n= =−  in the interval

0 , 100x t  , which is displayed in Figures 3 and 

4. It produces a kink wave solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )
2 2

5 2 2

1 1
, 1 tanh ,

2 2 96 6
2tanh

96 6

m m m
u x t x t

n n n m m
x t

n n

 
 

− −   = + + +  −   
+   

  

 

Figures 3 Kink wave solution of ( )
5

,u x t  in 3D,  

2D, and contour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )
2 2

8 2 2

1 1
, 1 coth .

2 2 96 6
2coth

96 6

m m m
u x t x t

n n n m m
x t

n n

 
 

− −   = − + −  −   
+   

  

 

Figures 4. Kink wave solution of ( )
8

,u x t  in 3D,  

2D, and contour. 

5. SOLUTIONS COMPARISON 

 In this section, the solutions of the combined 

KdV-mKdV equation by the simple equation method 

with the Riccati equation and the modified extended 

tanh function method can be expressed in a simpler form 

than the rational (G′/G)-expansion method (Ekici & 

Ünal, 2022), as in Tables 1 and 2. 

 

Table 1 Solutions comparison of the combined KdV-

mKdV equation between the rational (G′/G)-

expansion method and the simple equation method with 

the Riccati equation. 

The rational (G′/G)-expansion method 

Case 1: 2
4 0 −   

( )
( ) ( ) ( )

( ) ( )

2 2
2

1 2

2 2

1 2

1 1
cosh 4 sinh 4

6 41 2 2

1 12
sinh 4 cosh 4

2 2

6 3

2 2 6

c c

u

c c

    


    

   

  

 
− + − −

=  −  
 − + − 
 

 − − −

 

Case 2: 2
4 0 −    

( )
( )

2 2

2 1 2

2 2

1 2

cos 4 sin 4
6 41 2 2

2
sin 4 cos 4

2 2

6 3

2 2 6

c c

u

c c

 
   

 


     

   

  

    
− − + −    −    =  −  

    − + −    
    

 − − −
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Case 3: 2
4 0 − =  

( ) 2

1 2

6 6 3

2 2 6

c
u

c c

   


    

 
=  − − − − 

+ 

 

where 
2 2

0

2 8
, .

4
x st s

  
 



+ −
= − + = −  

The simple equation method with the Riccati equation 

Case 1: 0   

( )
2 2

0
6 ln

, tanh
2 4 16 8 2

m m m m
u x t x t

n n n n

   
= −  − + −       

 

Case 2: 0   

( )
2 2

6
, tan

2 4 16 8

m m m m
u x t x t

n n n n

 − −  
=  +  

  
 

 

Table 2 Solutions comparison of the combined KdV-

mKdV equation between the rational (G′/G)-

expansion method and the modified extended tanh 

function method. 

The rational (G′/G)-expansion method 

Case 1: 2
4 0 −   

( )
( ) ( ) ( )

( ) ( )

2 2
2

1 2

2 2

1 2

1 1
cosh 4 sinh 4

6 41 2 2

1 12
sinh 4 cosh 4

2 2

6 3

2 2 6

c c

u

c c

    


    

   

  

 
− + − −

=  −  
 − + − 
 

 − − −

 

Case 2: 2
4 0 −   

( )
( )

2 2

2 1 2

2 2

1 2

cos 4 sin 4
6 41 2 2

2
sin 4 cos 4

2 2

6 3

2 2 6

c c

u

c c

 
   

 


     

   

  

    
− − + −    −    

=  −  
    − + −    
    

 − − −

 

Case 3: 2
4 0 − =  

( ) 2

1 2

6 6 3

2 2 6

c
u

c c

   


    

 
=  − − − − 

+ 

 

where 
2 2

0

2 8
, .

4
x st s

  
 



+ −
= − + = −  

The modified extended tanh function method 

Case 1: 0   

( )
2 2

2 2

1 1
, 1 tanh

2 2 96 6
2 tanh

96 6

and

m m m
u x t x t

n n n m m
x t

n n

 
 

− −   =  +   −   
+   

  

 

( )
2 2

2 2

1 1
, 1 coth

2 2 96 6
2coth

96 6

m m m
u x t x t

n n n m m
x t

n n

 
 

− −   =  +   −   
+   

  

 

Case 2: 0   

( )

( )

2 2

2 2

2 2

2 2

, 1 tan
2 2 96 6

2 tan
96 6

and

, 1 cot
2 2 96 6

2 tan
96 6

m I m m I
u x t x t

n n n m m
x t

n n

m I m m I
u x t x t

n n n m m
x t

n n

 
 

−   =  +     
+   

  

 
 

−   = + + −     
+   

  

 

 

6. CONCLUSION    

 In this work, we applied the simple equation 

method with the Riccati equation and the modified 

extended tanh function method in a satisfactory way to 

determine the traveling wave solution for the combined 

KdV-mKdV equation. Sequently, we found several 

new exact traveling wave solutions containing 

trigonometric functions and hyperbolic functions. 

 Both the simple equation method with the 

Riccati equation and the modified extended tanh 

function method rely on the Riccati equation and are 

straightforward to comprehend. Also, this research 

shows that this suggested method is suitable and highly 

practical for finding exact solutions to the combined 

KdV-mKdV problem. The method provides correct 

solutions for solitary waves and operates in a 

dependable and efficient manner. 
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