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ABSTRACT  

 In this study, we propose a within-host model for HIV infection of CD4+ T-cells. The model includes immune response, 

immune impairment, and antiretroviral treatment. Two types of antiretroviral drugs (reverse transcriptase inhibitors (RTIs) and protease 

inhibitors (PIs)) are used within the model. Positivity and boundedness of solutions are verified. We present two equilibrium points 

which are infection-free and infected one. The basic reproduction number is calculated, and it becomes the threshold indicating the 

stability of each equilibrium point. When it is less than a unity, an infection-free equilibrium point is locally stable, whereas when it 

is greater than one an infected equilibrium point exists. Global stability of infection-free equilibrium point is obtained with some 

conditions. Further, we extend the model by applying optimal control problem in which both antiretroviral drugs becomes control 

variables. This is to minimize the HIV infection of CD4+ T-cells. Our numerical results demonstrate that RTIs drug alone could 

slightly reduces an HIV infection whereas the PIs drug alone manages to reduce the infection largely. However, a combination of both 

types of drugs gives the best result for eliminating HIV infection of CD4+ T-cells. 
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1. INTRODUCTION  

Human Immunodeficiency Virus (HIV) is a virus that 

attacks immune cells causing an increase in the risk of 

other diseases and infections. It has been and continues 

to be a major global public health issue. According to 

World Health Organization (WHO), 650,000 people 

died from HIV-related causes and about 38.4 million 

people living with HIV at the end of 2021 (WHO, 

2022). CD4+ T-cells are the majority host cells for 

HIV to attack. CD4+ T-cells can be infected via the 

contact from free virus and of cell-to-cell. When the 

CD4+ T-cells are being attacked, they will stimulate 

cytotoxic T lymphocyte cells (CTL) to control viral 

load, this is done by killing the infected CD4+ T-cells.  

To the present time, there is no cure for HIV 

infection, however, it can be managed by treatment 

regimens which are combination of antiretroviral drugs. 

These drugs suppress viral replication, reduce the 

amount of HIV in patients’ body and help patients to 

stay healthy. Antiretroviral drugs can be classified into 

six classes consisting of (i) nucleoside reverse 

transcriptase inhibitors (NRTIs), (ii) non-nucleoside 

reverse transcriptase inhibitors (NNRTIs), (iii) 

protease inhibitors (PIs), (iv) integrase inhibitors, (v) 

fusion inhibitors, and (vi) post-attachment inhibitors 

(Karrakchou et al., 2006; Arts et al., 2012; Jones, 

2021). Note that the first two classes ((i) and (ii)) 

are subclasses of RTIs. In this study, we mainly focus 

on two classes which are RTIs and PIs. RTIs treatment 

helps disrupting new infection, whereas PIs inhibits the 

activity for viral replication.  

Mathematical models have been used as useful 

tool to study various infectious diseases including HIV 

infection. Several researchers give attention to HIV 

infection in population level e.g., the work by Aldila, 

2018, Omondi et al., 2019, Munawwaroh et al., 
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2020, Ayele et al., 2021, and Omondi et al., 2022, 

whereas some researchers focus on within-host model, 

e.g., the work by Ogunlaran and Noutchie, 2016, 

Ngina et al., 2017, Sutimin et al., 2018, Sutimin et 

al., 2019, Sutimin et al., 2020, and Arenas et al., 

2021. In this study, we focus on a within-host model 

of HIV infection to better understand the processes 

regulating HIV load dynamics. For within-host HIV 

dynamics, some researchers proposed models involves 

immune response, e.g., the work by Sutimin et al., 

2018, and Sutimin et al., 2019 where Bai and Xu, 

2021 (Bai and Xu, 2021) included immune 

impairment in their model. Several researchers proposed 

a model with antiretroviral treatments, e.g., the work by 

Sutimin et al., 2018, Sutimin et al., 2019, Ouifki and 

Witten, 2007, and Srivastava et al., 2009. Further, 

optimal control problems were applied in some HIV 

infection studies, e.g., the work by Arruda et al., 2015, 

Ngina et al., 2018, Olabode et al., 2019, Tjahjana and 

Sutimin, 2020, and Nath et al., 2023. 

In this study, we propose a deterministic 

model of within-host HIV infection of CD4+ T-cells 

involving immune response and antiretroviral treatment. 

This model extends the work of Sutimin et al., 2019 

by adding the role of immune impairment. Further, we 

also apply optimal control problem by considering both 

drugs RTIs and PIs as control variables in the model, 

where Sutimin et al., (Sutimin et al., 2019) did not 

include in their study. The paper is organized as 

follows. The model description is presented in the next 

section. All model analysis including positivity and 

boundedness of solutions, equilibrium points and their 

stability and the basic reproduction number is presented 

in Section 3. Section 4 introduces the optimal control 

model, where its numerical results are presented in 

Section 5 with some discussion. Finally, we conclude 

this study in Section 6. 

 

2. MODEL FORMULATION 

A mathematical model of HIV infection of CD4+ T-

cells is proposed. We modify the model of Sutimin et 

al., (Sutimin et al., 2019) by considering the 

importance of immune impairment and a reduction of 

free virus due to HIV infection of CD4+ T-cells by free 

virus itself. Later on in Section 4, we apply optimal 

control problem into our model which Sutimin et al., 

(Sutimin et al., 2019) did not study in their model. 

Our model therefore consists of five variables: the 

concentration of susceptible CD4+ T-cells ( )x , the 

concentration of exposed CD4+ T-cells ( )e , the 

concentration of infected CD4+ T-cells ( )y , the 

concentration of free virus ( )v , and the concentration 

of CTL cells ( )z .  The definition of all parameters are 

shown in Table 1. 

 Our proposed model is as follows. 

 1( ) ,
dx

xv kxy u e x
dt

   = − − + + −  

 ,
de

xv kxy e e e
dt

   = + − − −  

 1(1 ) ,
dy

u e dy qyz y
dt

 = − − − −                   (1) 

        2(1 ) ,
dv

u gdy v sv xv
dt

 = − − − −  

  .
dz

byz z myz
dt

= − −  

The initial conditions are (0) 0, (0) 0, (0) 0,x e y  

(0) 0, (0) 0.v z   

 

Table 1 Definition of all parameters used in the model. 

Parameter Description Parameter Description 

  The constant production rate of CD4+ T-cells g  The average number of virus particles produced by infected 

CD4+ T-cells 

  The infection rate of CD4+ T-cells by free virus   The virus clearance rate  

k  The infection rate of CD4+ T-cells by infected cells s  The virus death rate 

  The increase rate of CD4+ T-cells due to RTIs drug b  The proliferation rate of CTL cells 

  The reverting rate of infected cells to uninfected cells due to 

viral reverse transcription incompletion 

  The decay rate of CTL cells 
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Table 1 Definition of all parameters used in the model (cont.). 

Parameter Description Parameter Description 

  The natural death rate of CD4+ T-cells m  The rate of immune impairment 

d  The viral lysis rate of infected CD4+T-cells 1u  The efficacy of RTIs drugs 

q  The rate at which the infected CD4+ T-cells are eliminated 

by the CTL cells 

2u  The efficacy of PIs drugs 

Here we assume that 10 1u   and 20 1u  , and .b m  

 

3. MODEL ANALYSIS 

3.1 Positivity of the solutions 

Theorem 1. With nonnegative initial conditions, all 

solutions of equation (1) remain nonnegative for all 

0.t   

Proof. For 0,t  we consider the five cases where each 

variable is the first variable to become zero and the 

other four variables remain nonnegative.  

1. If ( )x t  is the first variable to become zero at ,= xt t  

then at ,xt  we have from equation (1) that         

               ( ) ( ) ( ) 0, = + + x x

dx
t u e t

dt
 

since ( ) 0xe t and ( ) ( ) ( ) ( ) ( ) 0. + + =x x x x xx t v t kx t y t t  

Therefore, ( ) 0x t  in the positive neighbourhood of 

.= xt t  

2. If ( )e t  is the first variable to become zero at ,= et t  

then at ,et  we have from equation (1) that         

               ( ) ( ) ( ) ( ) ( ) 0,= + e e e e e

de
t x t v t kx t y t

dt
 

since ( ) 0ex t and ( ) 0,ev t ( ) 0ey t  and 

( ) ( ) ( ) 0.  + + =e e ee t e t t Therefore, ( ) 0e t  in the 

positive neighbourhood of .= et t  

3. If ( )y t  is the first variable to become zero at ,= yt t  

then at ,yt  we have from equation (1) that         

              1( ) (1 ) ( ) 0,= − y y

dy
t u e t

dt
 

since ( ) 0ye t and ( ) ( ) ( ) ( ) 0.y y y ydy t qy t z t y t+ + =  

Therefore, ( ) 0y t  in the positive neighbourhood of 

.= yt t  

4. If ( )v t  is the first variable to become zero at ,= vt t  

then at ,vt  we have from equation (1) that         

              2( ) (1 ) ( ) 0,= − v v

dv
t u gdy t

dt
 

since ( ) 0vy t and ( ) ( ) ( ) ( ) 0. + + =v v v vv t sv t x t v t  

Therefore, ( ) 0v t  in the positive neighbourhood of 

.= vt t  

5. If ( )z t  is the first variable to become zero at ,= zt t  

then at ,zt  we have from equation (1) that         

              ( ) 0,=z

dz
t

dt
 

since ( ) ( ) ( ) ( ) ( ) 0.+ + =z z z z zb t t mt t ty z z y z Therefore, 

( ) 0z t  in the positive neighbourhood of .= zt t  

Therefore, the positivity of all solutions of system (1) 

is guaranteed for all 0.t   This completes the proof. 

3.2 Invariant region 

Theorem 2. Given all initial values are nonnegative and 

lie in the biologically feasible region  for system 

(1) defined by  

5 2(1 )
( , , , , ) : , ,

( )

u gdq
x e y v z x e y z v

b s  
+

 −  
 =  + + +   

+  
 

then all solutions of system (1) are nonnegative and 

remain inside the region   for all 0t  .  

 

Proof. We first let ( ) ( ) ( ) ( ) ( ),
q

N t x t e t y t z t
b

= + + +  then 

1dN q q
x e dy y z myz

dt b b
   = − − − − − −        

       
q

x e y z
b

    − − − −  

       , where, min( , ).N    − =             (2) 

By solving (2), we obtain  

 ( ) (0) .

 

−  
 − − 

 

tN t N e             (3) 

Hence, ( )N t  is bounded above by 



 for all initial 

data in . . We next consider  

2 (1 )
dv

u gdy v sv xv
dt

 = − − − −  

          2(1 )  − − −u gdy sv v            (4) 
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                   2(1 ) ( ) .



 − − +u gd s v         (5) 

Similarly, we have  

( )2 2(1 ) (1 )
( ) ( ) .

( ) ( )



   

+ −  − 
 − − 

+ + 

s tu gd u gd
v t v t e

s s
 

Thus, ( )v t  is bounded above by  2(1 )

( )

u gd

s  

− 

+
 for all 

initial data in . . 

Hence, the biologically feasible region   for system 

(1) is defined by  

5 2(1 )
( , , , , ) : , .

( )

u gdq
x e y v z x e y z v

b s  
+

 −  
 =  + + +   

+  
 

This completes the proof. 

3.3 Equilibrium points 

Two equilibrium points are calculated for this 

model. They are 

i) the infection-free equilibrium point: 

    0 0 0 0 0 0( , , , , ) ,0,0,0,0 .E x e y v z
d

 
= =  

 
     (6) 

ii) the infected equilibrium point: 

* * * * *
1 ( , , , , )E x e y v z=  where  

*
*

1

( )
,

( )(1 )

d q z
e

b m u

  



+ +
=

− −

* ,y
b m


=

−

* 2
*

(1 )
,

( )( )

u gd
v

b m s x



 

−
=

− + +

* *
* 1 2 1

*

(1 )(1 ) (1 ) ( )
.

( )( )( )

u u gdx u kx d
z

q qs x q

  

      

− − − +
= + −

+ ++ + + +

*x  is a positive solution of equation  

2
1 2 3 0,A x A x A+ + =  where 

1 1( )(1 )( )A b m u    = − − + +  

        1(1 )( )u k    + − + +      

        1 1(1 )( ) 0u u k   − − +  , 

since 1(1 )( )u k    − + +     

          1 1(1 )( ) ,u u k    − +

2 1( )(1 )( )( )A b m u s    = − − + + +  

  1(1 )( )( )u s k     + − + + +  

  1 2(1 )(1 )( )u u gd    + − − + +  

  1 1(1 )( )( )u s u k    − − + +  

  1( )(1 )( )b m u    − − − + +   

  1 2 1(1 )(1 )( ) ,u u u gd   − − − +  

3 2( )(1 )( )( ) 0.A b m u s    = − − − + + +    

Since 1 0A   and 3 0A  , either the value of 2A is 

positive or negative, there is only one time change of 

sign. By Descartes’ rule of sign, this ensures that there 

is one positive solution of *x . Thus, 1E  exists when 

     
* *

1 2 1
*

(1 )(1 ) (1 )
.

( )( )( )

  

      

− − − +
+ 

+ ++ + + +

u u gdx u kx d

q qs x q
 

3.4 The basic reproduction number 0( )R  

 The basic reproduction number 0( )R  is the 

expected number of secondary cases of HIV infection 

caused by a typical case of infected CD4+ T-cells. The 

next-generation matrix method by van den Drissche and 

Watmough (2002) is used to calculate 0R . We first 

write matrix F  which is the matrix of the rate of 

appearance of new infections and then write matrix V  

which is the matrix of the transfer rate of individual 

infections. F  and V  of our model are shown below. 

0

0

xv kxy + 
 

=  
 
 

F  and 1

2

(1 )

(1 )

e e e

dy y qyz u e

v sv xv u gdy

  

 

 

+ + 
 

= + + − − 
 + + − − 

V . 

The Jacobian matrices of F  and V  are 

0      

0   0   0

0   0   0

kx x

F

 
 

=
 
  

 and  

1

2

  0   0

(1 )      0

0    (1 )   

V u d qz

u gd s x

  

 

 

+ + 
 

= − − + +
 
 − − + + 

. 

We next calculate the next generation matrix as 

follows :

 

The spectral radius of the matrix 1FV − is the basic 

reproduction number, thus 

1 1 2

0

(1 ) (1 )(1 )

.

( )( )

u s k u u gd

R

d s


   




     



 
− + +  + − −  

 
=

 
+ + + + + 

 

           

             

                         (7) 

1
0 0)( ) (−V EF E  

( )
( )

( )
( )

1 1 2 2(1 ) (1 )(1 ) (1 )

( )( ) ( )

0 0 0

0 0 0

    
      

 
 

 

      

    

 

− + + + − − + + + −

+ ++ + + + + + + +

 
 
 
 =
 
 
 
 

gd gdk ku s u u s u

sd s d s
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3.5 Stability of infection-free equilibrium point 

• Local stability of infection-free equilibrium point 

Theorem 3. The infection-free equilibrium point 0( )E  

is locally asymptotically stable if 0 1R  , otherwise it 

is unstable. 

Proof.  The Jacobian matrix at the infection-free 

equilibrium point is 

( )

1

0 0 0 0 0
1

2

           0

0                  0

, , , , .
0   (1 )         0   0

0   0   (1 )      0

0   0      0      0   

k
u

k

J x e y v z
u d

u gd s


  

 


  

 

 








  
− + − − 
 
  

− − − 
 

=  − − −
 

 
− − − − 

 
 − 

 

                                 (8) 

Its first two eigenvalues are 1 0, = −  2 0. = − 

And the characteristic equation for the remaining 3 3  

matrix is 3 2
1 2 3 0a a a  + + + = , where 

1 2 ,


   



= + + + + + +a s d  

12 ( 2 ) ( )( ) (1 ) ,a
k

d s d u
 

       
 

  
+ + + + = + + + + + − −

 
 

3 ( )( )a d s


    


 
= + + + + + 

 
                 

    1 1 2(1 ) (1 )(1 )
k gd

u s u u
   


  

     
− − + + + − −   
   

      

  0( )( ) (1 ).d s R


    


 
= + + + + + − 

 
 

When 0 1R  , we obtain 1 0,a  3 0a   and 

1 2 3 0.a a a−  Thus, with Routh-Hurwitz Criterion,  

the infection-free equilibrium point is locally 

asymptotically stable if 0 1.R   It is unstable when 

0 1.R  This completes the proof. 

• Global stability of the infection-free equilibrium 

point 

We use Lyapunov method (see, e.g., Luenberger, 

1979) and the concept is as follows. 

Let E  be an open subset of n  containing equilibrium 

point 0 .x  Suppose 1( )f C E and that 0( ) 0.=f x  

Suppose further that there exists a real valued function 

1( )L C E  satisfying 0( ) 0=L x  and ( ) 0L x  if 

0 .x x  If  

     1. ( ) 0L x  for all 0\ ,E x  0x  is asymptotically 

stable. 

      2. ( ) 0L x  for all ,x E  0x  is unstable. 

Theorem 4. If 0 1R   and 
2

2
2

( )( )
1

(1 )

s q

u gd

    

 

+ + +
−

− 

1 1u  , then the infection-free equilibrium point 0E  

is globally asymptotically stable. 

Proof. We use Lyapunov method in this proof and it is 

defined as 

1
(1 ) ( )L u s e s y

 
     

 

    
= − + + + + + + +   

   
              

     1
(1 ) .u v






+ −  

Here, L is positive definite. We next calculate the 

derivative of L  with respect to time,  

L de L dy L dv
L

e dt y dt v dt

  
 =  +  + 

  
       

1(1 )u s xv kxy e e e


     


 
= − + + + − − −    

 
      

   1( ) (1 )s u e dy qyz y


     


 
+ + + + + − − − −    

 
 

   
1 2(1 ) (1 )u u gdy v sv xv


 



+ − − − − −  

 

1 1 2(1 ) (1 )(1 )
k gd

u s y u u y
   


  

   
 − + + + − − 

 
 

   ( )( )(d s y


    


 
− + + + + + 

 
 

   2
1

(1 )
(1 )

( )

u gd
u s

s

 


   

  −  
+ − + + 

+ 
 

   ( ) s q


   


 
− + + + +  

 
 

0( )( ) ( 1)d s y R


    


 
= + + + + + − 

 
 

   

2
1 2

2

(1 )(1 )

( )

u u s gd

s


  



 

 
− − + +  

 
+

+
     

   ( ) .s q


   


 
− + + + + 

 
 

We obtain that 0L   when 0 1R   and 

2

12
2

( )( )
1 1.

(1 )

s q
u

u gd

    

 

+ + +
−  

− 
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Therefore, 0E  is globally asymptotically stable if 

0 1R  and 

2

12
2

( )( )
1 1.

(1 )

s q
u

u gd

    

 

+ + +
−  

− 
   

This completes the proof.  

 

4. Optimal control model 

We apply two optimal control variables in the model of 

equation (1). This is to look for the best strategy in 

controlling the HIV infection of CD4+ T-cells. The 

controls variables are  

i) 1( )u t  is the treatment effort by RTIs drugs. 

ii) 2 ( )u t  is the treatment effort by PIs drugs. 

The optimal control is for 0 1,R  and this model can 

be written as 

1( ( ) ) ,
dx

xv kxy u t e x
dt

   = − − + + −

,
de

xv kxy e e e
dt

   = + − − −

1(1 ( )) ,
dy

u t e dy qyz y
dt

 = − − − −               (9)

2(1 ( )) ,
dv

u t gdy v sv xv
dt

 = − − − −

.
dz

byz z myz
dt

= − −  

We would like to minimize the concentration of exposed 

CD4+ T-cells, the concentration of infected CD4+ T-

cells and the concentration of free virus at a minimal 

cost of control over the time interval [0, ]T . The 

objective function is defined by                

1 2 1 2 3
0

( , ) min ( ) ( ) ( )
T

J u u W e t W y t W v t= + +              

                  2 2
4 1 5 2

1
( ( ) ( ))

2
W u t W u t dt


+ + 


. 

The initial conditions are (0) 0, (0) 0,x e… … (0) 0,y …  

(0) 0v …  and (0) 0.z …  

The notations 1 2,W W  and 3W are the weight constants 

and 2
4 1 ( )W u t  and 2

5 2 ( )W u t represent the costs 

associated with antiretroviral drugs used to treat HIV 

infection by disrupting new infection with RTIs drug, 

and antiretroviral drugs used to treat HIV infection by 

blocking protease and preventing new virus from 

becoming a mature virus that can infect other CD4+ T-

cells with PIs drug. The following function is the 

Lagrangian of the optimal control problem: 

1 2 1 2 3( , , , , ) ( ) ( ) ( )f e y v u u W e t W y t W v t= + +                

( )2 2
4 1 5 2

1
( ) ( ) .

2
W u t W u t+ +  

Following the Pontryagin’s Minimum Principle (PMP) 

(Pontryagin et al., 1986), the Hamiltonian for the 

optimal control problem is defined as 

1 2 3( ) ( ) ( )H W e t W y t W v t= + +            

      ( )2 2
4 1 5 2

1
( ) ( )

2
W u t W u t+ +       

      1[ ( ( ) ) ]x xv kxy u t e x    + − − + + −  

      [ ]e xv kxy e e e    + + − − −  

      
1[(1 ( )) ]y u t e dy qyz y  + − − − −  

       2[(1 ( )) ]v u t gdy v sv xv  + − − − −  

       [ ],z byz z myz + − −            

(10) 

where the adjoint functions associated with the state 

equations for ,  ,  ,  x e y v  and z are , , ,x e y v     and 

z , respectively. 

Theorem 6. Let optimal state solutions with associated 

optimal control variables 
*
1 ( )u t , and 

*
2 ( )u t be 

, , ,x e y v  and z . Then, there exists adjoint variables  

, , ,x e y v     and z  satisfying:   

( ) ( ) ( )[ ]x x e vv ky v ky v        = − − + + + + −

1 1 1( ( ) ) ( ) (1 ( ))[ ]e x e yW u t u t         = − + + − + + + −

2 ( )[y x e yW kx kx d qz     = − − + − + +       

2                (1 ( )) ( ) ]v zu t gd bz mz + − + −

3 ( )[ ]v x e vW x x s x        = − − + − + +

( ) .[ ]z y zqy by my    = − − + − −  

Its transversality conditions are 

( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0x e y v zT T T T T    = = = = =  

with characterization of the optimal control  

*
1 1max

4

( )
( ) max 0,min , ,

y xe
u t u

W

   −   
=   

    

*
2 2max

5

( ) max 0,min , .vgdy
u t u

W

    
=   

    
 

Proof. By using the Pontryagin's Minimum Principle, 

we determine the adjoint equations. We differentiate the 
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Hamiltonian with respect to ,  ,  ,  x e y v  and z , 

respectively. The adjoint system is therefore as 

follows : 

( ) ( ) ( )[ ]x x e v
H

v ky v ky v
x

       


 = − = − − + + + + −


 

1 1( ( ) ) ( )[e x e
H

W u t
e

       


 = − = − + + − + +


   

1                             (1 ( )) ]yu t + −

2 ( )[y x e y
H

W kx kx d qz
y

    


 = − = − − + − + +


      

2                             (1 ( )) ( ) ]v zu t gd bz mz + − + −          (11) 

3 ( )[ ]v x e v
H

W x x s x
v

       


 = − = − − + − + +


( ) .[ ]z y z
H

qy by my
z

   


 = − = − − + − −


 

Next, we determine 0
i

H

u


=


 at *,iu  for 1,2i =  and 

we obtain 

4 1
1

( ) 0x y

H
W u t e e

u
   


= + − =


  

   
1

4

( )
.

y xe
u

W

  −
=                  (12) 

5 2
2

( ) 0v

H
W u t gdy

u



= − =


                                

2
5

     .vgdy
u

W


=                   (13) 

Then, we have optimal control variables as 

*
1 1max

4

( )
( ) max 0,min , ,

y xe
u t u

W

   −   
=   

    
          (14) 

*
2 2max

5

( ) max 0,min , .vgdy
u t u

W

    
=   

    
              (15) 

This completes the proof. 

 

5. Numerical simulation of optimal control 

model  

Numerical simulation of the dynamics of the equation 

(9) is performed. We use the forward-backward sweep 

method to solve the optimality system numerically. The 

optimal control is applied continuously for 300 days. 

All parameter values used in this study is shown in 

Table 2. Some parameters used are from previous 

research as indicated in Table 2 and they are based on 

existing experiment data or data collected from clinical 

experiments and some are assumed. The numerical 

results are shown in Figure 1- Figure 3. We divide our 

results into three strategies as shown below.

 

Table 2. Parameter values of the model used in numerical study. 

Parameter Value Unit Ref 

  23  1day−  Arenas et al., 2021 

  0.0005  3 /mm day  Sutimin et al., 2019 

k  0.0008  3 /mm day  Sutimin et al., 2019 

  0.1  1 / day  Sutimin et al., 2019 

  0.01  1 / day  Assume 

  0.02  1 / day  Sutimin et al., 2019 

d  0.24  1 / day  Sutimin et al., 2019 

q  0.01  1 / day  Sutimin et al., 2019 

g  100  /cell day  Sutimin et al., 2019 

  

s  

b  

  

m  

2.4  

2.4  

0.01  

0.05  

0.005  

1 / day  

1 / day  

1 / day  

1 / day  

1 1/− −cells day  

Arenas et al., 2021 

Sutimin et al., 2019 

Sutimin et al., 2019 

Sutimin et al., 2019 

Bai and Xu, 2021 
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5.1 Strategy A : Control with treatment effort by 

using RTIs drug only  

We use control 1u  to optimize the objective function 

while we set 2u to be zero. Figure 1(a) shows that the 

concentration of susceptible CD4+ T-cells ( )x in 

control case is equal to those in non-control case for 

the first few days and after that it largely increases and 

reaches higher equilibrium value than non-control case. 

Figure 1(b) shows that the concentration of exposed 

CD4+ T-cells ( )e  in control condition rarely changes 

in the first 50 days comparing to non-control one, 

whereas after that it drops to zero on 60th  day which 

is lower equilibrium value than non-control case. 

Similarly, Figure 1(c) and (d) show that the 

concentration of infected CD4+ T-cells ( )y and the 

concentration of free virus ( )v  have the same pattern 

as of Figure 1(b). Figure 1(f) shows that the 

concentration of CTL cells ( )z  is largely lower in 

control case than non–control one and drops to zero as 

equilibrium value towards 125th  day. Figure 1(g) 

shows the strategy of 1u that we have to start 

controlling with 1u  at around 7%. After that it has to 

go up to 90% on 30th  day until 300th  day, then it can 

be dropped down to zero.             

5.2 Strategy B : Control with treatment effort by 

using PIs drug only 

Here, we set the control 1u  to be zero and use control 

2u  to optimize the objective function. Figure 2(a) 

shows that the concentration of susceptible CD4+ T-

cells ( )x  in control case decreases much less than in 

non-control one and it fluctuates around 760-960 

3/cell mm  until the end of 300 days which reaches 

higher equilibrium value. Figure 2(b) shows that the 

concentration of exposed CD4+ T-cells ( )e is 

significantly lower in control case for the first peak and 

slightly lower in the second peak than without control 

case. Further, it reaches lower equilibrium value in 

control one comparing to without control condition. 

Figure 2(c) shows that the concentration of infected 

CD4+ T-cells ( )y  is also significantly lower in 

control case, and time for the peak to occur is slightly 

slower than non-control one. However, it can be seen 

that the concentration of infected CD4+ T-cells ( )y is 

slightly higher in the second peak in control case, 

whereas it reduces to the same equilibrium value 

towards the end. Figure 2(d) shows that the 

concentration of free virus ( )v  is dramatically lower in 

control case with the peak of about 25 3/cell mm , 

whereas it reaches the peak to more than 600 

3/cell mm  in no control one. After that it decreases to 

reach lower equilibrium value than without control one. 

Figure 2(f) shows that in control condition, the 

concentration of CTL cells ( )z  is largely lower than 

without control case and is lower all along towards 

300th  day. Figure 2(g) shows that in this strategy we 

have to start controlling 2u  at the maximum rate of 

90% for all 300 days and finally it can be dropped 

down to 0% at the end. From results above, this strategy 

demonstrates that 2u  could have a bigger impact in 

reducing the concentration of ,e ,y v  and .z  

5.3 Strategy C : Combination of all controls 

A combination of both controls is applied to optimize 

the objective function. Figure 3(a) shows that the 

concentration of susceptible CD4+ T-cells ( )x reduces 

much slower in control case than without control one 

and after 30 days it gradually increases to almost 1,148 

3/cell mm  at the end. Figure 3(b) shows a dramatic 

decrease in the concentration of exposed CD4+ T-cells

( )e in control case with the peak of about 417 

3/cell mm , whereas it increases and reaches the peak 

of more than 1,077 3/cell mm  in non-control case. 

After that it drops to zero on the 75th  day in control 

case, which gives better result than Strategy A and B. 

Similarly, Figure 3(c) shows a dramatic reduction in 

the concentration of infected CD4+ T-cells ( )y in 

control case with the peak of about 58 3/cell mm , 
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whereas it increases and reaches the peak of more than 

125 3/cell mm  in non-control one. Then, it drops to 

zero on the 75th  day in control condition, which again 

gives better result than Strategy A and B. In the control 

condition, Figure 3(d) shows a significant decrease in 

the concentration of free virus ( )v  with the peak of 

about 25 3/cell mm , whereas it increases and reaches 

the peak of more than 600 3/cell mm  in without 

control one, and it reaches zero on the 25th day. 

Finally, Figure 3(e) shows that the concentration of 

CTL cells ( )z  reduces largely in control case and it 

reduces to reach zero on 125th  day. Hence, we can see 

that the results in this strategy gives better control in 

reducing the HIV infection than previous two strategies. 

Figure 3(f) shows that in this strategy we need to start 

controlling 1u  from 0% for about 15 days and 

increases 1u  gradually to 90% on 105th  day, then 

remains at 90% until 290th  day. After that we can 

gradually drop 1u  to zero towards the 300th  day. 

Further, Figure 3(g) shows that we need to start 

controlling 2u  at the maximum rate of 90% for all 

300 days and can drop it to zero on 300th  day. 

 Overall, our results demonstrate that with the 

treatment effort, i.e.,  the use of  RTIs drug 1( )u  alone 

in Strategy A can slightly reduce the concentration of 

,e  ,y v  and z , although the equilibrium value of ,e  

y  and v  reach zero. The use of  PIs drug 2( )u  alone 

gives a better result in reducing ,e ,y v  and z than a 

control with 1u alone, although the equilibrium value 

of e  and y  do not seem to reach zero. Further, 

Strategy C shows that when using both drugs, the 

concentration of ,e ,y v  and z  not only reduce 

largely as Strategy B, but also reach zero as Strategy A. 

Moreover, time for the peak to occur of ,e ,y v  and z  

in control case is slightly later than those of non-control 

case. Hence, Strategy C gives the best result.   

 

 

 

Figure 1 Numerical simulation of the optimal control model (9) with treatment effort by using RTIs drug of 
1u alone when 

1max 0.9.u =  
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Figure 2 Numerical simulation of the optimal control model (9) with optimal control of treatment effort by using PIs drug of 
2u  alone when 

2 max 0.9.u =  
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Figure 3 Numerical simulation of the optimal control model (9) with all optimal controls 
1u  and 

2u  when 
1max 2 max 0.9.u u= =  

 

6. Conclusions  

Even with great attempt of various organization trying 

to eliminate HIV infection, there are still a high number 

of HIV infected patients globally every year. A better 

understanding of virus kinetic of HIV infection 

therefore remains essential. In this study, we propose a 

within-host model of HIV infection of CD4+ T-cells. 

The model is modified from the work of Sutimin et al., 

(Sutimin et al., 2019) by including the immune 

impairment and a fact that free viruses are reduced due 

to an HIV infection by free virus itself. The model 

consists of five variables: the concentration of 

susceptible CD4+ T-cells ( )x , the concentration of 

exposed CD4+ T-cells ( )e , the concentration of 

infected CD4+ T-cells ( )y , the concentration of free 

virus ( )v , and the concentration of CTL cells ( )z . 

The positivity and boundedness of model solutions are 

verified. Two equilibrium points are obtained and they 

are infection-free and infected steady state. The basic 

reproduction number is calculated and when it is less 

than a unity, an infection-free equilibrium point is 

locally stable. When it is greater than one, an infected 

equilibrium point exists. Infection-free equilibrium 

point is globally stable when they meet some required 

conditions. In addition, optimal control problem is 

applied into the model by considering both type of 
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antiretroviral drugs, which are RTIs and PIs drugs as 

control variables. We performed some numerical 

simulations of optimal control model. The results 

demonstrate that RTIs drug alone could slightly reduce 

an HIV infection whereas the PIs drug alone gives better 

result in reducing the infection than RTIs drug. 

Nevertheless, for eliminating an HIV infection of CD4+ 

T-cells, a combination of both types of drugs gives the 

best result. Our study therefore encourages a mixed use 

of antiretroviral drugs, RTIs and PIs, however, an 

amount of each type of drugs are to be decided by the 

medical doctors. Further, we like to point out that our 

numerical results of optimal control model show that 

with optimal control, it can reduce an infection to zero. 

However, if the controls are omitted, an infection could 

occur and increase again. Hence, antiretroviral drugs are 

required to make 0 1R   in order to let the infection-

free equilibrium point stable all the time. 
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