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ABSTRACT  

 In this paper, exact traveling wave solutions of the (1+1)-dimensional Landau-Ginzburg-Higgs equation 

and the (3+1)-dimensional modified KdV-Zakharov-Kuznetsov equation, which are the partial differential 

equations for ion wave equations, are extracted using the Riccati-Bernoulli sub-ODE method. The obtained 

solutions are shown by hyperbolic and trigonometric functions, which can be transformed into kink waves and 

periodic waves in their physical nature. 
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1. INTRODUCTION  

 Partial differential equations are highly useful 

equations used in real-world situations in applied and 

engineering sciences. The most widely used scenarios 

are plasma physics, atmospheric pollutant dispersion, 

solid state physics, plasma waves, fluid mechanics, 

chemical kinematics, chemical physics, etc. Many 

researchers have employed a variety of methods to get 

exact solutions of partial differential equations, namely 

the simple equation method (Sanjun & Chankaew, 

2022), the Runge-Kutta method (Hosseini et al., 

2023), the modified simple equation method (Akter & 

Akbar, 2015), the tanh-coth method (Kumar & 

Pankaj, 2015), the tanh method (Babi & Mohyud-

Din, 2014), the sin-cosine method (Raslan et al., 

2017), the sine-Gordon expansion method (Iatkliang 

et al., 2023), the unified method (Abdel-Gawad et al., 

2022), the ansatz method  (Hosseini et al., 2023), 

the new generalized ( / )G G -expansion method 

(Akbar et al., 2018), the Exp-expansion method (He 

& Wu, 2006), the homotopy perturbation method 

(Roozi et al., 2011), the Jacobi elliptic function 

method (Ali, 2011 and Hosseini et al., 2023), the 

generalized method (Hosseini et al., 2023), etc. 

The Landau-Ginzburg-Higgs equation 

(LGHE) is a typical nonlinear wave equation that was 

used to explain the drift cyclotron waves for a coherent 

ion-cyclotron wave in a radially inhomogeneous plasma 

and has the following form: 

2 2

2 2 3

2 2
0,

q q
g q h q

t x

 
− − + =

 
 

where x  and t  are normalized space and time 

coordinates, respectively, and ( , )q x t  is the ion-

cyclotron wave is electrostatic potential (Barman et al., 

2021).  
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 The Zakharov-Kuznetsov (ZK) equation 

governs the behavior of weakly nonlinear ion-acoustic 

waves in a plasma comprising cold ions and hot 

isothermal electrons in the presence of a uniform 

magnetic field (Munro & Parkes, 1999). The modified 

(3+1)-dimensional KdV-ZK equation is shown as: 

2
( ) 0,

t x xx yy zz x
u au u u u u+ + + + =                

where ( , , , )u u x y z t=  and a  is a nonzero constant 

(Alam et al., 2015).  

 The Riccati-Bernoulli sub-ODE method was 

first proposed to construct exact traveling wave 

solutions, solitary wave solutions, and peaked wave 

solutions for nonlinear partial differential equations 

(Yang, 2015). The Riccati-Bernoulli sub-ODE 

method was used to investigate exact solutions to 

various equations, such as the perturbed nonlinear 

Schrodinger equation in 2016 (Shehata, 2016). The 

thin film equation, the dispersive long wave equation, 

the modified KdV-KP equation and the nonlinear ZK-

MEW equation in 2020 (Alharbi & Almatrafi, 2020). 

Hassan & Abdelrahman, 2019) were solved by the 

Riccati-Bernoulli sub-ODE method to investigate the 

exact solutions of the Schrödinger equation and the 2D 

Ginzburg-Landau equation.                

 In this work, we use the traveling wave to 

transform the (1+1)-dimensional LGH equation and 

the (3+1)-dimension modified KdV-ZK equation into 

nonlinear ordinary differential equations. Then, using 

the Riccati-Bernoulli sub-ODE method, we have 

obtained the wave solutions in 3D graphs. 

2. Algorithm of the Riccati-bernoulli sub-ODE 

method  

 In this section, we provide a straightforward 

approach for finding traveling wave solutions to 

nonlinear equations, namely the Riccati-Bernoulli sub-

ODE method. Assume that the nonlinear partial 

differential equation with two independent variables x  

and t  is represented by: 

( , , , , , ...) 0,
t x tt xx xt

P u u u u u u =             

where P  is a polynomial in ( , )u x t  and its partial 

derivatives in which the highest-order derivatives and 

nonlinear terms are involved. The following steps are 

the main procedure of the Riccati-Bernoulli sub-ODE 

method (Abdelrahman et al., 2019): 

Step 1: Denoting the traveling wave solution of PDE 

(1) as:  

( )( , ) , ,u x t u x t  = = −  

where   is speed of traveling wave, then Equation (1) 

reduces to a nonlinear ordinary differential equation 

ODE: 

( , , ,...) 0,Q u u u  =  

where Q  is a polynomial of ( )u   and its derivatives, 

where the prime represents the derivative with respect 

to .  

Step 2: Assume the solution (2) of Equation (3) 

satisfies  

2
( ) ,

n n
u au bu cu − = + +  

where , ,a b c  and n  are constants to be determined. 

From Equation (4), we get 

( ) ( ) ( )

( ) ( )

2 2 3 2

2 2 1 2

3 2

1 2 ,

n n

n n

u ab n u a n u

nc u bc n u ac b u

 − −

−

 = − + −

+ + + + +
 

 
 

( ) ( )( ) ( )(

( ) ( )

( ) ( ))

1 2

2 2 2 2 2

1 2

3 2 2

3 2 2 1

1 2 .

n

n n

n

u ab n n u a n

n u n n c u

bcn n u ac b u

 −

− −

−

 = − − + − 

− + −

+ + + +

 

 

2.1 Classification of the solution 

 The solution of Equation (4) can be classified 

into the following cases. 

Case 1: When 1,n =  then 

( ) ( )
.

a b c
u e

  + +=  

Case 2: When 1, 0n b =  and 0c=  then 

( ) ( )( )( )
1

11 .nu a n   −= − +  

 

 

 

(2)  

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 

https://www.degruyter.com/search?query=keywordValues%3A%28%22Schr%C3%B6dinger%20equation%22%29%20AND%20journalKey%3A%28%22IJNSNS%22%29&documentVisibility=all&documentTypeFacet=article
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(14) 

(17) 

(18) 

(23) 

(24) 

(19) 

(20) 

(21) 

(22) 

Case 3: When 1, 0n b  and 0c=  then 

( ) ( )

1

1
1

.
n

b na
u e

b

 
−− = − + 

 
 

Case 4: When 1, 0n a  and 
2

4 0,b ac−   then  

( )
( )

( )

1

12 2
4 1 4

tan ,
2 2 2

n
b ac b n ac b

u
a a

  
−  − − − −

= + +    
  

 

 

and 

( )
( )

( )

1

12 2
4 1 4

cot .
2 2 2

n
b ac b n ac b

u
a a

  
−  − − − −

= − +    
  

 

 

Case 5: When 1, 0n a  and 
2

4 0,b ac−   then 

( )
( )

( )

1

12 2
4 1 4

coth ,
2 2 2

n
b b ac n b ac

u
a a

  
−  − − − −

= − +    
  

 

 

and 

( )
( )

( )

1

12 2
4 1 4

tanh .
2 2 2

n
b b ac n b ac

u
a a

  
−  − − − −

= − +    
  

 

 

Case 6: When 1, 0n a  and 
2

4 0,b ac− =  then 

( )
( )( )

( )

1

11
.

1 2

nb
u

a n a


 

− 
= − 

− + 
 

For Equations (7) - (14), the parameter   is an 

arbitrary constant.  

Step 3: Substituting the derivatives of u  into Equation 

(3) gives an algebraic equation for .u  Then setting the 

coefficients of ,( 0,1,2,...),
i

u i = to be zero yields a 

set of algebraic equations for , , ,a b c  and .  Solving 

these algebraic equations and substituting , , , , ,a b c n   

and x t = −  into Equations (7)-(14), we have 

traveling wave solutions of Equation (1).  

 

 

 

3. RESULTS  

 Next, using the Riccati-Bernoulli sub-ode 

method explained above, we want to solve the Landau-

Ginzburg-Higgs equation and the (3+1)-dimensional 

modified KdV-Zakharov equation as follows. 

 

3.1 Results of the (1+1)-dimensional LGH equation 

 The (1+1)-dimensional Landau-Ginzburg-

Higgs equation is 

2 2 3
0,

tt xx
u u p u q u− − + =                      

where p and q  are parameters. We will reduce it to an 

ODE using ( ) ( , )u u x t = and the traveling wave 

variable .x t = −  The substitution of the 

transformation into equation (15) yields 

( )2 2 2 3
1 0.u p u q u − − + =  

Substituting Equation (5) into Equation (16), the 

outcome is 

( ) ( ) ( )( 2 2 3 2 2 22 1
3 21

n n n
ab n u a n u nc u − − −− + − +−  

( ) ( ) )2 2 2 3
1 2 0.

n
bc n u ac b u p u q u+ + − ++ + =  

 

Setting 0,n =  Equation (17) is rewritten as 

( ) ( )( )( )

( )

2 2 2

3

2

22 2

2

3 0,

1 1

1

bc a

b

pc b u

a u q u

 



−+ +

−+ + =

− −
 

then, equating the coefficient of 
i

u  to zero, where 

0 1 2
, ,u u u and 

3
u   yields: 

( )2
1 0,bc − =  

( )( )22 2
1 0,2ac b p −+− =  

( )2
1 0,3ab − =  

( )( )22 2
1 0.2a q − + =  

Solving Eq. (19)-(22), we obtain 

0,b =  

( )2
,

12

q
a


= 

−
 

 

(9) 

(10) 

(12) 

(11) 

(13) 

(15) 

(16) 
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(33) 

(25) 

(26) 

(28) 

(30) 

(31) 

(40)    

(27) 

(41)    

( )

2

2
,

2 1

p
c

q 
=

−
 

( )

2

2
.

2 1

p
ac


=

−
 

 The solution of Equation (15) can be 

classified into the following cases according to Section 

2.1: 

Case  : When 0,n =  0a  and − 2
4 0,b ac   

we get 

( )
( )

( )
 
 =  − +
 − 

1,2
2

, coth ,

2 1

p p
u x t x t

q
 


 

 

and 

( )
( )

( )
 
 =  − +
 − 

3,4
2

, tanh .

2 1

p p
u x t x t

q
 


 

 

When   and   are arbitrary constants. 

 

 If equation (17) is set to 1,n =  we will get 

0,q=  causing the equation of the (1+1)-dimensional 

Landau-Ginzburg-Higgs to have some terms missing, 

and therefore incomplete. 

 

 

3.2 Results of the (3+1)-dimensional modified 

KdV-ZK equation 

 The (3+1)-dimensional modified KdV-ZK 

equation: 

     ( )2
0,

t x xx yy zz x
v v v vv v+ + + + =  

where   is a nonzero constant. Using 

( ) ( )v v x y z t = + + − and the traveling wave 

variable ,x y z t = + + − (31) is transformed 

into the following ODE: 

( )2
0.3v v v v −  + +  =   

Integrating Eq. (32) with zero constant, we get:  

31
3 0.

3
v v v − + + =  

Substituting ( ) ( ) ( )2 2 3 2
3 2

n n
v ab n v a n v − − = − + − +

( ) ( )2 2 1 2
1 2 ,

n n
nc v bc n v ac b v

− + + + +  into Equation 

(31), and also the outcome is: 

( ) ( )(

( ) ( ) )

3 2 2 3 2

2 2 1 2

1
3

3

.

3 2

1 2 0

n n

n n

v v ab n v a n v

nc v bc n v ac b v

  − −

−

− + + − + −

+ + + + + =

 

Setting 0,n =  Equation (32) is rewritten to: 

( )2 2

2 3

3 6 3 9

1
6 0,

3

bc ac b v abv

a v





+ + − +

 + + = 
 

 

 then, equating the coefficient of 
i

v  to zero, where 

0 1 2
, ,v v v  and 

3
v  yields: 

3 0,bc =  

2
0,6 3ac b − =−  

9 0,ab =  

21
6 0.

3
a + =  

Solving Eq. (34)-(37), we obtain 

0,b =  

1
,

3 2
a


=  −  

.
2

c



= 

−
 

.
6

ac


=  

 The solution Equation (29) can be classified 

into the following cases according to Section 2.1: 

Case  : When  , 00n a=   and 
2

4 0b ac−  , 

we get 

( ) ( )
1,2

3
, , , tan ,

6
v x t y zy z x t

 



+ +

 
=  − + 

 
−  

 

 

(32) 

(34) 

(35) 

(37)  

(38)  

(39)  

(42)    

(29) 

(36) 
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(43)    

and 

( ) ( )
3,4

3
, , , cot .

6
v x t y zy z x t

 



+ +

 
=  − + 

 
−  

 

When   and   are arbitrary constants. 

 

 Similarly, if equation (32) is set to 1,n =  

we will get 0, =  causing the equation of the 

(3+1)-dimensional modified KdV-ZK to have some 

terms missing, therefore incomplete. 

 

4. Graphical representation of some obtained 

solution                                                                  

 In this section, we will discuss the physical 

interpretations from the graphical representations of the 

solution of the (1+1)-dimensional LGH equation and 

the (3+1)-dimensional modified KdV-ZK equation. 

  

4.1 Graphical representation of the (1+1)-

dimensional LGH equation 

  

 We present the three-dimensional plots of  the 

exact solutions 
1,2

( , )u x t  in Case   shown in Figure 1 

and Figure 2 which both plots represent the shape of a 

kink wave solution. 

 
 

 

 

 
 

 
 

 

 
 

 

( )
( )

( )
 
 = − +
 − 

1
2

, coth .

2 1

p p
u x t x t

q
 


 

Figure 1 The solution 
1
( , )u x t  with 2, 1,p q= =   

0.5, 0.1 = =  and 10 , 10x t−   . 

 

 

 

 

 

 

 

 

 

( )
( )

( )
 
 = − − +
 − 

2
2

, coth .

2 1

p p
u x t x t

q
 


 

Figure 2 The solution 
2
( , )u x t  with 2, 1,p q= =   

0.5, 0.1 = =  and 10 , 10x t−   . 

 

The graphs of 
3,4

( , )u x t  in Case  , as shown 

in Figure 3 and Figure 4, are the shapes of kink waves 

that rise or descend from one asymptotic state to 

another. 

 

 

 

 

 

 

 

 

( )
( )

( )
 
 = − +
 − 

3
2

, tanh .

2 1

p p
u x t x t

q
 


 

Figure 3 The solution 
3
( , )u x t  with 2, 1,p q= =   

0.5, 0.1 = = and 10 , 10x t−   . 
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( )
( )

( )
 
 = − − +
 − 

4
2

, tanh ,

2 1

p p
u x t x t

q
 


 

Figure 4 The solution 
4
( , )u x t  with 2, 1,p q= =   

0.5, 0 = = and 10 , 10x t−   . 

 

4.2 Graphical representation of the (3+1)-

dimensional modified KdV-ZK equation 

Next, we present the shape of solutions to the 

(3+1)–dimensional modified KdV-ZK equation. 

Solutions 
1,2

( , , , )v x y z t  correspond to Figures 5 and 

6, and solutions 
3,4

( , , , )v x y z t  correspond to Figures 

7 and 8. All of them produce a periodic traveling wave 

solution. 

 

 

 

 

 

 

 

 

 

( ) ( )
1

3
, , , tan ,

6
v x y zy z t tx 

 




 
= − +−


+ 


+  

Figure 5 The solution 
1
( , , , )v x y z t  with = −3

= =2, 0.1   and  0 , 100x t  for = =0.y z  

  

 

 

 

 

 

 

 

 

( ) ( )
2

3
, , , tan ,

6
v xx y z t y z t

 




 
= − − +−


+ 


+  

Figure 6 The solution 
2
( , , , )v x y z t  with = −3

= =2, 0.1   and  0 , 100x t  for = =0.y z  

 

 

 

 

 

 

 

 

( ) ( )
3

3
, , , cot .

6
v x y zy z t tx 

 




 
= − +−


+ 


+  

Figure 7 The solution 
3
( , , , )v x y z t  with = −3

= =2, 10   and  0 , 100x t  for = =0.y z  

 

 

 

 

 

 

( ) ( )
4

3
, , , cot .

6
v xx y z t y z t

 




 
= − − +−


+ 


+

Figure 8 The solution 
4
( , , , )v x y z t  with = −3

= =2, 10   and  0 , 100x t  fo = =0.y z  
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5. Conclusion 

In this work, using the Riccati-Bernoulli sub-

ODE method, we investigated exact traveling wave 

solutions for the (1+1)-dimensional Landau-

Ginzburg-Higgs equation and the (3+1)-dimensional 

modified KdV-Zakharov-Kuznetsov equation. The 

solutions are found in trigonometric and hyperbolic 

forms. In addition, we can solve nonlinear evolution 

equations in mathematical physics using this method.               

The Riccati-Bernoulli sub-ODE method is 

easy to understand. This research also demonstrates that 

the proposed method is quite practical and appropriate 

for finding exact solutions to the (1+1)-dimensional 

Landau-Ginzburg-Higgs equation and the (3+1)-

dimensional modified KdV-Zakharov-Kuznetsov 

equation. The performance of this method is reliable and 

effective, and it gives exact solitary wave solutions. 
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