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ABSTRACT  

 This study applied L1- Lasso estimation for Cox proportional hazards model to select variables that are relevant to credit 

repayment rates of loan in Microfinance bank. Records of 186 borrowers in Federal College of Education Zaria Nigeria Microfinance 

bank who took loans from 2017 to 2022 were used to identify the most predictive variables for repayment rates of loan. The findings 

of this study reveal that age of the borrowers, loan amount, occupation, type of collateral, residence and amount of loan influence the 

repayment rates of loan.  Finally, the variables selected by the model can be used in granting loan to borrowers in Microfinance 

banking. R Programming Language was used for the analysis. 
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1. INTRODUCTION 

Basically, banks and other financial institutions 

engage in the following essential activities. These are: 

1) accepting and safeguarding customer deposits 

including other assets. 

2) making payments on behalf of customers. 

3) granting credit to customers and 

4) making investment.  

The primary activity amongst these have been 

granting credit, and sometimes customers fail to repay 

the debt in time which they contractually owe in form 

of principal, interest and other fees, thereby defaulting 

on their obligation. This exposes such institutions to 

credit risk (Thackham, 2021). The term bank credit 

refers to the amount of credit available to a business or 

individual from a banking institution in the form of 

loans. It is the sum of money a person or business can 

borrow from a bank or other financial institutions 

(Twin, 2020). Risk Management is an important facet 

of Bank’s policies. According to (Gunduz, 2020) 

credit risk is arguably the most significant, especially 

for commercial banks. In (Apostolik et al., 2009) 

defined credit risk as “the potential loss a bank would 

suffer if a borrower fails to meets its obligations”. 

Socio-political and economic development of any 

country mostly rely on the ability of its banking 

institutions to give loans to their customers. It is one of 

the major economic functions of banks to finance 

investment activities by government, business and 

individuals. Granting credit to customers supports the 

growth of new businesses and jobs which promote 

economic activities.  Banks earn most of their revenues 

from loan accounts.  The repayment behavior of such 

loans is associated with many factors in the banking 

system (Li et al., 2022). When a bank experiences a 

financial problem, it may be as a result of bad loans.  

Banks are interested in ascertaining factors that are 

mostly influential in predicting loan repayment rates of 

the customers.  

Survival analysis methods possess the ability to 

model the loan repayment rates of borrowers. It is a 

statistical procedure for data analysis for the estimation 
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of time until an event occurs. In this paper the event of 

interest is the loan repayment. In survival analysis, the 

estimated time for loan repayment can be the number of 

months (or days) from the day this loan is granted to 

the day the loan is repaid. 

An event in survival analysis can be referred to as 

different outcomes obtained in a study. In medicine, the 

event can be the onset of a disease or death. In 

engineering, event can be a failure of a machine or an 

equipment system. In social sciences, event can be a 

change in social status of an individual. Survival 

analysis can also be applied in credit modelling, where 

the time to repayment of loan can be modelled. Survival 

data can be divided into complete and censored. 

Complete data refers to an observation that contains the 

beginning and end date which is determined by the 

event time. On the other hand, censored data is 

incomplete and it occurs when the required information 

is not available from the beginning to the end of the 

study. The three types of censored observations can be 

collected in survival analysis studies. These are: 

1) right-censored observations 

2)  left-censored observations and 

3) interval censored observations  

Right-censored observations occur most in survival 

analysis studies because, the actual survival times of the 

individual which is “incomplete” (i.e censored) at the 

right-hand side of the follow-up period of the study 

giving the observations that is short of the actual 

survival time (Kleinbaum & Mitchel, 2005). Right-

censoring occurs when an individual did not experience 

the event before the study end, when an individual is 

lost to follow up and when an individual withdraws 

from the study. 

The traditional linear regression models cannot be 

applied to survival data or time-to-event data. This 

may result in biased estimation and the results may be 

misleading (Zhang et al., 2021). 

The methods of survival analysis can be applied to 

credit risk management due to the need of accurate 

credit risk calculations. Credit risk analysis is important 

in financial risk management, especially, in practical 

applications (Assef & Steiner, 2020).  In (Doris et al., 

2022) observed that, survival analysis studies allow for 

the prediction of time to default of loan obtained by 

considering the length of time taken, between the origin 

of loan and its default. Credit risk in finance and 

banking has drawn a considerable research attention 

(Mungasi & Odhiambo, 2019).  Repayment of loan 

performance refers to the total sum of loans, a customer 

paid on time which was agreed between the parties.  

When a loan is not repaid, it may be due to inability of 

the customer to repay or he/she is not willing to repay 

(Nawai & Shariff, 2013).  Ganiyu states that in the 

study of perspective on Nigerian financial safety net 

with qualitative analysis procedures, most banks had 

poor credit policies. Large amount of loans was granted 

without due regard of the ability of the customers to 

repay.  In (Okpara, 2009) noted that the high rates of 

bank failure in Nigeria may be as a result of poor credit 

policies in place. According to (Xia et al., 2021) with 

recent advancement, accurate survival models are 

applied in the assessment of credit risk. 

2. MATERIALS AND METHODS 

A total of 186 customers who took loans from 

Federal College of Education Microfinance Bank Zaria, 

Nigeria were included in the study. The study aims to 

identify the factors that are associated with customers' 

repayments rates of loan in Microfinance bank. The 

dataset contains client descriptive variables which can 

influence the loan repayment rates.  These are personal 

information about the client. It includes age (x1), 

gender (x2), marital status (x3), educational 

background (x4), residence (urban/rural) (x5), 

occupation (civil servant/business) (x6), purpose of 

loan (x7), type of collateral (x8), loan amount (x9), 

repayment time (x10) and repayment periods (y). Cox 

with L1-Lasso models were applied to perform variable 

selection, examine the regression coefficients path and 

build a model that can predict time-to-event of 

repayment rates of loan. 

The following are some of the functions that are 

studied in survival analysis methods. These are survival 

function, hazard function, probability density function 

and cumulative hazard function. Let ‘T’ be a non-
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negative random variable of survival time of a bank 

borrower from the time the loan is granted to the time 

the loan is repaid representing time until some events of 

interest occurs (such as repayment of loan). The 

response (dependent) variable has two parts – survival 

function and hazard function. The survival function is 

the complement of the hazards function and survival 

function describes the probability of loan repayment up 

to a specified duration of time. The hazard function on 

the other hand, describes the probability of not paying 

the loan in a specified period of time given T > t (cond. 

prob) (Sangeetha & Chitra, 2021).  

Given a distribution of a random variable ‘T’ the 

survival function denoted as S(t) is given as: 

( ) ( ) 1 ( )S t P T t F t=  = −              (1)            
 

where F(t) is the cumulative distribution function of 

‘T’ representing the cumulative probability of a 

customer chosen at random to have a survival time ‘T’ 

less than some stated value ‘t’, and is given as: 
 

 
0( ) ( ) ( )
t

F t P T t f u du=  =        (2)   
   

where ‘f’ is the probability density function of ‘T’ 

The hazard function denoted as ( )h t  and is given 

as: 
 

    
0

( | ) ( )
( ) lim

( )t

P t T t t T t f t
h t

t S t →

  + 
= =


   (3) 

 

Here, the hazard function ( )h t is the conditional 

probability that the loan repayment occurs in time 

interval ( , )t t t+   given that the loan repayment 

has not occurred before time t. (3) can be written as: 
 

              ( )
( )

1 ( )

f t
h t

F t

=

−

                 (4)                                   

 

Probability density function f(t) of survival time ’T’, 

refers to the limit of probability in which a customer repays 

the loan in a small time period ‘t’ to  

(t + t) per its time interval of length t  and is given as: 
 

0

( )
( ) lim

t

P t T t t
f t

t →

  + 
=


      (5)     

Cumulative hazard explains the accumulated hazards to 

time ‘t’. Thus, the cumulative hazard function, denoted 

as H(t) is obtained by taking the integral of hazard 

function given as: 
 

0

( ) ( ) .

t

H t h u du=                  (6) 

 

The cumulative hazard describes the cumulation of risks 

of a customer when the time passes from 0 to t.  

 

2.1 Least Absolute and Shrinkage Selection Operator 

(Lasso) 

In this study, we focus on identifying the predictor 

variables (or exposure variables) that have the strongest 

impact on the repayment rates of loan by a customer. 

The study aims to use those predictor variables (x’s) to 

predict the repayment rates of loan. The study will 

utilize the L1- Lasso and Cox proportional hazards 

approaches to the dataset.  The Cox proportional 

hazards model is used to investigates the impact of 

different predictor variables on the probability of loan 

repayment while the L1- Lasso penalized model, select 

the most predictive variables and avoid overfitting.  

L1 - Lasso method proposed by (Tibshirani, 1996), 

regularizes linear regression method which shrinks the 

coefficients closer to zero and other coefficients to 

exactly zero for a sparse solution and therefore, 

improving the interpretation of the model.  

Nowadays, we collect more and more data. 

Sometimes with many and poorly described different 

kind of variables.  In some researches, data are collected 

with more variables than the observations. Lasso is a 

procedure designed to scout through the data and extract 

few variables that have the ability to predict outcomes 

with accuracy. The main purpose of Lasso is to perform 

variable selection and regularization in order to enhance 

simplicity and accuracy of the model. This is achieved 

by adding penalty term to the linear regression. Lasso 

shrink unimportant variables to zero and the nonzero 

variables are selected to be utilized in the model. Lasso 

is a refined procedure that minimize the prediction 

errors encountered in statistical modeling. 
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L1 - Lasso model forms a diamond shape in the 

plot for its constrained region, as shown in Figure 1. 

The diamond shape includes corners, and the proximity 

of the first point to the corner shows that the model 

comes with one coefficient, which is equal to zero. 

Thus, shrinking the regression coefficient of the 

variable to zero to perform variable selection. The 

closeness of the first point to the corner of the diamond 

shape shows that L1 - Lasso model comes with one 

coefficient of a variable, which equal to zero. Thus, 

shrinking the coefficient in the model to zero to select 

variable. In Figure 1, x-axis represents the coefficient 

( 1 ) and y-axis represents the coefficient ( 2 ). The 

red ellipses contour represents the Residual Sum of 

Squares (RSS). 
 

Figure 1 Lasso Geometry (https://corporate financeinstitute.com/data- 

              science lasso) 

 

L1 - Lasso model adds a constraint (or penalty)  

( 1 
) to obtain  equation (8). The consequence 

of applying this constraint is to reduce the regression 

coefficient towards zero, so that less contributive 

variables will have a regression coefficient close to zero 

or exactly equal to zero. In penalized regression, the 

aim is to reduce the impact of multicollinearity since 

predictor variables in the study may be highly related to 

one another (Abhinaya et al., 2021). L1 - Lasso 

selects variable and estimate the coefficient 

simultaneously by constraining the log-likelihood 

function of variable coefficients. Given a linear 

regression model: 
 

Y = X
T 

 +                         (7)                                                                                                                                              

    

where Y is an 1n  column vector of dependent 

variable,  X is an n p  matrix of predictor variables 

and   is a 1p  column vector of parameters. The 

last 1n column vector is a vector of error terms. Also, 

0 1 2, , ..., pb b b b are the estimates of unknown 

parameters 1 2, ,..., p   . In L1 - Lasso method, the 

coefficient β are estimated by minimizing    

^
2

2
1

arg minLasso y x


   = − +  (8)                                                                 

                                                   

2
^

1 1 1

arg min | |
p pn

Lasso i j ij j

i j j

y x


   
= = =

  
 = − + 
   

    

(9)                                                                                       

                                                                                      

where  

            n  is the number of observations 

           p  is the number of predictor variables     

         0    is the regularization parameter.  

^

  = argmin

2

1 1

( )
pn

i j ij

i j

y x
= =

−                  (10)   

 where 
1

| |
p

j

j


=

       t                                                                                 

Lambda ( ) is the regularization parameter which 

controls the shrinkage in estimating the coefficients of 

L1 – Lasso model and   0. If the lambda ( ) 

value is large enough more variables of estimated 

coefficient   become zero, and the nonzero coefficient 

of variables will be shrunken toward zero. If lambda  

( ) is small, it implies less regularization by the 

model. Cross-validation is a method applied to estimate 

the lambda (𝜆) parameter. When a small value of 

lambda (𝜆) is estimated, it may result in over fitting of 

the model. On the other hands, a large value of lambda 

(𝜆) would lead to under fitting, because the procedure 

may not be able to capture the relationship in the model 

(Thevaraja et al., 2019). A ‘one-standard-error rule' method 

in cross-validation, will be applied to select the best lambda  

( ). For each 𝑀𝑆𝐸(𝜆𝑠) the standard error of the 

mean is obtained, and the largest 𝜆𝑠 is selected for 

which 𝑀𝑆𝐸(𝜆𝑠) is within one standard error of the 

minimum MSE value. Thus, we obtain a regularized 
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regression model while the MSE is increased by one 

standard error.  

2.2   L1 - Lasso with Cox Proportional Hazards 

Model 

Cox proportional hazards model is a regression 

model proposed by (Cox, 1972). It is an effective 

approach in survival analysis studies. The model is 

mostly used for multivariate regression analysis to 

analyze survival data. Cox model investigates the 

relationship between an event occurrence and a set of 

predictor variables (or covariates). The hazard function 

is the probability or the chance that an individual or 

subject will be affected by an event within an interval 

of time given that the individual or subject has survived 

up to the beginning of that interval of time. The 

response variable or outcome in Cox proportional 

hazards model is the hazard function at a given time. If 

a number of variables are involved, then the hazard or 

risk of an event’, can be modeled by: 
 

 

0( ,X) ( )exp( X)Th t h t =               (11) 
 

where   0 ( )h t  is the unspecified baseline hazard function 

which is the probability of an event when all the 

predictor variables (X) equal to 0. 

           β  is a vector of parameters  

           X  is a matrix of  predictive  

           variables. 

Cox proportional hazards model, computes hazard ratio 

(HR), which measures the effect of predictor variables 

on the hazard of event. Estimate of HR of two 

individuals with different predictor variables X and X ∗
  

is given as: 
 

/

/

/

^
^ ^

*0

^
*

0

( ) ( )
exp ( )

( ) ( )

h t exp X
HR X X

h t exp X






 
= = − 

 
      

                                                              (12) 

The HR does not depend on time. This is the reason 

why the model is refers to as proportional hazards 

model. In other words, proportional hazard is a required 

assumption in Cox regression. It means the relative 

hazard or risk of event which is the value of the 

coefficient β   in the model is constant over time ‘t’. 

Cox model can also be expressed by taking the 

natural logarithm of equation (11) and divide both 

sides by the baseline hazard function. h1(t) and h2(t) 

are the baseline hazards functions of the two individuals 

whose hazards of event are compared. 
 

2

1

( )
 log log(exp( ))

( )

Th t
X

h t


 
= 

 
     (13)

 

           

 

0

( , )
log

( )

T

e

h t X
X

h t


 
= 

 
     (14) 

 

In Cox model, there is no assumption made on the 

probability distribution of the hazards i.e baseline 

hazards function. Cox model assumes that the ratio of 

the hazard function of two individuals is constant over 

survival time and that there is log-linear relationship 

between predictor variables and hazard function. This 

assumption makes Cox proportional hazards model to 

be a semiparametric. The results of the analysis of Cox 

model can be interpreted as, for a unit increase in 

variable (Xi) the hazard function is multiplied by the 

term eβ
i
.  With this, the predictor variables have 

multiplicative effect with hazard function. Taking a unit 

increase in one variable for an individual with the 

hazard function in Cox model: 

1

1 0( ) ( ) xh t h t e=                                   (15)   

Then for one unit increase  

1( 1)

2 0( ) ( ) xh t h t e +=                              (16)                       

                          

1

1

( 1)

02

1 0

( )( )

( ) ( )

x

x

h t eh t

h t h t e





+

=                             (17) 

            

1 1( 1 )2

1

( )

( )

x xh t
e

h t

 + −
=                              (18) 

           

2

1

( )

( )

h t
e

h t

=                                          (19) 

            

then taking the logarithm of both sides we have: 
 

 2

1

( )
log log

( )

h t
e

h t

 
= 

 
                            (20) 
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 2

1

( )
log

( )

h t

h t


 
= 

 
                             (21)  

 

In equation (21), the coefficient β is the logarithm of 

hazard ratio for a single unit increase in xp. But when 

the variable increases by a single unit, the hazard of 

event happening (called hazard ratio) will increase by 

e unit. The  - parameter in equation (11) is 

estimated by maximizing the partial likelihood method. 

 Researchers are interested in the associations 

between each of the risk factors (X1, X2, ..., Xp) and 

the results or outcome. The associations are determined 

by the coefficients in the model (b1, b2, ..., bp). The 

estimated coefficients in the Cox regression model say 

b1, is the change in the expected log of the hazard ratio 

relative to a one unit change in predictor variable X1, 

holding all other predictors constant. 

Given a vector (t,  , x) that consist of three items 

t is the length of time taken until an event occur or not 

occurring (censoring) 

  is the censoring indicator, 0 = censored,  

1 = event. Here. x is a matrix of predictor variables. 

Let ‘n’ be the number of observed individuals in a 

study, ‘r’ of them are affected by the event, and n – r 

individuals become right censored observations.   

If   t(1) < t(2) < …<t(r)   be an ordered event times and 

we let X(i) be the vector of predictor variables with 

individual whose survival time is t(i). We define R(t(i)), 

to be the risk of a set at t(i) as the set of individuals who 

are still in the study, the time earlier to t(i), then the   

probability or chance, that the individuals with predictor 

variable X(i) experience the event at t(i) given that one 

individual from R(t(i)) experience the event at t(i) is 

given as:  
 

( )

( ) ( )

( ) ( )

( )

( , )

( , )
i

i i

i i

j R t

h t X

h t X



     by equation (11)  

 

The probability can be written in terms of the baseline 

hazard function and relative risk as:  
 

( )( )

0 ( ) ( )

0 ( )

( )exp( )

( )exp( )

i

T

i j i

T

j t

i j

R

h t X

h t X







 

 

The probability now, is given as: 
 

( )( )

exp( )
 

exp( )
i

T

i

T

j

j R t

X

X







 

 

It does not depends on the baseline hazard function 

since the baseline hazard function 0 ( )h t cancel out. 

Cox (1972) made the assumption that if there is no 

tied event meaning that no two or more events occur at 

the same time, then parameter   can be estimated by 

the method of partial likelihood function. The 

probabilities are multiplied together over all distinct 

event times and the resulting product become 

conditional likelihood since it is a product of conditional 

probabilities. 
 

( )

( )

1

( )

exp( )
( )

exp( )
i

Tn
i

p T
i j

j R t

x
L

x




=



 
 

=  
 
 




            (22) 

 

In equation (22), n is the number of individuals who 

have experienced the event– repayment of loan at time 

‘t’, x(i) = (x(i)1, x(i)2,…,x(i)p) are the predictor variables 

for the individual that experienced the event at the i
th
 

ordered time t(i) and Ri is the set of subjects that are at 

risk just before time t(i).. Taking the logarithm of both 

sides of Cox partial likelihood of equation (22), we 

have:                  

( )

p

1

(ti)

exp( )
log(L ( ) log

exp( )

Tn
i

Ti
j

j R

x

x




=



 
 
 =
 
 
 




    

                                    (23)                                            

( )

1 1 ( )

log( ( )) log(exp( )) log exp( )
i

n n
T T

p i j

i i j R t

L x x  
= = 

 
= −  

 
  

                                                                     

                                                              (24) 

 

( )

1 1 ( )

log( ( )) log exp( )
i

n n
T T

p i j

i i j R t

L x x  
= = 

 
= −  

 
         

                                                               (25) 
 

And taking the partial derivatives of equation (25) with 

respect to each parameter h ,  h =i,….., p 
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T

( )j R(t )

( ) T
1 1 j R(t )

exp( )
( ) log( ( ))

exp( )

i

i

n n
j h j

h p i h

i ih j

x x
U L x

x


 

 



= = 


= = −



 



     

                                                               (26) 

Equation (26) refers to as the scores and the estimates 

of the model are obtained by solving the equations i.e 

setting  ( )hU   = 0 according to (Ekman, 2017). 

Numerical method can be used to estimate the parameter 

 , for example Newton Raphson method. In Cox 

model the baseline hazard function is measured non-

parametrically and therefore, the survival times are not 

assumed to follow a particular probability distribution 

at time ‘t’ and the Cox model indicates that the hazard 

function or hazard rate may change over time. Estimates 

of the coefficient β in  

Cox model with L1-Lasso are found by (27) 

    
^

( )

1

exp( )
arg min log || ||

exp( )
i

T

i

T
i m j

j R

x

x


  





  
  

= − +  
  

  




   

                                                               (27)                                                                   

 
^

( ) 1arg min log exp( ) || ||
i

T T

i j

i m j R

x x


    
 

  
= − − +   

  
       

                                                               (28)                                                                                                         

         where 1|| ||  is the penalty term of  

         L1 - Lasso model  

                      The first term in equation (28)    

                       is the log of the partial  

                       likelihood of Cox model. 

 L1-Lasso performs variable selection. The regularized 

parameter lambda (λ) is chosen by k-fold cross-

validation method, and k takes value between 5 and 10 

(Hastie et al., 2015). 

 

3. RESULTS AND DISCUSSION 

This study utilized bank loans data of 186 

customers obtained from Microfinance bank. The 

dataset consists of actual observations and censored. 

The censoring observation indicator is 0 for defaulting 

i.e non- payment of loan within the agreed period of 

time. and 1 for non-defaulting/event occurrence i.e 

payment of loan on time. From Table 1, the total 

number of borrowers is 186. 35 (18.8%) of them 

defaulted (unpaid loan as at when due) and 151 

(81.2%) of them repaid their loan on time. 

In regression analysis, presence of multicollinearity in 

a dataset is a violation of one of the assumptions required 

by regression model. Multicollinearity is a situation 

whereby some variables in the regression model are 

related. A small bit of multicollinearity can cause huge 

problem in regression analysis. Therefore, detection of 

multicollinearity in a dataset is very important. The impact 

of multicollinearity can affect the precision of the estimated 

regression coefficients negatively on the power of a model. 

The variance inflation factor (VIF) is a method that 

quantifies the extent of correlation between one predictor 

and the others in a regression model. The VIF estimates 

how much the coefficient of a variable is inflated or 

influenced as a result of the predictor variables in the 

analysis. Higher values of VIF indicates that it is difficult 

or impossible to accurately assess the contribution of 

predictor variable in a model. The VIF value of one means 

that the predictor variable is not related with other 

variables. The VIF values greater than five (5) indicates 

the presence of multicollinearity. 

Table 2 reports the VIF value of each predictor variable in 

the dataset, and since all VIF values are less than five, this 

indicates that multicollinearity is not present in the dataset. 

In other words, no two or more predictor variables are 

related to each other and therefore, we can proceed with 

the analysis.  

Table 3 gives the summary statistics for sample size 

of the  customers included in the study. Out of 186, 

140(75.3%) males customers participated in the 

study, while only 46(24.7%) females customers 

participated in the study. The mean and median of 

survival times (repayment periods) in months for male 

customers are 7.29 and 7.00 respectively, while the 

mean and median of survival times for female customers 

in months are 7.08 and 7.00 respectively.  

Table 1 Status of Repayment of Loan 

 N Percent (%) 

Event 151 81.2 

Censored 35 18.8 

Total 186 100 

 



Journal of Applied Science and Emerging Technology (JASET) Vol. 23, No. 1 [2024]: e253276 

 

8 

The Cox model with L1-Lasso model were 

employed to perform variable selection and build a 

model that can predict for event occurrence i.e 

repayment rates of loan. L1-Lasso was applied to 

identified the important variables associated with the 

repayment rates of loan and Cox model est  imates the 

hazards ratio (HR), obtains as the exponential of 

regression coefficient, and it gives the effect size of the 

important variables.  

In Figure 1, the values at the top of the plot indicate 

the number of predictor variables in the model when 

lambda ( ) changes. Vertical dotted line on the left-

hand side gives the lambda ( ) value for the minimum 

MSE and vertical dotted line on the right-hand side 

indicates the lambda ( ) that was chosen according to 

the model i.e MSE is within one standard error of the 

minimum MSE. Ten folds were used in cross-validation 

to obtained the optimal value of 𝜆. From cross-validation 

results, the optimal value for lambda ( ) was found to be 

0.06227052. 

Figure 2 displays the path of the coefficients (lasso 

path) for every variable when using L1– Lasso 

penalized Cox model. In Figure 2, the curves that are 

away from the center line represent the selected 

variables that can influenced the repayment rates of 

loan. Those variables selected with statistical 

association for repayment rates of loan were suitable for 

multivariate analysis in Cox model. The Cox model was 

used to investigate the effect of those variables that can 

affect the risks of repayment rates of loan. Table 4 gives 

the six selected predictor variables by L1-Lasso model 

that can affect the time to survival of repayment rates 

of loan. 

 
Figure 1  L1-Lasso Cross-validation Estimate for Mean Square Error 

 

Table 2 VIF Values of the Ten (10) Variables 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

1.38205 2.72735 0.32670 0.18461 1.59489 1.10752 2.38065 0.98787 1.10251 1.2354 

 

Table 3 Summary Statistics for Sample Size 

 N Percent (%) 

Male 140 75.3 

Female 46 24.7 

Total 186 100 
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3.1 Interpretation of the Predictor Variables in Cox 

PH Model 

If the hazard ratio (HR) is greater than one, it 

indicates increase in the risk of the event i.e increase in 

the repayment rates of loan by a customer. On the other 

hand, a HR less than one indicates decrease in the event 

of interest i.e decrease in the risk of experiencing the 

event. Thus, decrease in repayment rates of loan by a 

customer. When the HR equals one it implies equal 

hazards of experiencing the event between the two 

categories of the customers. 

 

i) Age 

From Table 4, the HR of age is 0.9630 and the value 

is less than one.  100(1 - 0.9630) = 3.7%. This 

implies that a customer in age group 51 – 70 years is 

3.7% times less likely to repay the loan within the 

agreed period of time compared to those customers in 

age group 30 – 50 years. In other words, granting loan 

to those customers in age group 51 – 70 years is a little 

bit risky. 

ii) Loan purpose 

The HR of loan purpose from Table 4, is 1.0760. The 

value is greater than one.  

 
Figure 2 Coefficient Path (lasso path) for the Predictor Variables 

Table 4 Multivariate Cox Proportional Hazard Results on the Time to the Repayment of Loans 

Variables coef (β) exp(β) (HR) se(β) z-value p-value 

age 30-50 (Ref.)  

51-70 

-0.0377 0.9630 0.0498 -0.7590 0.4480 

loanpurpose personal (Ref.) 

trading 

0.0732 1.0760 0.3240 0.5540 0.5800 

occupation business (Ref.) 

civil servant 

0.1711 1.1870 0.1728 0.9900 0.3220 

Collateral CFO (Ref.) 

salary acct 

0.1469 1.1580 0.2113 0.6960 0.0121 

residence rural (Ref.) 

urban  

0.0925 0.0970 0.2083 0.4440 0.4870 

loanamount -0.0053 1.0000 0.0044 -1.1940 0.2320 

 

CFO = certificate of occupancy 

Ref. = reference category    
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100(1.0760 – 1) = 7.6%. This means that a customer 

who is a trader is 7.6% times more likely to repay the 

loan in time compared to those customers who secured 

the loan for personal reasons.  

iii) Occupation 

Table 4, gives the HR of occupation to be 1.1870 and 

the value is greater than one. 100(1.1870 – 1) = 

18.7%. This indicates that a customer who is a civil 

servant is 18.7% times more likely to repay the loan in 

time compared to those customers who obtained the 

loan for business.  

iv) Collateral 

The HR of collateral from Table 4, is 1.1580 and the 

value is greater than one. 100(1.1580 – 1) = 15.8%. 

This means that a customer whose salary acct was used 

as security against the loan by the bank is 15.8% times 

more likely to repay the loan in time compared to those 

customers whose CFO was collected by bank as security 

against the loan. 

v) residence 

Table 4, also reports the HR of residence to be 0.0970. 

The value is less than one and 100 (1 – 0.0970) = 

90.3%. This means that a customer who lives in   urban 

area is 90.3% times less likely to repay the loan in time 

compared to those customers who live in rural areas. In 

other words, loan advanced to customers in urban areas 

are more risky. 

vi) loan amount 

From Table 4, the HR of loan amount is one. This 

implies equal hazards or risks in the repayment rates of 

loan between the categories of the amount of loan 

granted to customers. 

 

4. CONCLUSION 

This study applied the L1-Lasso regularized Cox 

proportional hazards method to predict the event - 

repayment rates of loan of FCE Microfinance bank. 

With the number of selected variables that are truly 

informative, the method drops non-relevant variables. 

By discarding variables that are less important in L1-

Lasso penalized Cox method, a parsimonious model 

was produced which can improve the interpretation of 

the model as compared to the classical statistical 

models. When a model is simple, its application and 

interpretation will be easier. This research identified the 

factors that affect the repayment rates of loan of 

Microfinance bank. From L1-Lasso Cox proportional 

hazards analysis, it is found that the repayment rates of 

loan is greatly influence by the predictor variable 

collateral with the p-value less than 0.05 

Finally, the selected variables by the model can be 

used in issuing the loan in Microfinance banking. This 

study recommends that Microfinance banks should 

monitor the loans given to their customers in order to 

check any character change as it may affect the 

repayment rates of loan negatively. 
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