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ABSTRACT

This study applied L1- Lasso estimation for Cox proportional hazards model to select variables that are relevant to credit
repayment rates of loan in Microfinance bank. Records of 186 borrowers in Federal College of Education Zaria Nigeria Microfinance
bank who took loans from 2017 to 2022 were used to identify the most predictive variables for repayment rates of loan. The findings
of this study reveal that age of the borrowers, loan amount, occupation, type of collateral, residence and amount of loan influence the

repayment rates of loan. Finally, the variables selected by the model can be used in granting loan to borrowers in Microfinance

banking. R Programming Language was used for the analysis.

KEYWORDS: Bank Credit, L1 - Lasso, Cox Model, Penalization and Predictive Variables

*Corresponding Author: Author:ummohammed67@yahoo.com

Received: 27/06/2023; Revised: 30/11/2023; Accepted: 19/01/2024

1. INTRODUCTION

Basically, banks and other financial institutions
engage in the following essential activities. These are:

1) accepting and safeguarding customer deposits

including other assets.

2) making payments on behalf of customers.

3) granting credit to customers and

4) making investment.

The primary activity amongst these have been
granting credit, and sometimes customers fail to repay
the debt in time which they contractually owe in form
of principal, interest and other fees, thereby defaulting
on their obligation. This exposes such institutions to
credit risk (Thackham, 2021). The term bank credit
refers to the amount of credit available to a business or
individual from a banking institution in the form of
loans. It is the sum of money a person or business can
borrow from a bank or other financial institutions
(Twin, 2020). Risk Management is an important facet
of Bank’s policies. According to (Gunduz, 2020)

credit risk is arguably the most significant, especially

for commercial banks. In (Apostolik et al., 2009)
defined credit risk as “the potential loss a bank would
suffer if a borrower fails to meets its obligations”.
Socio-political and economic development of any
country mostly rely on the ability of its banking
institutions to give loans to their customers. It is one of
the major economic functions of banks to finance
investment activities by government, business and
individuals. Granting credit to customers supports the
growth of new businesses and jobs which promote
economic activities. Banks earn most of their revenues
from loan accounts. The repayment behavior of such
loans is associated with many factors in the banking
system (Li et al., 2022). When a bank experiences a
financial problem, it may be as a result of bad loans.
Banks are interested in ascertaining factors that are
mostly influential in predicting loan repayment rates of
the customers.

Survival analysis methods possess the ability to
model the loan repayment rates of borrowers. It is a

statistical procedure for data analysis for the estimation
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of time until an event occurs. In this paper the event of
interest is the loan repayment. In survival analysis, the
estimated time for loan repayment can be the number of
months (or days) from the day this loan is granted to
the day the loan is repaid.

An event in survival analysis can be referred to as
different outcomes obtained in a study. In medicine, the
event can be the onset of a disease or death. In
engineering, event can be a failure of a machine or an
equipment system. In social sciences, event can be a
change in social status of an individual. Survival
analysis can also be applied in credit modelling, where
the time to repayment of loan can be modelled. Survival
data can be divided into complete and censored.
Complete data refers to an observation that contains the
beginning and end date which is determined by the
event time. On the other hand, censored data is
incomplete and it occurs when the required information
is not available from the beginning to the end of the
study. The three types of censored observations can be
collected in survival analysis studies. These are:

1) right-censored observations
2) left—censored observations and
3) interval censored observations

Right-censored observations occur most in survival
analysis studies because, the actual survival times of the
individual which is “incomplete” (i.e censored) at the
right-hand side of the follow-up period of the study
giving the observations that is short of the actual
survival time (Kleinbaum & Mitchel, 2005). Right-
censoring occurs when an individual did not experience
the event before the study end, when an individual is
lost to follow up and when an individual withdraws
from the study.

The traditional linear regression models cannot be
applied to survival data or time-to-event data. This
may result in biased estimation and the results may be
misleading (Zhang et al., 2021).

The methods of survival analysis can be applied to
credit risk management due to the need of accurate
credit risk calculations. Credit risk analysis is important
in financial risk management, especially, in practical

applications (Assef & Steiner, 2020). In (Doris et al.,

2022) observed that, survival analysis studies allow for
the prediction of time to default of loan obtained by
considering the length of time taken, between the origin
of loan and its default. Credit risk in finance and
banking has drawn a considerable research attention
(Mungasi & Odhiambo, 2019). Repayment of loan
performance refers to the total sum of loans, a customer
paid on time which was agreed between the parties.
When a loan is not repaid, it may be due to inability of
the customer to repay or he/she is not willing to repay
(Nawai & Shariff, 2013). Ganiyu states that in the
study of perspective on Nigerian financial safety net
with qualitative analysis procedures, most banks had
poor credit policies. Large amount of loans was granted
without due regard of the ability of the customers to
repay. In (Okpara, 2009) noted that the high rates of
bank failure in Nigeria may be as a result of poor credit
policies in place. According to (Xia et al., 2021) with
recent advancement, accurate survival models are

applied in the assessment of credit risk.
2. MATERIALS AND METHODS

A total of 186 customers who took loans from
Federal College of Education Microfinance Bank Zaria,
Nigeria were included in the study. The study aims to
identify the factors that are associated with customers’
repayments rates of loan in Microfinance bank. The
dataset contains client descriptive variables which can
influence the loan repayment rates. These are personal
information about the client. It includes age (x,),
(%) (x)s
background (x,), (urban/rural)  (x,),

gender marital  status educational
residence
occupation (civil servant/business) (x,), purpose of
loan (x,), type of collateral (x4), loan amount (x,),
repayment time (x,,) and repayment periods (y). Cox
with L1 -Lasso models were applied to perform variable
selection, examine the regression coefficients path and
build a model that can predict time-to-event of
repayment rates of loan.

The following are some of the functions that are
studied in survival analysis methods. These are survival
function, hazard function, probability density function

and cumulative hazard function. Let ‘T’ be a non-
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negative random variable of survival time of a bank
borrower from the time the loan is granted to the time
the loan is repaid representing time until some events of
interest occurs (such as repayment of loan). The
response (dependent) variable has two parts — survival
function and hazard function. The survival function is
the complement of the hazards function and survival
function describes the probability of loan repayment up
to a specified duration of time. The hazard function on
the other hand, describes the probability of not paying
the loan in a specified period of time given T > t (cond.
prob) (Sangeetha & Chitra, 2021).

Given a distribution of a random variable ‘T’ the

survival function denoted as S(t) is given as:

S@) = P(T>t) = 1-F(@) (D)

where F(t) is the cumulative distribution function of
‘T’ representing the cumulative probability of a
customer chosen at random to have a survival time ‘T’

less than some stated value ‘t’, and is given as:

F@6) = PT<t) = [, faydu (@)

where ‘f” is the probability density function of ‘T’
The hazard function denoted as /’l(l ) and is given

as.

Pt<T<t+AT >t) f(1)
S0

h(t) = lim

At—0 At ®)

Here, the hazard function /(#)is the conditional

probability that the loan repayment occurs in time

interval (¢, ¢ + Atf) given that the loan repayment

has not occurred before time t. (3) can be written as:

AGONS (4)
1 — F@)

h(?)

Probability density function f(t) of survival time T,
refers to the limit of probability in which a customer repays
small  time

the loan in a period ‘1o

(t + At) per its time interval of length Af¢ and is given as:

F = limP(t<T£t + A?) (5)

At—0 At

Cumulative hazard explains the accumulated hazards to
time ‘t’. Thus, the cumulative hazard function, denoted
as H(t) is obtained by taking the integral of hazard

function given as:
t
H(t) = j h(u)du. (6)
0

The cumulative hazard describes the cumulation of risks

of a customer when the time passes from O to t.

2.1 Least Absolute and Shrinkage Selection Operator
(Lasso)

In this study, we focus on identifying the predictor
variables (or exposure variables) that have the strongest
impact on the repayment rates of loan by a customer.
The study aims to use those predictor variables (x’s) to
predict the repayment rates of loan. The study will
utilize the L1- Lasso and Cox proportional hazards
approaches to the dataset. The Cox proportional
hazards model is used to investigates the impact of
different predictor variables on the probability of loan
repayment while the L1 - Lasso penalized model, select
the most predictive variables and avoid overfitting.
L1 - Lasso method proposed by (Tibshirani, 1996),
regularizes linear regression method which shrinks the
coefficients closer to zero and other coefficients to
exactly zero for a sparse solution and therefore,
improving the interpretation of the model.

Nowadays, we collect more and more data.
Sometimes with many and poorly described different
kind of variables. In some researches, data are collected
with more variables than the observations. Lasso is a
procedure designed to scout through the data and extract
few variables that have the ability to predict outcomes
with accuracy. The main purpose of Lasso is to perform
variable selection and regularization in order to enhance
simplicity and accuracy of the model. This is achieved
by adding penalty term to the linear regression. Lasso
shrink unimportant variables to zero and the nonzero
variables are selected to be utilized in the model. Lasso

is a refined procedure that minimize the prediction

errors encountered in statistical modeling.
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L1 - Lasso model forms a diamond shape in the
plot for its constrained region, as shown in Figure 1.
The diamond shape includes corners, and the proximity
of the first point to the corner shows that the model
comes with one coefficient, which is equal to zero.
Thus, shrinking the regression coefficient of the
variable to zero to perform variable selection. The
closeness of the first point to the corner of the diamond
shape shows that L1 - Lasso model comes with one
coefficient of a variable, which equal to zero. Thus,
shrinking the coefficient in the model to zero to select
variable. In Figure 1, x-axis represents the coefficient
( ,31) and y-axis represents the coefficient ( ﬁz ). The
red ellipses contour represents the Residual Sum of

Squares (RSS).

Lasso

Regression

N

Figure 1 Lasso Geometry (https://corporate financeinstitute.com/data—-

science lasso)

L1 - Lasso model adds a constraint (or penalty)
ANBI

of applying this constraint is to reduce the regression

) to obtain equation (8). The consequence

coefficient towards zero, so that less contributive
variables will have a regression coefficient close to zero
or exactly equal to zero. In penalized regression, the
aim is to reduce the impact of multicollinearity since
predictor variables in the study may be highly related to
one another (Abhinaya et al., 2021). L1 - Lasso
estimate the coefficient

selects variable and

simultaneously by constraining the log-likelihood
function of variable coefficients. Given a linear

regression model:

y-xF . ¢ (7)

where Y is an 72x1 column vector of dependent
variable, X is an 72X p matrix of predictor variables
and f3 isa pXI column vector of parameters. The
last 72 %1 column vector is a vector of error terms. Also,

bo’bl’bZ""bp are the estimates of unknown
parameters ﬂl, ,32,..., ﬂp . In L1 - Lasso method, the
coefficient ﬁ are

estimated by minimizing

P Lasso =arg/§ninIIy—xﬁ’Ilz2 +AINAI (8)

2
A n )4 p
:BLassa = arg;nin Z{yz _Zﬁjxgjj +ﬂ“2| ﬂj |
Jj=1 J=1

i=1

(9

where

n is the number of observations

p is the number of predictor variables

A>0 is the regularization parameter.
A n p 2
B = argminZ(yi _Zﬂj'xlj) (10)
i=1 Jj=1

Vi
where Z|ﬂj| <t
j=1

Lambda ( A ) is the regularization parameter which
controls the shrinkage in estimating the coefficients of
L1 - Lasso model and A > 0. If the lambda (A )
value is large enough more variables of estimated
coefficient ﬂ become zero, and the nonzero coefficient
of variables will be shrunken toward zero. If lambda
(A) is small, it implies less regularization by the
model. Cross-validation is a method applied to estimate
the lambda (A) parameter. When a small value of
lambda (A) is estimated, it may result in over fitting of
the model. On the other hands, a large value of lambda
(A) would lead to under fitting, because the procedure
may not be able to capture the relationship in the model
(Thevaraja et al., 2019). A ‘one-standard-error rule’ method
in cross—validation, will be applied to select the best lambda
(A). For each MSE (As) the standard error of the
mean is obtained, and the largest As is selected for

which MSE (As) is within one standard error of the

minimum MSE value. Thus, we obtain a regularized
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regression model while the MSE is increased by one
standard error.
2.2 L1 - Lasso with Cox Proportional Hazards

Model

Cox proportional hazards model is a regression
model proposed by (Cox, 1972). It is an effective
approach in survival analysis studies. The model is
mostly used for multivariate regression analysis to
analyze survival data. Cox model investigates the
relationship between an event occurrence and a set of
predictor variables (or covariates). The hazard function
is the probability or the chance that an individual or
subject will be affected by an event within an interval
of time given that the individual or subject has survived
up to the beginning of that interval of time. The
response variable or outcome in Cox proportional
hazards model is the hazard function at a given time. If
a number of variables are involved, then the hazard or
risk of an event’, can be modeled by:

h(t,X) = hy(t)exp(B " X) (11)

where  /1,(¢) is the unspecified baseline hazard function
which is the probability of an event when all the
predictor variables (X) equal to 0.

B is a vector of parameters

X is a matrix of predictive

variables.

Cox proportional hazards model, computes hazard ratio
(HR), which measures the effect of predictor variables
on the hazard of event. Estimate of HR of two
individuals with different predictor variables X and X *

is given as:

HR =PSB X) _ exp[z B (X —X*)}
hy(Oexp(B X)
(12)
The HR does not depend on time. This is the reason
why the model is refers to as proportional hazards
model. In other words, proportional hazard is a required
assumption in Cox regression. It means the relative

hazard or risk of event which is the value of the

coefficient ﬁ in the model is constant over time ‘t’.

Cox model can also be expressed by taking the
natural logarithm of equation (11) and divide both
sides by the baseline hazard function. h,(t) and h,(t)
are the baseline hazards functions of the two individuals

whose hazards of event are compared.

hO| _ r
log{ hl(t)} =log(exp(f’ X)) (13)

]Oge{ﬁgzgl} = ﬁTXf

(14)
hy (1)

In Cox model, there is no assumption made on the
probability distribution of the hazards i.e baseline
hazards function. Cox model assumes that the ratio of
the hazard function of two individuals is constant over
survival time and that there is log-linear relationship
between predictor variables and hazard function. This
assumption makes Cox proportional hazards model to
be a semiparametric. The results of the analysis of Cox
model can be interpreted as, for a unit increase in
variable (X,) the hazard function is multiplied by the
term ¢P'.  With this, the predictor variables have
multiplicative effect with hazard function. Taking a unit
increase in one variable for an individual with the

hazard function in Cox model:

h(t) = h(t)e’™ (15)
Then for one unit increase

h(t) = hy(1)e”™ (16)

Bla+D)

h,(2) _ hy(1)e (17)
hy(2) hy(1)e"™

h2 (t) — eﬁ(xl+1_xl) (18)
()

hz @) = ¢ (19)
()
then taking the logarithm of both sides we have:

log b (1) =loge” (20)

h(2)
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10}

wo] =P v

In equation (21), the coefficient ﬁ is the logarithm of
hazard ratio for a single unit increase in x,. But when
the variable increases by a single unit, the hazard of

event happening (called hazard ratio) will increase by

eP

unit. The [ - parameter in equation (11) is
estimated by maximizing the partial likelihood method.

Researchers are interested in the associations
between each of the risk factors (X,, X,, ..., X,) and
the results or outcome. The associations are determined
by the coefficients in the model (b,, b,, ..., b,). The
estimated coefficients in the Cox regression model say
b,, is the change in the expected log of the hazard ratio
relative to a one unit change in predictor variable X,
holding all other predictors constant.

Given a vector (t, O , x) that consist of three items
t is the length of time taken until an event occur or not
occurring (censoring)

O is the censoring indicator, O = censored,
1 = event. Here. x is a matrix of predictor variables.

Let ‘n’ be the number of observed individuals in a
study, ‘r’ of them are affected by the event, and n — r
individuals become right censored observations.

If ¢,y <ty <<t be an ordered event times and
we let X;, be the vector of predictor variables with
individual whose survival time is t.;,. We define R(%,,),
to be the risk of a set at £;, as the set of individuals who
are still in the study, the time earlier to t,, then the
probability or chance, that the individuals with predictor
variable X ;) experience the event at f;, given that one
individual from R(t(i)) experience the event at t, is

given as:
(i), X i)
Z h(t(i)’X(i))

JER(t(;))

by equation (11)

The probability can be written in terms of the baseline

hazard function and relative risk as:

hy(t)) exp(B' X))
Z hy (t(i)) eXp(ﬂTXj)

jER(l‘(”)

The probability now, is given as:

exp(f' X,)
D, exp(B'X))

JER(t;y)

It does not depends on the baseline hazard function
since the baseline hazard function ho (f) cancel out.
Cox (1972) made the assumption that if there is no
tied event meaning that no two or more events occur at
the same time, then parameter ﬂ can be estimated by
the method of partial likelihood function. The
probabilities are multiplied together over all distinct
event times and the resulting product become
conditional likelihood since it is a product of conditional

probabilities.

R eXp(ﬂTx(i))
B S )

JER(1;y)

(22)

In equation (22), n is the number of individuals who
have experienced the event— repayment of loan at time
‘U, Xy = (1> XgyzsXqp) are the predictor variables
for the individual that experienced the event at the i"
ordered time t;, and R; is the set of subjects that are at
risk just before time t;, . Taking the logarithm of both
sides of Cox partial likelihood of equation (22), we

have:

log(L, () = 3| 1log— PN

Y (s

JER(ti)

(23)
log(L, () = 3. log(exp(5x, )~ 3. log{ > exp(ﬂ’xj)}

i=1 jeR(1;)
(24)

log(L, (8) =3 A", - ilog{ > exp(ﬁfx,,)}

JER(;)

(25)

And taking the partial derivatives of equation (25) with

respect to each parameter ﬂh , h =iy, p
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-2 -3 -3 Zjek(t,>x(f)hexp(ﬁij)
U;, (ﬂ) = aﬂh log(L/’ (ﬁ)) - ;x(t)h ; ZjeR“’)eXp(ﬂij)
(26)

Equation (26) refers to as the scores and the estimates

of the model are obtained by solving the equations i.e
seting U, (f) = 0 according to (Ekman, 2017).
Numerical method can be used to estimate the parameter
ﬂ , for example Newton Raphson method. In Cox
model the baseline hazard function is measured non-
parametrically and therefore, the survival times are not
assumed to follow_a particular_probability_distribution
at time ‘t” and the Cox model indicates that the hazard
function or hazard rate may change over time. Estimates
of the coefficient ﬁ in

Cox model with L1-Lasso are found by (27)

A exp(B7x .
p=angmin| Y og 20 %) |8,

;eXp(/i x,)
- (27)
/}:arg;nin[—;{ﬁrxm—logjgzkexp(ﬁrxj)}‘Fi”mh]
| (28)

where A || ﬂ Hl is the penalty term of
L1 - Lasso model
The first term in equation (28)
is the log of the partial
likelihood of Cox model.
L1-Lasso performs variable selection. The regularized
parameter lambda (A) is chosen by k-fold cross-
validation method, and k takes value between 5 and 10

(Hastie et al., 2015).

3. RESULTS AND DISCUSSION

This study utilized bank loans data of 186
customers obtained from Microfinance bank. The
dataset consists of actual observations and censored.
The censoring observation indicator is O for defaulting
i.e non- payment of loan within the agreed period of
time. and 1 for non-defaulting/event occurrence i.e
payment of loan on time. From Table 1, the total

number of borrowers is 186. 35 (18.8%) of them

Table 1 Status of Repayment of Loan

N Percent (%)
Event 151 81.2
Censored 35 18.8
Total 186 100

defaulted (unpaid loan as at when due) and 151
(81.2%) of them repaid their loan on time.

In regression analysis, presence of multicollinearity in
a dataset is a violation of one of the assumptions required
by regression model. Multicollinearity is a situation
whereby some variables in the regression model are
related. A small bit of multicollinearity can cause huge
problem in regression analysis. Therefore, detection of
multicollinearity in a dataset is very important. The impact
of multicollinearity can affect the precision of the estimated
regression coefficients negatively on the power of a model.
The variance inflation factor (VIF) is a method that
quantifies the extent of correlation between one predictor
and the others in a regression model. The VIF estimates
how much the coefficient of a variable is inflated or
influenced as a result of the predictor variables in the
analysis. Higher values of VIF indicates that it is difficult
or impossible to accurately assess the contribution of
predictor variable in a model. The VIF value of one means
that the predictor variable is not related with other
variables. The VIF values greater than five (5) indicates
the presence of multicollinearity.
Table 2 reports the VIF value of each predictor variable in
the dataset, and since all VIF values are less than five, this
indicates that multicollinearity is not present in the dataset.
In other words, no two or more predictor variables are
related to each other and therefore, we can proceed with
the analysis.

Table 3 gives the summary statistics for sample size
of the customers included in the study. Out of 186,
140(75.3%) males customers participated in the
study, while only 46(24.7%) females customers
participated in the study. The mean and median of
survival times (repayment periods) in months for male
customers are 7.29 and 7.00 respectively, while the
mean and median of survival times for female customers

in months are 7.08 and 7.00 respectively.
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Figure 1 L1-Lasso Cross-validation Estimate for Mean Square Error
Table 2 VIF Values of the Ten (10) Variables
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1.38205 2.72735 0.32670 0.18461 1.59489 1.10752 2.38065 0.98787 1.10251 1.2354

Table 3 Summary Statistics for Sample Size

N Percent (%)
Male 140 75.3
Female 46 24.7
Total 186 100

The Cox model with L1-Lasso model were
employed to perform variable selection and build a
model that can predict for event occurrence i.e
repayment rates of loan. L1-Lasso was applied to
identified the important variables associated with the
repayment rates of loan and Cox model est imates the
hazards ratio (HR), obtains as the exponential of
regression coefficient, and it gives the effect size of the
important variables.

In Figure 1, the values at the top of the plot indicate
the number of predictor variables in the model when
lambda ( A) changes. Vertical dotted line on the left-
hand side gives the lambda ( A ) value for the minimum

MSE and vertical dotted line on the right-hand side

indicates the lambda ( A ) that was chosen according to
the model i.e MSE is within one standard error of the

minimum MSE. Ten folds were used in cross-validation
to obtained the optimal value of A. From cross-validation
results, the optimal value for lambda (ﬂ ) was found to be
0.06227052.

Figure 2 displays the path of the coefficients (lasso
path) for every variable when using L1- Lasso
penalized Cox model. In Figure 2, the curves that are
away from the center line represent the selected
variables that can influenced the repayment rates of
loan. Those variables selected with statistical
association for repayment rates of loan were suitable for
multivariate analysis in Cox model. The Cox model was
used to investigate the effect of those variables that can
affect the risks of repayment rates of loan. Table 4 gives
the six selected predictor variables by L1-Lasso model

that can affect the time to survival of repayment rates

of loan.
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Figure 2 Coefficient Path (lasso path) for the Predictor Variables

Table 4 Multivariate Cox Proportional Hazard Results on the Time to the Repayment of Loans

Variables coef (f8) exp(B) (HR) se() z-value p-value
age 30-50 (Ref.) -0.0377 0.9630 0.0498 -0.7590 0.4480
51-70
loanpurpose personal (Ref.) 0.0732 1.0760 0.3240 0.5540 0.5800
trading
occupation business (Ref.) 0.1711 1.1870 0.1728 0.9900 0.3220
civil servant
Collateral CFO (Ref.) 0.1469 1.1580 0.2113 0.6960 0.0121
salary acct
residence rural (Ref.) 0.0925 0.0970 0.2083 0.4440 0.4870
urban
loanamount -0.0053 1.0000 0.0044 -1.1940 0.2320
CFO = certificate of occupancy
Ref. = reference category
3.1 Interpretation of the Predictor Variables in Cox i) Age

PH Model

If the hazard ratio (HR) is greater than one, it
indicates increase in the risk of the event i.e increase in
the repayment rates of loan by a customer. On the other
hand, a HR less than one indicates decrease in the event
of interest i.e decrease in the risk of experiencing the
event. Thus, decrease in repayment rates of loan by a
customer. When the HR equals one it implies equal
hazards of experiencing the event between the two

categories of the customers.

From Table 4, the HR of age is 0.9630 and the value
is less than one. 100(1 - 0.9630) = 3.7%. This
implies that a customer in age group 51 — 70 years is
3.7% times less likely to repay the loan within the
agreed period of time compared to those customers in
age group 30 — 50 years. In other words, granting loan
to those customers in age group 51 — 70 years is a little
bit risky.
ii) Loan purpose
The HR of loan purpose from Table 4, is 1.0760. The

value is greater than one.
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100(1.0760 — 1) = 7.6%. This means that a customer
who is a trader is 7.6% times more likely to repay the
loan in time compared to those customers who secured
the loan for personal reasons.

iii) Occupation
Table 4, gives the HR of occupation to be 1.1870 and
the value is greater than one. 100(1.1870 — 1) =
18.7%. This indicates that a customer who is a civil
servant is 18.7% times more likely to repay the loan in
time compared to those customers who obtained the
loan for business.

iv) Collateral
The HR of collateral from Table 4, is 1.1580 and the
value is greater than one. 100(1.1580 — 1) = 15.8%.
This means that a customer whose salary acct was used
as security against the loan by the bank is 15.8% times
more likely to repay the loan in time compared to those
customers whose CFO was collected by bank as security
against the loan.

v) residence
Table 4, also reports the HR of residence to be 0.0970.
The value is less than one and 100 (1 - 0.0970) =
90.3%. This means that a customer who lives in urban
area is 90.3% times less likely to repay the loan in time
compared to those customers who live in rural areas. In
other words, loan advanced to customers in urban areas
are more risky.

vi) loan amount
From Table 4, the HR of loan amount is one. This
implies equal hazards or risks in the repayment rates of
loan between the categories of the amount of loan

granted to customers.

4. CONCLUSION
This study applied the L1-Lasso regularized Cox

proportional hazards method to predict the event -
repayment rates of loan of FCE Microfinance bank.
With the number of selected variables that are truly
informative, the method drops non-relevant variables.
By discarding variables that are less important in L1-
Lasso penalized Cox method, a parsimonious model

was produced which can improve the interpretation of
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the model as compared to the classical statistical
models. When a model is simple, its application and
interpretation will be easier. This research identified the
factors that affect the repayment rates of loan of
Microfinance bank. From L1-Lasso Cox proportional
hazards analysis, it is found that the repayment rates of
loan is greatly influence by the predictor variable
collateral with the p-value less than 0.05

Finally, the selected variables by the model can be
used in issuing the loan in Microfinance banking. This
study recommends that Microfinance banks should
monitor the loans given to their customers in order to
check any character change as it may affect the

repayment rates of loan negatively.
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