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ABSTRACT 

 Count models have been widely used in various fields, such as medicine, biology, and public health. The most frequently 

used count models are Poisson regression, negative binomial regression, and discrete Weibull regression models. The objective of this 

study was to compare the performance of Poisson, negative binomial, and discrete Weibull regression models using two different sets 

of data with over-dispersion. The AIC, BIC, and log-likelihood fit statistics were used as the criteria to compare the count models. 

The results revealed that the negative binomial and discrete Weibull regression were the best fit models as they produced the smallest 

AIC, BIC, and log-likelihood fit statistics. 
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1. INTRODUCTION 

Count data is a statistical data type which describes the 

frequency of events or items that are occurred within a 

fixed period of time.  Count data can be found in a 

variety of fields, such as medicine, biological sciences, 

epidemiology, and public health. For example, the 

number of heart attacks, the number of students absent 

during a period of study, the number of men infected 

with human papillomavirus, the frequency of traffic 

accidents, the number of cigarettes smoked, and the 

number of people infected with COVID-19 on a daily 

basis (Hilbe J. M., 2014; J.-H Lee et al., 2012; 

Klakattawi H. et al., 2018). In order to extract a crutial 

information from the count data, a suitable approach 

such count data model is required for data analysis. 

 A regression model is the most frequently used as 

an analytical model. Its objective is to investigate the 

relationship between a response variable and predictor 

variables. There are two types of regression analysis: 

linear regression and non-linear regression. Linear 

regression is the most popular type of regression 

analysis in which the line that best fits to the data 

according to a specified mathematical criterion is found 

(Kung-Yee Liang & Scott L. Zeger, 1993). When the 

response variable is count data, the classical regression 

model may not feasible to use. Thus, Poisson regression 

is the most popular model for modelling count data. The 

Poisson regression describes the relationship between 

predictor variables and the response variable.  Poisson 

distribution, with the conditional mean of occurrence 

equal to the variance of the response, which is called 

equi-dispersion (Saputo D. et al., 2021; Wan Tang et 

al., 2012). 

 In most cases, the variance of the response variable 

is greater than its mean, which is known as over-

dispersion. The extent of over-dispersion may be 

determined simply by comparing the sample mean with 

the variance of the response variable (Cameron A. C. 

& Trivedi P. K., 2013). In some situation, the over-

dispersioned data are caused by the fact that the data 

contains outliers. A negative binomial regression model 

or a gamma distribution mixture model is commonly 

considered the default choice for over-dispersed count 
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data since the variance of the response variable exceeds 

the mean (Hilbe J. M., 2014). Moreover, in the case 

of large sample sizes, the discrete Weibull regression 

model is an attractive alternative to the negative 

binomial regression model for over-dispersed count 

data (Klakattawi H. et al., 2018).  

 There have been a variety of researches conducted 

to deal with over-dispersion data for count data models. 

For instance, Ver Hoef and Boveng (2007) proposed 

a model for over-dispersed count data using quasi-

Poisson and negative binomial regression. The data 

collection was based on aerial surveys of harbor seals. 

These counts were affected by date, time of day, and 

time relative to low tide. They provided results from a 

data set that showed a dramatic increase in harbor seal 

abundance when using quasi-Poisson versus negative 

binomial regression. Linden A. and Mantyniemi S. 

(2011) used negative binomial regression to 

investigate model over-dispersion in bird migration 

data sets. According to the findings, the negative 

binomial regression model could be a reasonable 

approximation for modeling marginal distributions of 

independent count data. J.-H. Lee, G. Han, W. J. Fulp, 

and A. R. Giuliano (2012) demonstrated Poisson, 

negative binomial, zero-inflated Poisson, and zero-

inflated negative binomial models for over-dispersion 

count data. The data set contained the number of 

incidents involving human papillomavirus infection. 

The four models produced different statistical findings. 

Klakattawi H., Vinciotti V., and Yu K. (2018) 

presented a count data model based on a discrete 

Weibull regression and compared it to Poisson and 

negative binomial regression based on over-dispersion 

data. The result found that the discrete Weibull 

regression could be applied to over-dispersion data 

better than other models. Yinglin Xia et al. (2012) 

analyzed data from HIV preventive intervention studies 

and compared four popular statistical models: Poisson, 

negative binomial, zero-inflated Poisson, and zero-

inflated negative binomial. They found that a zero-

inflated negative binomial was better than other models 

under the likelihood ratio test, AIC, and BIC criteria.  

 Melliana A. et al. (2013) used data on the number 

of cervical cancer cases to compare generalized Poisson 

and negative binomial regression, which was an 

indicator of over-dispersion. The negative binomial 

regression model was the best model since it had the 

lowest AIC value. Avei E., Alturk S., and Soylu E. 

(2015) compared over-dispersed algal data count data 

models. The regression models of Poisson, quasi-

Poisson, negative binomial, and COM-Poisson were 

considered. Because the log likelihood and AIC were 

the minimum, COM-Poisson regression was the best-

fit model. Jasin M., Hussein M., and Hamodi H. 

(2017) compared models for the number of patients 

infected with pneumonia. The Geometric, hurdle, and 

zero inflated-Geometric regressions were compared. 

The results of log likelihood and AIC indicated the zero 

inflated-Geometric regression was the best fit. 

Alebachew A. (2019) collected data from lecturers' 

publications between November 2015 and 2016 and 

compared the performances of count data models such 

as Poisson, negative binomial, zero-inflated negative 

binomial (ZINB), zero-inflated Poisson, and Poisson 

hurdle. The ZINB regression model was chosen as the 

most appropriate and efficient regression model based 

on AIC value. Durmus B. and Guneri O. I. (2020) 

studied the generalized Poisson and Poisson regression 

models for over-dispersion data on the number of 

strikes between 1984 and 2017. The result found that 

the generalized Poisson was the best model.  

 In this paper, we compared count data models using 

simulation study and two different over-dispersion real 

data sets. Three models namely Poisson, negative 

binomial, and discrete Weibull regression were 

compared in this paper. The main difference between 

this paper and the other papers published so far is that 

we aimed to compare count data models for a small 

sample size using both of real data sets and simulation 

studies. In the next section, we present materials and 

methods which cover the details of models used in this 

study. The parameter estimation method and the details 

of data sets are also presented.  The results and 

conclusions will be presented in the last section. 

 



Journal of Applied Science and Emerging Technology (JASET) Vol. 22, No. 2 [2023]: 250803 

 

3 

2. MATERIALS AND METHODS  

 In this section, we introduce models for count data 

namely Poisson, negative binomial, and discrete 

Weibull regression models, as well as methods of 

parameter estimation, criteria used to validate the model 

performance and simulation study, respectively. Further 

the details of data sets used in the study are also 

presented. 

2.1 Poisson Regression 

 Poisson regression is a popular and fundamental 

model for modeling count data. In some situations, the 

response variable represents a count data of some rare 

event or a count of particulate matter. Hilbe J. M. 

(2014) introduced the Poisson model where the 

response variable is a count number, or the response 

terms must be nonnegative integers. The observations 

are independent of one another, while the mean and 

variance of the model are identical. The discrete random 

variable   is Poisson distribution with parameter   ; 

0  . The probability mass function (pmf) is 
 

( ); , 0,1,2,
!

ye
f y y

y




−

= =     (1) 

 

where mean and variance are ( )E Y =  and 

( )Var Y = , respectively (Nakagawa T. & Osaki 

S., 1975).   

 The maximum likelihood method was used to 

estimate the parameters in a Poisson distribution. Given 

a random sample   from a Poisson distribution, the log-

likelihood function (Cameron A. C. & Trivedi P. K., 

2013) can be written as 
 

 ( ) ( ) ( )
1 1

ln ; ln ! ln
n n

i i i

i i
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Maximum likelihood estimator of   is  
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The log-link function is used with the Poisson 

distribution and can be written as 
 

; 1,2,3, ,iX
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where ( )1 2 3, , , ,i i i i ikX X X X X =  is a vector of 

covariates and ( )0 1 2, , , , k     =  is an 

unknown vector of regression coefficients (Montgomery 

et al., 2012). 

 The Poisson regression is formulated as 
 

( )expi iY X =                               (5) 

 

where iY   is a vector of response variable in the form 

of   size of vector (Saputo D. et al., 2021). 

 Maximum likelihood estimation method has been 

widely used to estimate the parameters in Poisson 

regression. From Equation (2), log likelihood function 

can be expressed as follows 
 

( ) ( ) ( ) 
1

ln ; ln !i

n
X

i i i i

i

L y y X e y


 

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2.2 Negative Binomial Regression 

 From the previous section, the assumption of the 

Poisson regression model was the equality of mean and 

variance. In most situation, the variance will exceed the 

mean, ( ) ( )Var Y E Y , and the distribution allows 

for over-dispersion. Hence, the negative binomial 

regression would be suggested (Ismail N. & Jemain A., 

2007).  Hilbe J. M. (2014) summarized the negative 

binomial regression model’s assumptions as follows: 

the response variable is a count of nonnegative 

integers.   

 The negative binomial distribution or the Poisson-

gamma mixture distribution (Cameron A. C. & Trivedi 

P. K., 2013) has the probability distribution function 

as 
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where 0, 0,1,2,y  = . The function ( )   is 

the gamma function. The mean and variance of Y  are 

( )E Y =  and ( ) ( )2 1Var Y     = + = + . 

 

 In order to fit the negative binomial distribution, the 

parameter must be estimated by using maximum 

likelihood method. For a given random sample 

1 2 3, , , , ny y y y  from the negative binomial 

distribution, the log-likelihood function can be 

presented in   formats as follows 
 

( ) ( )
1

1 1
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n
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 The negative binomial regression model used the 

log-link function (Hilbe J. M., 2014) given by 
 

( ) ( )( )ln ln , ; 1i iE Y X i n   = =                     (9) 

or    ( )expi iX =     

 

when   is unknown vector of regression coefficients.  

         

 Maximum likelihood estimation was used to 

estimate the parameters of negative binomial regression. 

The log-likelihood function is given by 
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2.3 Discrete Weibull (DW) Regression 

Klakattawi et. al. (2018) introduced the discrete 

Weibull regression model for count data for 3 types of 

dispersions: over-dispersion, under-dispersion, and 

covariate-specific dispersion. Most of the research 

applied the NB regression model to the over-dispersion 

count data. For this reason, in this study, we compare 

the DW regression models with the NB regression 

models. In addition, the DW regression model was 

compared with the Poisson model to obtain clear study 

results. 

 If a random variable Y  follows the discrete 

Weibull distribution (type I) (Nakagawa T. & Osaki 

S., 1975), then the pmf is given by  

( ) ( )1
; , ; 0,1,2,

yyf y q q q y



+

= − = ,  (11) 

 

where the parameter 0 1q   and 0  . 

 The mean and variance for DW distribution are 

given by, respectively, 
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 We can estimate the parameter for a DW 

distribution by using the maximum likelihood method. 

Given that 1 2 3, , , , ny y y y  are a random sample 

from a DW distribution, the log-likelihood is given by  
 

( ) ( )( )1

1

; , log ii

n
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 Klakattawi et.al. (2018) introduced the model of 

the relationship between a count response variable and 

a set of covariates when the response iY  has a DW 

conditional distribution ( )( ), ,i i if y q x x ; 

( )iq x  is the DW parameter related to the explanatory 

variables ix  through the link function: 
 

( )( ) 0 1 1log log ,i i i i ik kq x x x x     − = = + + + . (13) 

According to Equation (13), iq  can be illustrated as 
 

xie

iq e


−= ,                       (14) 
 

from which the conditional probability mass function of 

the response variable iY  given ix  is as below. 

( ) ( ) ( )
( )1i ix xi i

y y
e e

i if y x e e


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 Parameter estimation for unknow parameter   and 

  used method of maximum likelihood estimation. The 

log-likelihood is given by 
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2.4 Method of Parameter Estimation 

The maximum likelihood estimation (MLE) method is 

the most widely used to estimate the unknown 

parameters of an assummed probability distribution.  

For a given observed data, MLE attempts to find the 

parameters with the highest joint probability by using 

an optimization method. In this case MLE method aims 

to find the maximum of the likelihood function 

( );L y . If the likelihood function is differentiable, 

the derivative methods can be directly applied to dind 

the maxima. In most circumstances, numerical methods 

are necessary to find the maximum of the likelihood 

function.  The computational methods used when the 

estimate of MLE is not in a closed explicit form are the 

Newton-Raphson iterative method, the method of 

scoring, the simplex method, and the EM algorithm 

(Cameron A. C. & Trivedi P. K., 2013; Garthwaite et 

al., 2002).  In practice, it has been observed              

that maximization of log-likelihood function 

( )ln ;L y    is much easier than direct maximization 

of ( );L y . In this paper, we presented the log-

likelihood function for estimating the parameters of 

count data models. We used the package in the R 

program to estimate the parameters or coefficients for 

count data models. The analysis was carried out in the 

R program by using the glm () function, glm. nb () 

function, and the package ‘DWreg’, respectively. 

2.5 Criteria 

This section presents the criteria for comparing count 

data models. For fitted models, most papers used                    

the Akaike information criterion (AIC), Bayesian 

information criterion (BIC), and log-likelihood (LL). 

In 1973, Hirotsugu Akaike proposed a model selection 

criterion based on the fitted log-likelihood function. 

The AIC is the most commonly used fit statistic. Let  

L  be the model likelihood, p  is the number of 

parameters (predictors) in the model. The AIC is 

( )2ln 2AIC L p= − +  (Cameron A. C. & Trivedi P. 

K., 2013). In 1978, Gideon schwarz proposed the 

modification to AIC include the Bayesian                    

information criterion. The formulate of BIC is  

( ) ( )2ln lnBIC L p n= − +  with p  is number of 

parameter and n  the number of observations in the 

model (Hilbe J. M., 2014). When considering the 

maximum likelihood method, the log-likelihood ( LL ) 

test can be used for model comparisons. The LL  test 

can be used to determine whether or not there is over-

dispersion. Probability ratio statistics is calculated as; 

1 02(ln ln )LL L L= − . Where 1L  and 0L  are the 

log-likelihood under the respective hypothesis. When 

the AIC and BIC values are the least, or the LL  value 

is the greatest, it is possible to conclude that a model is 

excellent (Montgomery et al., 2012). 

2.6 Simulation studies 

In order to implement the count data models, we 

simulate the data set and then apply the three count data 

models with the simulated data set. The details of 

conducting simulation studies are given as follows: 

 We set the simple regression model using equation 

(17)  
 

0 1log i ix  = + ,  1,2,3, ,i n=       (17) 
 

We set up different sample sizes ( n ) as n =20, 50, 

100, 500. All the results are based on the average of 

1,000 repetitions through the following steps: 

 1) Simulation of random samples of sizes n  to 

present the predictor variables from the normal 

distribution, ( )0,1x N . 

 2) Set up the parameters 0 11.5, 1 = = . 

 3) Simulation of data from a Poisson inverse 

Gaussian distribution as the true model with a sample 

size n , 1.5 =  and 2 = .  

 4) Estimation of parameters by MLEs method. 

 5) Repeat steps 1–4 for 1,000 times and then 

compute the average MLEs, bias, and MSEs. 

2.7 Data Sets 

 In this study, we also consider two over-dispersion 

data sets as an application of the count data models.  

These two data sets have been selected as they are 

similar in terms of sample sizes and the same over-

dispersion. The two data sets consist of the number of 

deaths caused by accidents per day and the dataset in 

the Ecdat R package. The details of each data set are 

given below.  
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Table 1 The number of deaths caused in accidents per day from January to June of 2021. 
 

Count 0 1 2 3 4 5 6 7 8 9 10 

Frequency 1 3 8 9 15 25 9 23 15 10 10 

Count 11 12 13 14 15 16 17 18 19 20  21 

Frequency 7 2 5 7 4 3 3 1 2 1 1 

 

Table 2 The number of contracts strikes in US manufacturing observed monthly from January 1968 to December 1976. 
 

Count 0 1 2 3 4 5 6 7 8 9 10 11 13 15 16 18 

Frequency 5 12 14 11 9 14 9 4 7 10 6 1 3 1 1 1 

 

 
Figure 1 (a) The distribution of the number of caused in accidents per day and (b) the distribution of the number of contracts strikes in US manufacturing. 

 

Table 3 The coefficients of the Poisson, NB, and DW regression models and model comparison based on the simulation studies. 

n  Model parameter 
Estimates 

Coefficient 
AIC BIC LL 

20 Poisson 
0  

0.64442 78.9700 80.9615 -37.4850 

  
1  

-0.04653    

 NB 
0  

0.64457 78.2695 81.2566 -36.1347 

  
1  

-0.04934      

 DW 
0  

-1.3582 78.1311 81.1183 -36.0656 

  
1  

0.0854    

50 Poisson 
0  

0.2071 171.3467 175.1707 -83.67334 

  
1  

-0.2931    

 NB 
0  

0.2145 163.3170 169.053 -78.65849 

  
1  

-0.2678    

 DW 
0  

-0.6752 163.3486 169.0846 -78.67428 

  
1  

0.2217    

100 Poisson 
0  

0.2095   305.2494 310.4598 -150.6247 

  
1  

0.0362    

 NB 
0  

0.20959 302.5666 310.3822 -148.2833 

  
1  

0.03696    

 DW 
0  

-0.87466 302.3092 310.1247 -148.1546 

  
1  

-0.06101    

500 Poisson 
0  

0.33585 1820.7274 1829.1566 -908.3637 

  
1  

0.03624    

 NB 
0  

0.3358 1634.8996 1647.5434 -814.4498 

  
1  

0.0399    

 DW 
0  

-0.6565 1635.0194 1647.6632 -814.5097 

  
1  

-0.0340    
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 Data set 1: The number of deaths caused by accidents 

per day from January to June of 2021, which included 

181 observations obtained from the website of government 

data in Thailand: https://datagov.mot.go.th/. The 

predictor variable is the number of accidents per day, 

and the response variable is the number of deaths caused 

by accidents per day. The sample mean and variance of 

the response variable are 8.3867 and 38.6829, 

respectively.  This clearly indicates the existence of 

over-dispersion as the response variance is larger than 

the mean. The details of data set are shown in Table 1. 

 Data set 2: The StrikeNb dataset, which was 

retrived from Ecdat R package at http://CRAN.R-

project.org/package=Ecdat. The response variable is 

the number of contracts strikes in US manufacturing, 

observed monthly from January 1968 to December 

1976, which includes a total of 108 observations. The 

predictor is the level of economic activity, defined as 

the cyclical deviation of aggregate production from its 

trend level. The sample mean and variance of the 

response variable are 5.2407 and 14.0723.  It can be 

clearly seen that the response variance is larger than 

mean, indicating the existence of over-dispersion. 

Table 2 displays data from the second data set. 

 

 

 

3. RESULTS 

 The modeling results of the Poisson regression, 

negative binomial (NB) regression, and discrete 

Weibull (DW) regression obtained from the simulation 

study and two data sets are presented in this section. 

Comparison results based on the AIC, BIC, and LL fit 

statistics are presented in Tables 3–5, respectively. 

 Table 3 presents the comparison of the three models 

obtained from the simulation studies. The results show 

that the DW regression provides the smallest AIC value 

at sample sizes of 20 and 100.  It is however, when 

the sample sizes are 50 and 500, the NB regression 

shows a minimal AIC value. 

 Table 4 presents the comparison for the 3 models 

obtained from the first data set, including Poisson, NB, 

and DW regression models. The results show that the 

NB regression provides the smallest AIC value with 

slightly lower than that of DW regression model. When 

we consider the BIC value, it indicates that NB 

regression model fits this data set well. Further, NB 

regression yields the highest value of LL criterion. This 

indicates that NB regression is the best fit for data set 

1 with the coefficients estimated about 1.51040 and 

0.00473, respectively. The regression equation for the 

number of deaths caused by traffic accidents can be 

expressed as ( )exp 1.5104 0.00473y x= + . 

Table 4 The coefficients of the Poisson, NB, and DW regression models and model comparison of the data set 1. 
 

Coefficients/Criterion Poisson NB DW 

Estimates Coefficient Standard Error Estimates Coefficient Standard 

Error 

Estimates 

Coefficient 

Standard Error 

Intercept 1.52032 0.0433 1.51040 0.0608 -4.2382 0.2848 

Number of accidents 0.00465 0.0002 0.00473 0.0004 -0.0112 0.0013 

AIC 1003.381 969.162 970.768 

BIC 1009.778 972.384 980.363 

LL -499.690 -481.581 -482.384 

 

Table 5 The coefficients of the Poisson, NB, and DW regression models and model comparison of the data set 2. 
 

Coefficients/Criterion Poisson NB DW 

Estimates 

Coefficient 

Standard 

Error 

Estimates 

Coefficient 

Standard 

Error 

Estimates 

Coefficient 

Standard 

Error 

Intercept 1.6539 0.0422 1.6538 0.0686 -3.0704 0.2625 

Economic activity 3.1342 0.8032 3.2250 1.2841 -5.2937 1.8958 

AIC 627.969 566.597 564.157 

BIC 633.333 574.643 572.203 

LL -311.985 -280.298 -279.079 
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 Table 5 compares the three models using the second 

data set. The results illustrate that the DW regression 

provides the smallest AIC and BIC values and the 

largest LL value. It can be clearly seen that the 

differences between the LL values of NB regression and 

DW regression are very small, hence it could be 

concluded that DW regression is the best model for data 

set 2. The coefficients estimated of the DW regression 

are approximately -3.0704 and -5.2937, 

respectively. The regression equation for the                        

number of contract strikes is given as  

( )( )exp exp 3.0704 5.2937y x= − − − . 

 According to the comparative results among three 

regression models for overdispersion data using the 

simulation studies and two data sets as presented in 

Tables 3-5. We have observed that either NB 

regression or DW regression models are superior over 

Poisson regression model with respect to AIC, BIC, and 

LL criteria. Hence, both of NB regression and DW 

regression models are recommended to be used for 

overdispersion data.  

 

4. CONCLUSION 

This paper presents a comparative study of count data 

models for over-dispersion data. The count models 

included in this study are Poisson regression, NB 

regression, and DW regression, respectively. We study 

base on the simple regression models by the simulation 

studies. The data sets used are the number of deaths 

caused by traffic accidents per day and the strikeNb data 

set from the Ecdat R package. The criteria for 

comparing regression models are AIC, BIC, and LL 

values. The results show that the NB regression and DW 

regression are the best fit models for over-dispersion 

data under study. In order to extend the conclusion, 

more data sets or other models such as Poisson-

weighted exponential regression could be further 

investigated. 
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