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Abstract

This paper introduces a confidence interval for the parameter in a zero-truncated
Poisson distribution. We adjust the profile likelihood method to construct this confidence
interval by using a function of parameter as a nuisance. The performance of the proposed
estimator is investigated through simulations, and compared with the conventional Wald
confidence interval. From the results, the proposed estimator provides a good performance in
terms of coverage probability in all cases in the study. It also has the short interval length. The
practicality of our approach is confirmed by application to two real datasets, on a cholera-
epidemic and on mortality rates of infants on an estate.
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Introduction

Parameter estimation is an important method in statistical inference. It is widely used in
applications and research areas that rely on continuous or count data. Many approaches have
been proposed for estimating the parameter of interest with good accuracy. In particular,
interval estimation has been developed for the parameters, reliability functions, and applied in
many areas, such as medical science, social science, and engineering. This method is used to
calculate an interval, or range, of plausible values of an unknown parameter (Casella & Berger,
2002). It can also describe the probability level at which the confidence interval will contain the
true value, in contrast with point estimation which provides an approximate value only.

In this paper, we focus on the count outcome variable as a Poisson distribution. Let X
be a Poisson variable with parameter mean A > 0. It is denoted as X ~ P(L.). The probability

density function (PDF) of X is given by
PX = x) = exp(—A)A* ’
X!

where the observed value x =0, 1, 2, .... This probability model is usually used in analysis of
data containing zero and positive events that have low probabilities of occurrence within some
definite time or area range. However, observed data can be truncated. Only positive values of
the Poisson variable are available, or no zero counts are observed at all. In such a case, the
zero-truncated Poisson (ZTP) distribution is therefore more appropriate than the Poisson model
(Dietz & Bohning, 2000). The ZTP model is often used in socio-economical applications,
including research on alcohol and illicit drug use in the social sciences, and biological sciences.
The general PDF of the ZTP variable is given by
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P(X=x,.) P(X=x,))

P(X>0,1) 1-P(X=0,1)"
where x =1, 2, 3, .... (Tang et al., 2012). Figure 1 depicts the ZTP distribution for different
values of A. Papers related to parameter estimation in the Poisson distribution with missing
zero have been discussed by Dahiya & Gross (1973), Johnson et al. (2005), and Nasiri (2011;
2015). For interval estimation, Daidoji & Iwasaki (2012) introduced a confidence interval for A
in a ZTP distribution. They derived the likelihood function and estimated the variance of the
maximum likelihood (ML) estimator for building the confidence interval using the Wald method.
Simulations were used to confirm the performance of the confidence interval. It was found that
the coverage probabilities of the confidence interval proposed by Daidoji & Iwasaki (2012) were
lower than the target probability in many cases, especially when the sample sizes were less
than 50. Many techniques have been developed to estimate the functions of parameter in the
distribution related to the Poisson model. However, most of them were considered in the zero-
inflated Poisson (ZIP) distribution, for example, Taylor et al. (2001), Zhou & Tu (2000), Chen et
al. (2010), and Paneru et al. (2018).
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Figure 1 Zero-truncated Poisson probability density for different values of A

We know that confidence interval which has a high coverage probability will cover the
true parameter value better than that has a low coverage probability. However, as noted in
Daidoji & Iwasaki (2012) little papers on interval estimation for the ZTP distribution have been
shown. The confidence interval introduced in that paper is also unsatisfactory in terms of
coverage probability. So, we see that this is an important problem and needed to address. The
profile likelihood is an alternative approach for dealing with the nuisance parameters in a
distribution. It can be used to derive the variance of the ML estimator (Young & Smith, 2005;
Bohning et al., 2008). For the ZTP distribution, we know that A is the only one parameter in
the model. The profile method is then reasonably adjusted in this case. The idea for
constructing the confidence interval in this paper is that we assume a function of the population
mean, in terms of exponential, of the ZTP distribution to be a nuisance parameter, and
eliminate this function using the profile method. Then, the parameter of interest is estimated.
The variance of the estimator obtained from this method is used to build the new confidence
interval for A in the ZTP distribution, which may improve the coverage probability of the
confidence interval. Our approach will show here that eliminating a complex function of
parameter by using a simple form can be used and will provide a good estimator.
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The rest of this paper is organized as follows. In Section 2, the definition of the ZTP
distribution and the confidence interval of Daidoji & Iwasaki (2012) for A are explained. We
also derive the likelihood using the adjusted profile function method and introduce the novel
confidence interval in Section 2. In Section 3, we investigate the performance of the proposed
confidence interval using simulations in various situations, and compare it with that of the
existing estimator. Two real data examples are used to illustrate our method and presented in
Section 4. Finally, Section 5 presents our conclusions.

Methods
Let Y=(%,Y%,....Y,) be a random sample of size n from a zero-truncated Poisson
(ZTP) distribution. The conditional PDF of Y is given by
exp(-A)A" [ y;!
1-exp(-2)
for / =1,2,.. n.The observed value y;, =1, 2, 3, ... and the mean parameter of the un-
truncated Poisson distribution A > 0. The mean and variance of Y are given by

PY =y, ly,>0,A)=

A
E(Y)= ew ) )1(
and
A A
SARErTEy [l_ exp(1) —J ’

respectively (Winkelmann, 2008). The point estimator of A is obtained by maximizing the log-
likelihood function logLZ(%,y;) or the logarithm of joint PDF of V,,Y,,...,Y,. Thus, the ML
estimator for A of the ZTP model is derived by the following processes:

0 0 2

—logL(n,y;)=—1lo PY=y,ly,>0,x

=109 L, y;) ax[ 91}( vily:> )j
or

2 109L01,y,) =2 3, 10gi. - mh - Sloa(y, - nlog(a- exp(-1)|.

i=1 /=1
Solving the equation %Iog L(:,y;)=0 for A, we have

A

exp() o

where Y = ZY,. / n denotes the sample mean. Since the ML estimator for A does not provide
/=1

the closed-form solution, the estimated parameter is then approximated by the iterative
approach, using the expression:

AED =Y (1— exp(—a©)). )3(
In calculation, the suggested initial value is corresponded to the sample mean of variable Y.
The procedure will be iterated until the value of A in the (¢ +1)th and the value of % in the
t —th converge. In other word, the difference of these values must be small and close to zero.
Note that since A is ML estimator, its function has invariance property (Tan & Drossos, 1975).

-15 -



The Journal of Applied Science Vol. 20 No. 2: 13-22[2021]
NsRFINeEdaslssene doi: 10.14416/j.appsci.2021.02.002

1. Confidence interval of Daidoji and Iwasaki (2012)
Basically, the (1-a) 100% confidence interval for L is constructed based on the Wald

method. The general form is given by
A+ zam/l/ar(i) ,

where 7 is the ML estimator for A, Z,,, is the (a/2)th quantile of the standard normal

distribution, and l/ar(i) is the estimated variance of 4. Based on a property of the ML
estimator, 4 approximately converges to a normal distribution with mean 1 and variance
1/I(L), where I()) is the expected Fisher information (Casella & Berger, 2002). From the
ZTP distribution, 7(1) is given as
0? n1-(x +1)exp(—r
10)=-E (Wlog L(, y,)} - (x(l(— ex;(—f)()z )

Using the estimated variance of 7 from the inverse of I(%), Daidoji & Iwasaki (2012)

introduced the Wald-type confidence interval for A, which is given as follows:
a, =3+2,, J ML=eXp(A)”
nl—(n+1)exp(-A))

As can be seen from their paper, (7,, provides coverage probabilities lower than the nominal

level in many cases in simulations. The new confidence interval is therefore considered to deal
with this problem.

A

2. Proposed confidence interval

The interesting point of our method is started from the two equivalent equations
related to the mean: the population mean of the ZTP distribution given in (1) and the
expression corresponding to the mean given in (2). From these two formulas, we have

Evy=—2 -y
1-exp(-r)
which follows that
1-exp(-A) = % . )5(

Here, the function 1-exp(-A) in the log-likelihood, logZ(%, y;) as noted above equation (2), is

assumed as the nuisance parameter. It will be eliminated by substituting A /Y as used in the
profile likelihood method. Then, we achieve the log-likelihood:
logL,(%, y,) = Z”:y,. Iogk—nk—ilog(y, )—nlogx + nlog y.
i=1 i=1
This function is used to derive the expected Fisher information, which is given by
0? n(h —1+exp(-1))
I (W) =—-E|=logL,(\,y,) | =
/M (aﬂ 9L, 0y )J A2 (1—exp(-1))

Note that this function is entirely different from 7()) presented in the previous method derived

by Daidoji & Iwasaki (2012). Using the inverse of Ip(i) as the estimated variance of the
estimator, the novel confidence interval for A is then given by
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A2(1-exp(-A))
n(h—1+exp(-i)) '
where % is the ML estimator obtained by an iterative method shown in (3). Again, we note that

the confidence intervals given in (6) and (4) have entirely different formula. The performance
of these two confidence intervals is investigated using simulations.

Uy =it2,, J )6(

Simulation study

The simulations were performed to explore the performance of the methods for
estimating the confidence interval for A of the ZTP distribution. The study was designed to
cover cases with different sample sizes, as n = 10, 20, 50, and 100, reflecting small to large
samples. The true parameter (1) was given by 0.5, 1, 2, and 3. The confidence level (1-a )
was set at 0.95. Following the simulation method in Daidoji & Iwasaki (2012), we generated
the data from standard Poisson random numbers by discarding the zero values using R
programming (R Core Team, 2019). We then computed the maximum likelihood estimator for
L from A0 = y(1—exp(-1?)). The sequence started at A =y, and stopped when

[ A — A | <0.00001. Each combination of situation was repeated 10,000 times. The
performance of the confidence interval was calculated by

Acpzn(LsksU)
10,000
for the average coverage probability and
10,000
> W, —Ly)
— h=1
10,000

for the average length, where n(L <X <U) is the number of simulation runs for A that lies

between the lower limit L and upper limit ¢. A confidence interval which has a coverage
probability greater than or close to the nominal coverage level means that it contains the true
value with a given probability. In other word, it can precisely estimate the parameter of
interest. The confidence interval that satisfies the criterion is the best in comparison. If the
confidence intervals perform well in terms of coverage probability and have the same average
probability value, they will be used to compare the average length. The confidence interval
which has a short length interval denotes that the estimate is close to the parameter value,
which is needed in interval estimation.

The performance of the confidence intervals considered in this paper is summarized in
Table 1. The coverage probabilities of the proposed confidence interval, namely (7,,, were

grater than or close to the nominal coverage probability at 0.95 in many cases in the study.
They are increased, when A or 7 increased. Obviously, (7, performed better than the

compaired estimators in terms of coverage probability. The confidence interval of Daidoji &
Iwasaki (2012), namely C7,,, had the coverage probability much lower than 0.95 when 7 <50.

The behavior of C7,, in the current simulation study was similar to that presented in Daidoji &

Iwasaki (2012). Next, we considered the performance of the confidence intervals in terms of
average length. (7,, had the short expected length, which was acceptable. The expected

lengths of C7,, and (7, were slightly different. However, we noted that (7,, actually covered
the true parameter X in computation. These results are also shown graphically in Figure 2.
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Table 1 Coverage probability and expected length of the 95% confidence intervals for A in the
zero-truncated Poisson distribution

Coverage probability Expected length

n A y CT y (T
10 0.5 0.9209 0.9409 1.0575 1.1013
1 0.9000 0.9466 1.4725 1.5700
0.9210 0.9556 1.9440 2.1340
3 0.9392 0.9678 2.2723 2.5188
20 0.5 0.9310 0.9421 0.7863 0.8170
1 0.9207 0.9472 1.0603 1.1301
0.9356 0.9606 1.3843 1.5214
3 0.9501 0.9703 1.6080 1.7841
50 0.5 0.9460 0.9485 0.5075 0.5267
1 0.9485 0.9547 0.6779 0.7227
0.9449 0.9679 0.8781 0.9656
3 0.9457 0.9671 1.0190 1.1312
100 0.5 0.9337 0.9496 0.3600 0.3735
1 0.9456 0.9544 0.4811 0.5129
0.9479 0.9689 0.6213 0.6833
3 0.9479 0.9691 0.7206 0.8001

100 r25
r2

0.95 [ R s b 0.95 . rLs
L 4~ oy .
/ = rLo
Los
L o090

20

095{ =77 e |15 L5
/ 10

0.90 03

an of AL

Mean of ACP

Panel variable: Lambda Panel variable: Lambda

Method
—&— CLDI
—& CIPR

Figure 2 Plots of coverage probability (left) and average length (right) of the 95% confidence
intervals on the settings: n = 10, 20, 50, 100 and A» = 0.5, 1, 2, 3.
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Overall, the coverage probability of the proposed confidence interval outperformed that
of the compared confidence interval in all cases. The length of interval was also small on
average. The confidence interval proposed in this paper is suggested to estimate the Poisson
parameter in the ZTP distribution.

Numerical illustration
There are two real data examples in this section.

1. Cholera data
We used the data on a cholera epidemic in an Indian village obtained from Bdhning &
Schon (2005). The dataset included the number of households (observed frequency: O.) with

exact numbers of cholera / cases: O, =32, O, = 16, O, = 6, and O, = 1, so that the sample

size n = 55. Bohning & Schon (2005) pointed out that, although the original data presented in
McKendrick (1926) reported the frequency of houses with no cases of cholera, households with
zero cases were ignored because they were not relevant to determination of the number of
affected houses. Only the associated / —th household that was clearly affected by cholera, or
any case count which was greater than zero, was applied. The histogram of this dataset is
shown in Figure 3.
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Figure 3 Histogram (left) and plot of observed and expected frequencies (right) under the
zero-truncated Poisson distribution for cholera data (AIC = 111.56)

Before applying our method, the distribution of cholera data was checked. We tested
the following hypotheses:

H, : The data follow the ZTP distribution
H, : The data do not follow the ZTP distribution.
Using the chi-square goodness of fit test (Cochran, 1952),
k (0 _ E.)2
2 _ i i

i
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where O, is the observed value and £, is the expected value related to the ZTP probability.
Under the null hypothesis, %? has a chi-square distribution with k& —2 degrees of freedom.
Note that, in calculation the expected frequency £, which was less than 5 was pooled. Then,

the observed test statistic was given by 6.63 with a p-value of 0.01. It can be seen that the p-
value was borderline at a significance level at 0.01. We next considered the plot of observed
and estimated frequencies to support the homogeneity of the distribution. It is shown in Figure
3 (right). Clearly, the cholera data followed a ZTP distribution with Akaike information criterion
(AIC) of 111.56. The ML estimator for A was 0.97. The 95% confidence intervals obtained
from the proposed and existing methods were calculated. C7,, was (0.63, 1.31) and (7,, was

(0.65, 1.29) with lengths of interval of 0.68 and 0.64, respectively. Based on the invariant
property of ML estimation and our method, the 95% confidence interval for the mean of
cholera cases in an Indian village was given as (1.35, 1.80), or 1.56 on average.

2. Infant mortality data

We used the data on the number of mothers on an estate who had at least one live
birth and one neonatal death. They were obtained from Shanker et al. (2015). The original data
reported the number of mothers from neonatal deaths / cases: O, =71, O, =32, O, = 7,

0, =5,and O, = 3, to the total n = 118. Only observable counts were reported. The

frequency distribution of the observed used data is shown in Figure 4 (left). The chi-square
statistic was used to test the distribution of a ZTP. This was given as 0.68 with a p-value of
0.41. Therefore, the infant mortality data considered here significantly followed a ZTP
distribution with AIC = 259.46. This dataset was suitable for our purposes. The ML estimate for
L obtained by the iterative method was estimated as 1.06. The 95% confidence interval from
(I, was given by (0.81, 1.29) with interval length 0.48. The (7, was (0.83, 1.28) with

interval length of 0.45. The mean of number of mothers from infant deaths was 1.62 cases with
95% confidence interval of (1.46, 1.78).

From this example, if the data were assumed to be the Poisson distribution as often
used with 4 = 1.62 and AIC = 330, interval estimation for the mean was given as (1.33, 1.91).
It can be seen that the interval length of this method, where it did not come from the
reasonable probability model, was greater than that of the proposed method. We just point out
that the use of appropriate statistical tool for the available data will lead to the right solution.
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Figure 4 Histogram (left) and plot of observed and expected frequencies (right) under the
zero-truncated Poisson distribution for infant mortality data (AIC = 259.46)
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Based on these two examples, we conclude that the lengths of the confidence intervals
are small, with (7, having a slightly smaller length of interval than (7,,. The findings

considered in this section therefore support the simulation results.

Conclusion

Profile likelihood method has been generally used to construct the confidence interval.
This method keeps the parameter of interest fixed and maximizes the nuisance parameter (for
elimination the nuisance parameter). From the ZTP model, we point out that the population

mean of this distribution is equivalent to the sample mean, leading to ¥ =/ (1—exp(-1)) .

For this, the function in the denominator of the previous equation is eliminated to keep only the
parameter of interest (1 ). The likelihood function under this method is then used to derive the
variance of the ML estimator, and is applied to estimate the confidence interval. We note here
that this adjusts the idea of the profile likelihood method.

The performance of the proposed confidence interval was conducted by simulations.
The results confirmed its good performance in terms of coverage probability and expected
length. The coverage probabilities of the proposed confidence interval were satisfied the
nominal coverage level, while the expected lengths were small. The confidence interval for A
proposed in this paper outperformed the confidence interval constructed based on the
traditional method using the likelihood function. This shows that our proposed method is
accuracy and precision to estimate the true parameter. Moreover, it is easy to compute our
confidence interval using a basic programming language. In practical terms, the novel
confidence interval is therefore recommended for estimating the parameter in the zero-
truncated Poisson distribution.
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