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Abstract

In this work, a new generalized of the exponential distribution, called the beta Topp-
Leone exponential distribution, is introduced. Mathematical properties of the proposed
distribution are also provided, such as, some expansions of the probability density function and
the cumulative distribution function, transformation, quantile function, ordinary moments, and
moment generating function. The method of maximum likelihood estimation is used to estimate
the unknown parameters of the proposed distribution. Also, the performance of maximum
likelihood estimators is investigated through Monte Carlo simulation study. The applicability of a
new distribution is illustrated by the real data set.

Keywords: Exponential distribution, Beta generated family of distributions, Topp-Leone
Distribution, Topp-Leone exponential distribution, T-X family

Introduction

The exponential (E) distribution is applied to a wide range of fields: actuarial sciences,
reliability, engineering, and others. Many researcher attempts to improve this distribution to
become more flexible for modelling data such as, the generalized exponential or exponentiated
exponential (Gupta and Kundu, 1999), the beta exponential (BE) (Nadarajah and Kotz, 2006),
the beta generalized exponential (Barreto-Souza et al., 2010) and the Topp-Leone exponential
(TLE) (Al-Shomrani et al., 2016) distributions. Our main focus in this paper is to introduce a new
modification of exponential distribution using the T-X family of distributions (Alzaatreh et al.,
2013). Let T be a random variable of a generator distribution with probability distribution function
(pdf) r(t) defined on [p,q] and let X be a parent random variable with cumulative distribution
function (cdf) G (x). The cdf of T-X family is given by T

w(G(x))

Fyy(x) = f r(0) dt, (1)

14
where W (G (x)) be a function of G(x) and satisfy the conditions as follows
1. w(G) € [p.ql,
2. W(G(x)) is differentiable and monotonically non-decreasing,
3. W(G(x))>pasx - —cwand W(G(x)) - qasx — .
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Eugene et al. (2002) pioneered this method, referred to as the beta generated (BG)
family of distributions, by utilizing a beta random variable T via W (G(x)) = G(x). Let G(x; §) be
a parent cdf and let g(x; &) = dG(x; §)/dx be a parent probability density function (pdf) of a
random variable X with parameters a, b, and the vector of parameters &. The pdf of BG family is

1
fec(x;a,b,§) = mg(xi HExOH M1 -6 a,b >0, (2)
where B(a,b) = f01 t%~1(1 — t)?~1dt is the beta function. The cdf of BG family is
FBG(X; a, b' f) = IG(X:{)(a' b) (3)

where the function I;(,.¢ (a, b) denotes the incomplete beta ratio function defined by
BG(x;{) (a: b)

B(a,b)
where By (a,b) = fOG(x‘Ota‘l(l —t)P~1 dt is the incomplete beta function. Furthermore, by
using this method, Al-Shomrani et al. (2016) introduced the Topp-Leone generated (TLG) family
of distributions and the TLE distribution with its properties and application to the times to failure
of components. Let X be a random variable having TLE distribution with parameters c,1 > 0,
denoted X ~ TLE(c, 4). The cdf and pdf of TLE distribution are given by

Gre(xic, ) = (1—e ), x>0 (4)

Ige(a,b) =

and

grie(x; ¢, ) = 2cle™*(1 — e‘“")c_l, x>0, (5)
respectively. The rest of paper is structured as follows. In part of results, a new modification of
exponential distribution called the beta Topp-Leone exponential distribution is proposed in
Section 1. Some expansions of the beta Topp-Leone exponential distribution are obtained in
Section 2. Some of its mathematical properties are investigated in Section 3. The proposed
distribution parameters are estimated by maximum likelihood estimation in Section 4. A Monte
Carlo simulation study is provided in Section 5. In Section 6, the flexibility of the proposed
distribution will be explored through application to real data sets. Finally, the last section is the
conclusion.

Results
1. The Beta Topp-Leone Exponential Distribution

We introduce the beta Topp-Leone exponential (BTLE) distribution by setting G (x; §) =

Grie(x; ¢, 1) in Equation (3). Let X be a random variable having BTLE distribution with the vector

of parameters © = (a, b,c,A1)T wherea, b,c,A > 0, denoted X ~ BTLE(a, b, c,A). The cdf and pdf
of the BTLE distribution are obtained as

Fgrie(x; ©) = I(l_e—zxx)c(a, b), x >0, (6)

and

foms (63 €) = gy (1 - e ) 1 - (1- ) T x>0 7)

respectively. The BTLE distribution reduces to the TLE distribution whena=1and b =1. If ¢ =
1 it reduces to the beta transmuted exponential distribution with transmuted parameter equals
to 1. If b=1 in addition to ¢ =1, it gives as the exponentiated transmuted exponential
distribution with transmuted parameter equals to 1. The exponentiated Topp-Leone exponential
distribution is also a sub-distribution when b = 1. The transmuted exponential distribution with
transmuted parameter equals to 1 is clearly a sub-distribution fora =1, b =1 and ¢ = 1. Plots
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of the BTLE pdf for some specific values of parameters a,b,c, and A are shown in Figures 1,
respectively.
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Figure 1 Plots of the BTLE pdf for some specific values of the parameters
2. Expansions for the BTLE Distribution

Some useful expansions for Equations (6) and (7) can be derived using the exponentiated
exponential (EE) distribution. Let X, be a random variable having the EE distribution with
parameters a,A > 0,denoted X, ~ EE(a,A) and the pdf and cdf of EE distribution are
fee(x 0, 4) = ar(1 — e"l")a_le“x and Fgg(x; a, 1) = (1 — e™)", respectively.

Firstly, for real non-integer b > 0, the term of (1 — t)?~* under the integral is replaced by the
power series, and is expressed as

* c b—=1\ * .
f ta_l(l _ t)b—ldt — Z(_l)L ( ) >J- ta+l—1dt
0 i=0 ' 0
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where the binomial coefficient (”;1) =T(b)/T(b —i)i! is defined for any real b. From Equation
(6), we obtain

Fgrie(x; ©) = ﬁi 7 1 ; (-1 (b : 1) [1 - (1 -(1- e—Ax))Z]

Using the binomial expansion once_more, the cdf of BTLE family will be
w 2j

Fgrie(x; ©) = Z Z w; ik Fee(x; k, 2) (8)

i,j=0 k=0

=D b =1y (ela + D)) (2]
Wiik = B(a, b)(a + i)( i ) j <k)
By differentiating Equation (8), we obtain

c(a+i)

where,

o 2j
feTLe(x; 0) = Z Z Wi,j,kaE(xi k,2). 9)
i,j=0 k=0
If b > 0 is an integer, the index i in Equations (8) and (9) will stop at b — 1, and if both a and ¢
are integers, then the index j will run and stop at c(a + i).

3. Mathematical Properties

In this section, some mathematical properties of the BTLE distribtuion, including
transformation, quantile function, ordinary moments and moment generating function, are
provided.

3.1 Transformation

Let B be a random variable having a beta distribution with parameters a and b. By inverting
Equation (4), we will obtain
¥ = [log(l — B/¢)

-2
follows a BTLE distribution with parameters a, b, ¢, and A.

(10)

3.2 Quantile function

Let U be a random variable having a uniform on interval (0,1). By inverting Equation (6), the
quantile function, Q(u) = F~*(u), of the BTLE distribution is

log [1 - (', b))l/C]} O<u<l1

(11)

Qprie(w; 0) = { Y

where I;1(a, b) is the inverse of the incomplete beta ratio function (Majumder and Bhattacharjee,
1973).

3.3 Ordinary Moments

The rth ordinary moment of the BTLE distribution can be straightforwardly obtained from
Equation (9) as
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o 2j

p= B = 3wy B, (12)
i,j=0 k=0

where E(X}) is the rth ordinary moment of the EE distribution. Nadarajah (2011) that the rth
moment of the EE distribution is

E[XI] = Va0 pd+1
ol =% B - . (13)
From Equations (12) and (13), the rth ordinary moment of the BTLE distribution is
w 2j
, (_1)r o
. ‘TZ kai,,,kWB(k,dH—k) » (14)

i,j=0 k=0
3.4 Moment Generating Function

The moment generating function (mgf) of X, M, (t) = E(e**), can be written from Equation
(9) as
o 2j
My (6) = Z Z WMy, (), (15)
i,j=0 k=0
where My, (t) is the mgf of the EE distribution. Nadarajah (2011) shows that the mgf of the EE
distribution is

My, ® = aB (1~ % ). (16)

From Equations (15) and (16), the mgf of the BTLE distribution is

[oe]

2
My (£) = Z Z] kw,, B (1 - ;\k) (17)

i,j=0 k=0

4. Maximum Likelihood Estimation
Let x = (x4, ..., x,)T be a random sample of size n from the BTLE distribution. The likelihood
function for the vector of parameters ©@ = (a,b,c,\)7 is
n

L(O;x) = nfBTLE(xi; 0)

s et - ey - (- ey

i=1
The corresponding log-likelihood function is

£(8;) = 10gL(8;x) = ) 10g fymis (xi;©)

i=1

n
= —nlogB (a,b) + nlog(2) + nlog(c) + nlog(1) + nlog(c) — 2/12 x}

i=1

+(ac — 1)2 log(1 —v?)+ (b—1) Z log[1 — (1 —v?)€],
i=1 i=1
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where v; = e is a transformed observation. The maximum likelihood estimator (MLE) © of the
vector of unknown parameters @ in Equation (18) can be obtained by the score function
U(®) = 02(0; x) B

00
The components of the score function are

Ua(®) = n(pa+b) = h(@) + ¢ ) logd = v?),

U»(©) = n((a+b) = (b)) + Z log[1 — (1 = v?)°],

0. _—+a210g(1—v2)—(b 1)2(1—17 )Clog(lz)—cv ),

1— 2\¢
U}\(@) = 2 Z xl + Z(ac - 1) Z _2 Zc(b 1) Z (U_Z _xl)((l _v(]?_ v2)c)

where v; = e‘“t and ¥ (-) is the dlgamma function. However these non-linear equations cannot
be solved analytically. Therefore, the value of MLE ® that maximizes the log-likelihood function
can be computed numerically from the non-linear equations utilizing the optimr package (Nash,
2016) in R programming language (R Core Team, 2020).

For interval estimation on the vector of parameters 0, the observed Fisher information
matrix J(®) is obtained because it is not always possible to compute expected Fisher information
matrix I(@). The 4 x 4 observed Fisher information matrix is defined by

]aa ]ab ]ac ]ah

_ 9%£(8; x) _ “ Jop Joc Im
](0) - 00 00T |- : ]CC ]C}\
I

where the elements of J(®) are given by
aa = n(l/),(a +b) — 1/)'(61)),
Jop = n(ll’ (a+b)— Eb 1),

G- 1>z<1‘” D 9);;’ )

2(1 - vz) w’[A -v)) 1] +¢c}
G 1)2( ~4clb - 1)2 -1D2[1-(1-v)2

Jab = Tl_’}b (a+b),

= > log(1 - v),
=
n
Xi
Jax = ZCZ T

i=1
(11— v?)¢log(1 — v?)
aQ-vhH)e-1 '

x; (1 —v?)©
ZCZ( DA - v 1T

Jbe =
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x; (1 —vH)[(1 — v?)° — clog(1 — v?) — 1]

Jo = ZaZ +2(b—1)z _2_1)[1_(1_52)612 ,
where v; = e™*i and y'(-) is the derlvatlve of the digamma function. The total Fisher information
matrix is J,,(®) = nJ(®). In addition, the second partial derivatives can be numerically computed
by using numDeriv package (Gilbert and Varadhan, 2019) in R programming language (R Core
Team, 2020).

The asymptotic distribution of vn(® — @) is multivariate normal N,(0,1(®)™*) where
1(0) is the expected Fisher information matrix. For construct asymptotic confidence intervals, the
1(®) can be replaced by J(©) that is the observed Fisher information matrix calculated at ©. The
corresponding asymptotic confidence intervals with significance level « for each parameter are

a + Za/Z\/jﬁﬂ B t Za/Z\/]W’ ¢ t Za/Z\/.]TCJ /1A t er/Z\/‘m:

where z,, is the quantile 1 — a/2 of the standard normal distribution and j¢, /*%, ¢, and J** are
the diagonal elements of variance-covariance matrix £ = J,,(©) ™"

5. Simulation study

A Monte Carlo simulation study is conducted to investigate the performance of the MLEs
based on bias and root mean square error (RMSE). We consider sample sizes n =
15,25,50,100,250,500 and the different values of the BTLE parameters a,b,c, and A: a = 0.6,b =
0.4,c =1, and A = 2 (non-increasing pdf) and a = 2,b = 0.75,c = 1.5, and A = 3 (right-skewed
pdf). The experiment is repeated 2000 times. An algorithm for generating a BTLE random variable
X with parameters a, b, ¢, and A:

i Generate a beta random variable with parameters a and b, B ~ Beta(a, b).

i, Setx = [M

Table 1 gives the average parameter estimates, average bias, and average RMSE of the
MLEs. The results show that the MLEs are the asymptotically unbiased and consistent, i.e., the
bias and RMSE decrease when the sample size increases.

Table 1 The average parameter estimates, average bias, and average RMSE

BTLE(0.6,0.4,1,2) BTLE(2,0.75,1.5,3)
Sample size Parameters Parameter Parameter
. Bias RMSE : Bias RMSE
estimates estimates
15 a 2.662 2.062 4.366 5.125 3.125 6.750
b 4.608 4,208 11.160 10.186 9.436  18.345
c 4.039 3.039 7.682 7.294 5.794  10.848
A 4.295 2.295 4.827 5.284 2.284 6.609
25 a 2.561 1.961 3.990 3.039 3.125 6.750
b 3.033 2.633 7.124 7.865 9.436  18.345
c 2.549 1.549 4.844 7.670 6.170 12.594
A 4.083 2.083 4.278 5.122 2.122 5.689
50 a 1.811 1.211 2.619 3.056 1.056 3.019
b 1.563 1.163 3.386 3.584 2.834 6.504
c 1.673 0.673 2.472 3.799 2.299 6.086



The Journal of Applied Science Vol. 20 No. 2: 1-12[2021]

NsAFINeAENTUsTE NG doi: 10.14416/j.appsci.2021.02.001
A 3.765 1.765 3.441 4.324 1.324 4.334
100 a 1.469 0.869 1.849 2.497 0.497 2.317
b 1.291 0.891 2.198 2.268 1.518 3.374
c 1.286 0.286 1.356 3.421 1.921 4,932
A 2.973 0.973 2.533 3.560 0.560 2.960
250 a 1.205 0.605 1.382 2.861 0.861 2.321
b 0.819 0.419 1.359 1.674 0.924 2.327
c 1.154 0.154 1.003 2.161 0.661 2.061
A 2.640 0.640 1.846 3.061 0.061 1.786
500 a 0.852 0.252 0.896 2.440 0.440 1.911
b 0.994 0.594 1.458 1.271 0.521 1.707
c 1.293 0.293 1.106 2.247 0.747 2.044
A 2.176 0.176 1.511 2.945 -0.055 1.271

6. Application

In this section, the fitted results of the BTLE, BE, TLE, and E distributions are compared with
real data set to demonstrate the flexibility and applicability of the proposed distribution among
the other distributions. In order to evaluate whether the distribution is appropriate, the many
statistical tools are considered: the criteria of Akaike’s information criterion (AIC) (Akaike, 1974),
Bayesian information criterion (BIC) (Schwarz, 1978) and Anderson-Darling test, A* (Stephens,
1974). The data set is the strength of glass fibres of lengths 1.5 cm from the National Physical
Laboratory in England (Smith and Naylor, 1987). Table 2 gives a descriptive statistics summary
of these data.

Table 2 Descriptive statistics summary of the data

n Mean Star)dgrd Median Min Max Skewness  Kurtosis
Deviation
63 1.51 0.32 1.59 0.55 2.24 -0.88 0.80

The maximum likelihood estimates (the standard error (SE) is given in parentheses), the values
of minus loglikelihood, AIC, BIC and A* of the distributions for real data set are shown in Table
3. The lower the values of these statistics indicate a better fit to the data. Since these findings
suggest that the BTLE distribution has the lowest AIC, BIC and A* values, it follows that the BTLE
distribution could be a suitable distribution for the fitting of the data. The histogram and the
estimated pdf plots of the data are illustrated in Figure 2(a). In Figure 2(b), the empirical cdf and
the estimated cdf plots for the data are shown. Furthermore, the goodness-of-fit plots for BTLE,
BE, TLE, and E distributions that consist of Q-Q and P-P plots are presented in Figure 3,
respectively. The conclusion of these plots indicates that BTLE distribution provides a better fit
for the data.
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Table 3 The MLEs (SEs), minus log-likelihood, AIC, BIC, and Anderson-Darling test

Parameter estimates Distributions
E TLE BE BTLE
a ) ) 17.476 0.381
(3.127) (0.195)
5 ) ) 47.795 115.368
(115.945) (130.168)
P ) 31.296 ) 23.309
(9.497) (15.724)
1 0.664 1.305 0.209 0.454
(0.084) (0.119) (0.443) (0.178)
-log-likelihood 88.83 31.383 24.002 15.467
AIC 179.661 66.767 54.004 38.934
BIC 181.804 71.053 60.434 47.506
A* 3.127 4.286 3.127 1.378
(p-value) (0.024) (0.006) (0.024) (0.208)
(a) (b)

Figure 2 (a) The histogram of the data and plots estimated densities of the fitted distributions
(b) The empirical cdf of the data and plots estimated cdfs of the fitted distributions
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Figure 3 (a)-(b) Q-Q and P-P plots for the BTLE distribution, (c)-(d) Q-Q and P-P plots for BE
distribution, (e)-(f) Q-Q and P-P plots for TLE distribution, and (g)-(h) Q-Q and P-P plots for E
distribution fitted to the data

In addition, the variance-covariance matrix for the data is

0.038 5.100 —2.826 —0.027
5.100 16937.844 —882.456 —15.980
—2.826 —882.456  247.195 2.643
—0.027 —15.980 2.643 0.032

Yy =

Finally, we will obtain the 100(1 — @)% asymptotic confidence intervals of the BTLE parameters
0 = (a,b,c, )T, where a« = 0.90,0.95,0.99 in Table 4.

Table 4 The asymptotic confidence intervals of the BTLE parameters based on the data

Parameters 90% 95% 99%
Lower Upper Lower Upper Lower Upper
a 0.060 0.702 -0.001 0.763 -0.121 0.883
b -98.739 329.475 -139.757 370.493 -219.923 450.659
c -2.555 49.173 -7.509 54.127 -17.193 63.811
A 0.161 0.747 0.105 0.803 -0.004 0.921
Conclusions

A new four-parameter distribution called the beta Topp-Leone exponential distribution is
proposed. Its cdf and pdf of the proposed distribution are derived. Some of its mathematical
properties, i.e. some expansions of pdf and cdf, transformation, quantile function, ordinary
moments and mgf are presented. The maximum likelihood estimation is used to find out the
parameter estimates for the BTLE distribution. Through Monte Carlo simulation study we
demonstrated that, the bias and RMSE of MLEs decrease as the sample size increases. Results of
fitting the BTLE, BE, TLE and E distributions to the real data set are evaluated. Considering the
values of AIC, BIC, and Anderson-Darling test, it suggests that the BTLE distribution could

-11 -
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outperform the other distributions. We hope that the BTLE distribution may attract wider
applications in various areas such as reliability, engineering, and others.
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