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Abstract 
 

In this work, a new generalized of the exponential distribution, called the beta Topp-

Leone exponential distribution, is introduced. Mathematical properties of the proposed 
distribution are also provided, such as, some expansions of the probability density function and 

the cumulative distribution function, transformation, quantile function, ordinary moments, and 

moment generating function. The method of maximum likelihood estimation is used to estimate 
the unknown parameters of the proposed distribution. Also, the performance of maximum 

likelihood estimators is investigated through Monte Carlo simulation study. The applicability of a 
new distribution is illustrated by the real data set. 

 
Keywords: Exponential distribution, Beta generated family of distributions, Topp-Leone   
                   Distribution, Topp-Leone exponential distribution, T-X family 

 
Introduction 
 

The exponential (E) distribution is applied to a wide range of fields: actuarial sciences, 
reliability, engineering, and others. Many researcher attempts to improve this distribution to 

become more flexible for modelling data such as, the generalized exponential or exponentiated 

exponential (Gupta and Kundu, 1999), the beta exponential (BE) (Nadarajah and Kotz, 2006), 
the beta generalized exponential (Barreto-Souza et al., 2010) and the Topp-Leone exponential 

(TLE) (Al-Shomrani et al., 2016) distributions. Our main focus in this paper is to introduce a new 
modification of exponential distribution using the 𝑇-𝑋 family of distributions (Alzaatreh et al., 

2013). Let 𝑇 be a random variable of a generator distribution with probability distribution function 

(pdf) 𝑟(𝑡) defined on [𝑝, 𝑞] and let 𝑋 be a parent random variable with cumulative distribution 

function (cdf) 𝐺(𝑥). The cdf of 𝑇-𝑋 family is given by 𝑇 

 

𝐹𝑇-𝑋(𝑥) = ∫ 𝑟(𝑡)

𝑊(𝐺(𝑥))

𝑝

 d𝑡,        (1) 

where 𝑊(𝐺(𝑥)) be a function of 𝐺(𝑥) and satisfy the conditions as follows    

    1.  𝑊(𝐺(𝑥)) ∈ [𝑝, 𝑞],  

    2.  𝑊(𝐺(𝑥)) is differentiable and monotonically non-decreasing,  

    3.  𝑊(𝐺(𝑥)) → 𝑝 as 𝑥 → −∞ and 𝑊(𝐺(𝑥)) → 𝑞 as 𝑥 → ∞. 

 

 

Research Article 
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Eugene et al. (2002) pioneered this method, referred to as the beta generated (BG) 

family of distributions, by utilizing a beta random variable 𝑇 via 𝑊(𝐺(𝑥)) = 𝐺(𝑥). Let 𝐺(𝑥; 𝝃) be 

a parent cdf and let 𝑔(𝑥; 𝝃) = d𝐺(𝑥; 𝝃)/d𝑥 be a parent probability density function (pdf) of a 

random variable 𝑋 with parameters 𝑎, 𝑏, and the vector of parameters 𝝃. The pdf of BG family is  

 
𝑓BG(𝑥; 𝑎, 𝑏, 𝝃) =

1

𝐵(𝑎, 𝑏)
𝑔(𝑥; 𝝃)𝐺(𝑥; 𝝃)𝑎−1[1 − 𝐺(𝑥; 𝝃)]𝑏−1,  𝑎, 𝑏 > 0,        (2) 

where 𝐵(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1d𝑡
1

0
 is the beta function. The cdf of BG family is  

      𝐹BG(𝑥; 𝑎, 𝑏, 𝝃) = 𝐼𝐺(𝑥;𝝃)(𝑎, 𝑏)                                            (3) 

where the function 𝐼𝐺(𝑥;𝝃)(𝑎, 𝑏) denotes the incomplete beta ratio function defined by  

𝐼𝐺(𝑥;𝝃)(𝑎, 𝑏) =
𝐵𝐺(𝑥;𝝃)(𝑎, 𝑏)

𝐵(𝑎, 𝑏)
 

where 𝐵𝐺(𝑥;𝝃)(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝐺(𝑥;𝝃)

0
 d𝑡 is the incomplete beta function. Furthermore, by 

using this method, Al-Shomrani et al. (2016) introduced the Topp-Leone generated (TLG) family 
of distributions and the TLE distribution with its properties and application to the times to failure 
of components. Let 𝑋 be a random variable having TLE distribution with parameters 𝑐, 𝜆 >  0, 
denoted 𝑋 ∼ TLE(𝑐, 𝜆). The cdf and pdf of TLE distribution are given by  

𝐺TLE(𝑥; 𝑐, 𝜆) = (1 − 𝑒−2𝜆𝑥)
𝑐
, 𝑥 > 0                           (4) 

 and  

 𝑔TLE(𝑥; 𝑐, 𝜆) = 2𝑐𝜆𝑒−2𝜆𝑥(1 − 𝑒−2𝜆𝑥)
𝑐−1

, 𝑥 > 0,                           (5) 

respectively. The rest of paper is structured as follows. In part of results, a new modification of 

exponential distribution called the beta Topp-Leone exponential distribution is proposed in 
Section 1. Some expansions of the beta Topp-Leone exponential distribution are obtained in 

Section 2. Some of its mathematical properties are investigated in Section 3. The proposed 
distribution parameters are estimated by maximum likelihood estimation in Section 4. A Monte 

Carlo simulation study is provided in Section 5. In Section 6, the flexibility of the proposed 

distribution will be explored through application to real data sets. Finally, the last section is the 
conclusion.  

 
Results 

1. The Beta Topp-Leone Exponential Distribution 

 

We introduce the beta Topp-Leone exponential (BTLE) distribution by setting 𝐺(𝑥; 𝝃) =
𝐺TLE(𝑥; 𝑐, 𝜆)  in Equation (3). Let 𝑋 be a random variable having BTLE distribution with the vector 

of parameters 𝚯 = (𝑎, 𝑏, 𝑐, 𝜆)𝑇 where 𝑎, 𝑏, 𝑐, 𝜆 > 0, denoted 𝑋 ∼ BTLE(𝑎, 𝑏, 𝑐, λ). The cdf and pdf 

of the BTLE distribution are obtained as 
𝐹BTLE(𝑥; 𝚯) = 𝐼

(1−𝑒−2λ𝑥)
𝑐(𝑎, 𝑏), 𝑥 > 0,                                    (6) 

and 
 

                    𝑓BTLE(𝑥; 𝚯) =
2𝑐𝜆

𝐵(𝑎, 𝑏)
𝑒−2𝜆𝑥(1 − 𝑒−2𝜆𝑥)

𝑎𝑐−1
[1 − (1 − 𝑒−2𝜆𝑥)

𝑐
]

𝑏−1
,  𝑥 > 0,       (7) 

respectively. The BTLE distribution reduces to the TLE distribution when a = 1 and 𝑏 = 1. If 𝑐 =
1 it reduces to the beta transmuted exponential distribution with transmuted parameter equals 

to 1. If 𝑏 = 1 in addition to 𝑐 = 1, it gives as the exponentiated transmuted exponential 

distribution with transmuted parameter equals to 1. The exponentiated Topp-Leone exponential 
distribution is also a sub-distribution when 𝑏 = 1. The transmuted exponential distribution with 

transmuted parameter equals  to 1 is clearly a sub-distribution  for 𝑎 = 1, 𝑏 = 1 and 𝑐 = 1. Plots  
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of the BTLE pdf for some specific values of parameters 𝑎, 𝑏, 𝑐, and 𝜆 are shown in Figures 1, 

respectively. 

 

 
Figure 1 Plots of the BTLE pdf for some specific values of the parameters 
 

2. Expansions for the BTLE Distribution 

 
Some useful expansions for Equations (6) and (7) can be derived using the exponentiated 

exponential (EE) distribution. Let 𝑋α  be a random variable having the EE distribution with 

parameters α, 𝜆 >  0, denoted  𝑋α ∼ EE(α, λ) and the pdf and cdf of EE distribution are 

𝑓EE(𝑥; α, 𝜆) = αλ(1 − 𝑒−𝜆𝑥)
α−1

𝑒−𝜆𝑥 and 𝐹EE(𝑥; α, λ) = (1 − 𝑒−λ𝑥)
α

, respectively. 

Firstly, for real non-integer 𝑏 > 0, the term of (1 − 𝑡)𝑏−1 under the integral is replaced by the 

power series, and is expressed as 

∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1d𝑡
𝑥

0

= ∑(−1)𝑖 (
𝑏 − 1

𝑖
)

∞

𝑖=0

∫ 𝑡𝑎+𝑖−1d𝑡
𝑥

0

 

                             

     = ∑
1

𝑎 + 𝑖

∞

𝑖=0

(−1)𝑖 (
𝑏 − 1

𝑖
) 𝑥𝑎+𝑖 , 
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where the binomial coefficient (𝑏−1
𝑖

) = Γ(𝑏)/Γ(𝑏 − 𝑖)𝑖! is defined for any real 𝑏. From Equation 

(6), we obtain 

 𝐹BTLE(𝑥; 𝚯) =
1

𝐵(𝑎, 𝑏)
∑

1

𝑎 + 𝑖

∞

𝑖=0

(−1)𝑖 (
𝑏 − 1

𝑖
) [1 − (1 − (1 − 𝑒−λ𝑥))

2

]
𝑐(𝑎+𝑖)

. 

Using the binomial expansion once more, the cdf of BTLE family will be 

 

𝐹BTLE(𝑥; 𝚯) = ∑ ∑ 𝑤𝑖,𝑗,𝑘

2𝑗

𝑘=0

∞

𝑖,𝑗=0

𝐹EE(𝑥; 𝑘, 𝜆)                          (8) 

where, 

𝑤𝑖,𝑗,𝑘 =
(−1)𝑖+𝑗+𝑘

𝐵(𝑎, 𝑏)(𝑎 + 𝑖)
(

𝑏 − 1

𝑖
) (

𝑐(𝑎 + 𝑖)

𝑗
) (

2𝑗

𝑘
). 

By differentiating Equation (8), we obtain 

 

𝑓BTLE(𝑥; Θ) = ∑ ∑ 𝑤𝑖,𝑗,𝑘𝑓EE(𝑥; 𝑘, λ)

2𝑗

𝑘=0

∞

𝑖,𝑗=0

.                          (9) 

If 𝑏 > 0 is an integer, the index 𝑖 in Equations (8) and (9) will stop at 𝑏 − 1, and if both 𝑎 and 𝑐 

are integers, then the index 𝑗 will run and stop at 𝑐(𝑎 + 𝑖). 
 

3. Mathematical Properties 

In this section, some mathematical properties of the BTLE distribtuion, including 

transformation, quantile function, ordinary moments and moment generating function, are 
provided. 

 

3.1 Transformation 

Let 𝐵 be a random variable having a beta distribution with parameters 𝑎 and 𝑏. By inverting 

Equation (4), we will obtain 

 
𝑋 = [

log(1 − 𝐵1/𝑐)

−2𝜆
]                        (10) 

follows a BTLE distribution with parameters 𝑎, 𝑏, 𝑐, and 𝜆. 

 

3.2 Quantile function 

Let 𝑈 be a random variable having a uniform on interval (0,1). By inverting Equation (6), the 

quantile function, 𝑄(𝑢) = 𝐹−1(𝑢), of the BTLE distribution is 

 

                                                                  𝑄𝐵𝑇𝐿𝐸(𝑢; Θ) = {
log [1 − (𝐼𝑢

−1(𝑎, 𝑏))
1/𝑐

]

−2𝜆
} ,  0 < 𝑢 < 1,                     (11) 

where 𝐼𝑢
−1(𝑎, 𝑏) is the inverse of the incomplete beta ratio function (Majumder and Bhattacharjee, 

1973). 
 

3.3 Ordinary Moments 

The 𝑟th ordinary moment of the BTLE distribution can be straightforwardly obtained from 

Equation (9) as 

 



The Journal of Applied Science                                                                                   Vol. 20 No. 2: 1-12 [2021] 
วารสารวทิยาศาสตรป์ระยกุต ์         doi: 10.14416/j.appsci.2021.02.001 

 - 5 - 

 
 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∑ ∑ 𝑤𝑖,𝑗,𝑘𝐸(𝑋𝑘

𝑟)

2𝑗

𝑘=0

∞

𝑖,𝑗=0

.                        (12) 

where 𝐸(𝑋𝑘
𝑟) is the 𝑟th ordinary moment of the EE distribution. Nadarajah (2011) that the 𝑟th 

moment of the EE distribution is 

 
𝐸[𝑋𝛼

𝑟] =
(−1)𝑟𝛼

λ𝑟

∂𝑟

∂𝑑𝑟
𝐵(α, 𝑑 + 1 − α)|

𝑑=𝛼

.                        (13) 

From Equations (12) and (13), the 𝑟th ordinary moment of the BTLE distribution is 

 

𝜇𝑟
′ =

(−1)𝑟

𝜆𝑟
∑ ∑ 𝑘𝑤𝑖,𝑗,𝑘

∂𝑟

∂𝑑𝑟
𝐵(𝑘, 𝑑 + 1 − 𝑘)|

𝑑=𝑘

2𝑗

𝑘=0

∞

𝑖,𝑗=0

.                        (14) 

 

3.4 Moment Generating Function 

The moment generating function (mgf) of 𝑋, 𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋), can be written from Equation 

(9) as 

 

𝑀𝑋(𝑡) = ∑ ∑ 𝑤𝑖,𝑗,𝑘𝑀𝑋𝑘
(𝑡)

2𝑗

𝑘=0

∞

𝑖,𝑗=0

,                        (15) 

where 𝑀𝑋𝑘
(𝑡) is the mgf of the EE distribution. Nadarajah (2011) shows that the mgf of the EE 

distribution is 

 𝑀𝑋α
(𝑡) = α𝐵 (1 −

𝑡

λ
, α).                        (16) 

From Equations (15) and (16), the mgf of the BTLE distribution is 

 

𝑀𝑋(𝑡) = ∑ ∑ 𝑘

2𝑗

𝑘=0

𝑤𝑖,𝑗,𝑘𝐵 (1 −
𝑡

λ
, 𝑘)

∞

𝑖,𝑗=0

.                        (17) 

 

4. Maximum Likelihood Estimation 
Let 𝒙 = (𝑥1, … , 𝑥𝑛)𝑇 be a random sample of size 𝑛 from the BTLE distribution. The likelihood 

function for the vector of parameters 𝚯 = (𝑎, 𝑏, 𝑐, λ)𝑇 is                  

                          𝐿(𝚯; 𝒙) = ∏ 𝑓BTLE(𝑥𝑖; 𝚯)

𝑛

𝑖=1

 

                                         = ∏ [
2𝑐𝜆

𝐵(𝑎, 𝑏)
𝑒−2𝜆𝑥𝑖(1 − 𝑒−2𝜆𝑥𝑖)

𝑎𝑐−1
[1 − (1 − 𝑒−2𝜆𝑥𝑖)

𝑐
]

𝑏−1
]

𝑛

𝑖=1

. 

The corresponding log-likelihood function is 

                          ℓ(𝚯; 𝒙) = log 𝐿(𝚯; 𝒙) = ∑ log 𝑓BTLE (𝑥𝑖 ; 𝚯)

𝑛

𝑖=1

 

                             = −𝑛 log 𝐵 (𝑎, 𝑏) + 𝑛 log(2) + 𝑛 log(𝑐) + 𝑛 log(𝜆) + 𝑛 log(𝑐) − 2𝜆 ∑ 𝑥𝑖
𝜆

𝑛

𝑖=1

 

            +(𝑎𝑐 − 1) ∑ log(1 − 𝑣𝑖
2)

𝑛

𝑖=1

+ (𝑏 − 1) ∑ log[1 − (1 − 𝑣𝑖
2)𝑐]

𝑛

𝑖=1

, 
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where 𝑣𝑖 = 𝑒−λ𝑥𝑖 is a transformed observation. The maximum likelihood estimator (MLE) 𝚯̂ of the 

vector of unknown parameters 𝚯 in Equation (18) can be obtained by the score function 

𝑼(𝚯) =
∂ℓ(𝚯; 𝒙)

∂𝚯
= 0. 

The components of the score function are 

 

𝑈𝑎(𝚯) = 𝑛(𝜓(𝑎 + 𝑏) − 𝜓(𝑎)) + 𝑐 ∑ log(1 − 𝑣𝑖
2)

𝑛

𝑖=1

, 

𝑈𝑏(𝚯) = 𝑛(𝜓(𝑎 + 𝑏) − 𝜓(𝑏)) + ∑ log[1 − (1 − 𝑣𝑖
2)𝑐] ,

𝑛

𝑖=1

 

𝑈𝑐(𝚯) =
𝑛

𝑐
+ 𝑎 ∑ log(1 − 𝑣𝑖

2)

𝑛

𝑖=1

− (𝑏 − 1) ∑
(1 − 𝑣𝑖

2)𝑐 log(1 − 𝑣𝑖
2)

1 − (1 − 𝑣𝑖
2)𝑐

𝑛

𝑖=1

, 

𝑈λ(𝚯) =
𝑛

λ
− 2 ∑ 𝑥𝑖

𝑛

𝑖=1

+ 2(𝑎𝑐 − 1) ∑
𝑥𝑖

𝑣𝑖
−2 − 1

𝑛

𝑖=1

− 2𝑐(𝑏 − 1) ∑
𝑥𝑖(1 − 𝑣𝑖

2)𝑐

(𝑣𝑖
−2 − 1)(1 − (1 − 𝑣𝑖

2)𝑐)

𝑛

𝑖=1

, 

where 𝑣𝑖 = 𝑒−𝜆𝑥𝑖 and 𝜓(⋅) is the digamma function. However, these non-linear equations cannot 

be solved analytically. Therefore, the value of MLE 𝚯̂ that maximizes the log-likelihood function 

can be computed numerically from the non-linear equations utilizing the optimr package (Nash, 
2016) in R programming language (R Core Team, 2020).  

For interval estimation on the vector of parameters 𝚯, the observed Fisher information 

matrix 𝑱(𝚯) is obtained because it is not always possible to compute expected Fisher information 

matrix 𝑰(𝚯). The 4 × 4 observed Fisher information matrix is defined by 

𝑱(𝚯) = −
∂2ℓ(𝚯; 𝒙)

∂𝚯 ∂𝚯𝑇
= − [

𝐽𝑎𝑎 𝐽𝑎𝑏 𝐽𝑎𝑐 𝐽𝑎λ

⋅ 𝐽𝑏𝑏 𝐽𝑏𝑐 𝐽𝑏λ

⋅ ⋅ 𝐽𝑐𝑐 𝐽𝑐λ

⋅ ⋅ ⋅ 𝐽λλ

] 

where the elements of 𝑱(𝚯) are given by 

𝐽𝑎𝑎 = 𝑛(𝜓′(𝑎 + 𝑏) − 𝜓′(𝑎)), 

𝐽𝑏𝑏 = 𝑛(𝜓′(𝑎 + 𝑏) − 𝜓′(𝑏)), 

𝐽𝑐𝑐 = −
𝑛

𝑐2
− (𝑏 − 1) ∑

(1 − 𝑣𝑖
2)𝑐 log2(1 − 𝑣𝑖

2)

[1 − (1 − 𝑣𝑖
2)𝑐]2

𝑛

𝑖=1

, 

𝐽λλ = −
𝑛

λ2
− 4(𝑎𝑐 − 1) ∑

𝑥𝑖
2𝑣𝑖

−2

(𝑣𝑖
−2 − 1)2

𝑛

𝑖=1

− 4𝑐(𝑏 − 1) ∑
𝑥𝑖

2(1 − 𝑣𝑖
2)𝑐{𝑣𝑖

−2[(1 − 𝑣𝑖
2)𝑐 − 1] + 𝑐}

(𝑣𝑖
−2 − 1)2[1 − (1 − 𝑣𝑖

2)𝑐]2

𝑛

𝑖=1

, 

𝐽𝑎𝑏 = 𝑛𝜓′(𝑎 + 𝑏), 

𝐽𝑎𝑐 = ∑ log(1 − 𝑣𝑖
2)

𝑛

𝑖=1

, 

𝐽𝑎λ = 2𝑐 ∑
𝑥𝑖

𝑣𝑖
−2 − 1

𝑛

𝑖=1

, 

𝐽𝑏𝑐 = ∑
(1 − 𝑣𝑖

2)𝑐 log(1 − 𝑣𝑖
2)

(1 − 𝑣𝑖
2)𝑐 − 1

𝑛

𝑖=1

, 

𝐽𝑏λ = 2𝑐 ∑
𝑥𝑖(1 − 𝑣𝑖

2)𝑐

(𝑣𝑖
−2 − 1)[(1 − 𝑣𝑖

2)𝑐 − 1]

𝑛

𝑖=1

, 
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𝐽𝑐λ = 2𝑎 ∑
𝑥𝑖

𝑣𝑖
−2 − 1

𝑛

𝑖=1

+ 2(𝑏 − 1) ∑
𝑥𝑖(1 − 𝑣𝑖

2)𝑐[(1 − 𝑣𝑖
2)𝑐 − 𝑐 log(1 − 𝑣𝑖

2) − 1]

(𝑣𝑖
−2 − 1)[1 − (1 − 𝑣𝑖

2)𝑐]2
,

𝑛

𝑖=1

 

where 𝑣𝑖 = 𝑒−𝜆𝑥𝑖 and 𝜓′(⋅) is the derivative of the digamma function. The total Fisher information 

matrix is 𝑱𝑛(𝚯) = 𝑛𝑱(𝚯). In addition, the second partial derivatives can be numerically computed 

by using numDeriv package (Gilbert and Varadhan, 2019) in R programming language (R Core 

Team, 2020). 

The asymptotic distribution of √𝑛(𝚯̂ − 𝚯) is multivariate normal 𝑵4(𝟎, 𝑰(𝚯)−1) where  

𝑰(𝚯) is the expected Fisher information matrix. For construct asymptotic confidence intervals, the 

𝑰(𝚯) can be replaced by 𝑱(𝚯̂) that is the observed Fisher information matrix calculated at 𝚯̂. The 

corresponding asymptotic confidence intervals with significance level α for each parameter are 

𝑎̂ ± 𝑧𝛼/2√𝐽𝑎𝑎, 𝑏̂ ± 𝑧𝛼/2√𝐽𝑏𝑏, 𝑐̂ ± 𝑧𝛼/2√𝐽𝑐𝑐 , 𝜆̂ ± 𝑧𝛼/2√𝐽𝜆𝜆, 

where 𝑧𝛼/2 is the quantile 1 − 𝛼/2 of the standard normal distribution and 𝐽𝑎𝑎 , 𝐽𝑏𝑏 , 𝐽𝑐𝑐 , and 𝐽λλ are 

the diagonal elements of variance-covariance matrix 𝚺 = 𝑱𝑛(𝚯̂)
−1

.  

 

5. Simulation study 
A Monte Carlo simulation study is conducted to investigate the performance of the MLEs 

based on bias and root mean square error (RMSE). We consider sample sizes 𝑛 =
15,25,50,100,250,500 and the different values of the BTLE parameters 𝑎, 𝑏, 𝑐, and 𝜆: 𝑎 = 0.6, 𝑏 =
0.4, 𝑐 = 1, and λ = 2 (non-increasing pdf) and 𝑎 = 2, 𝑏 = 0.75, 𝑐 = 1.5, and λ = 3 (right-skewed 

pdf). The experiment is repeated 2000 times. An algorithm for generating a BTLE random variable 
𝑋 with parameters 𝑎, 𝑏, 𝑐, and 𝜆: 

i. Generate a beta random variable with parameters 𝑎 and 𝑏, 𝐵 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏). 

ii. Set 𝑋 = [
log(1−𝐵1/𝑐)

−2𝜆
]. 

Table 1 gives the average parameter estimates, average bias, and average RMSE of the  
MLEs. The results show that the MLEs are the asymptotically unbiased and consistent, i.e., the 

bias and RMSE decrease when the sample size increases. 
 

Table 1 The average parameter estimates, average bias, and average RMSE 
 

Sample size Parameters 

BTLE(0.6,0.4,1,2) BTLE(2,0.75,1.5,3) 

Parameter 
estimates 

Bias RMSE 
Parameter 
estimates 

Bias RMSE 

15 𝑎 2.662 2.062 4.366 5.125 3.125 6.750 

 𝑏 4.608 4.208 11.160 10.186 9.436 18.345 

 𝑐 4.039 3.039 7.682 7.294 5.794 10.848 

 𝜆 4.295 2.295 4.827 5.284 2.284 6.609 

25 𝑎 2.561 1.961 3.990 3.039 3.125 6.750 

 𝑏 3.033 2.633 7.124 7.865 9.436 18.345 

 𝑐 2.549 1.549 4.844 7.670 6.170 12.594 

 𝜆 4.083 2.083 4.278 5.122 2.122 5.689 

50 𝑎 1.811 1.211 2.619 3.056 1.056 3.019 

 𝑏 1.563 1.163 3.386 3.584 2.834 6.504 

 𝑐 1.673 0.673 2.472 3.799 2.299 6.086 
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 𝜆 3.765 1.765 3.441 4.324 1.324 4.334 

100 𝑎 1.469 0.869 1.849 2.497 0.497 2.317 

 𝑏 1.291 0.891 2.198 2.268 1.518 3.374 

 𝑐 1.286 0.286 1.356 3.421 1.921 4.932 

 𝜆 2.973 0.973 2.533 3.560 0.560 2.960 

250 𝑎 1.205 0.605 1.382 2.861 0.861 2.321 

 𝑏 0.819 0.419 1.359 1.674 0.924 2.327 

 𝑐 1.154 0.154 1.003 2.161 0.661 2.061 

 𝜆 2.640 0.640 1.846 3.061 0.061 1.786 

500 𝑎 0.852 0.252 0.896 2.440 0.440 1.911 

 𝑏 0.994 0.594 1.458 1.271 0.521 1.707 

 𝑐 1.293 0.293 1.106 2.247 0.747 2.044 

 𝜆 2.176 0.176 1.511 2.945 -0.055 1.271 

 

6. Application 
 

In this section, the fitted results of the BTLE, BE, TLE, and E distributions are compared with 

real data set to demonstrate the flexibility and applicability of the proposed distribution among 
the other distributions. In order to evaluate whether the distribution is appropriate, the many 

statistical tools are considered: the criteria of Akaike’s information criterion (AIC) (Akaike, 1974), 
Bayesian information criterion (BIC) (Schwarz, 1978) and Anderson-Darling test, 𝐴∗ (Stephens, 

1974). The data set is the strength of glass fibres of lengths 1.5 cm from the National Physical 

Laboratory in England (Smith and Naylor, 1987). Table 2 gives a descriptive statistics summary 
of these data. 

 

Table 2 Descriptive statistics summary of the data 
 

n Mean 
Standard 

Deviation 
Median Min Max Skewness Kurtosis 

63 1.51 0.32 1.59 0.55 2.24 -0.88 0.80 

 

The maximum likelihood estimates (the standard error (SE) is given in parentheses), the values 
of minus loglikelihood, AIC, BIC and 𝐴∗ of the distributions for real data set are shown in Table 

3. The lower the values of these statistics indicate a better fit to the data. Since these findings 
suggest that the BTLE distribution has the lowest AIC, BIC and 𝐴∗ values, it follows that the BTLE 

distribution could be a suitable distribution for the fitting of the data. The histogram and the 
estimated pdf plots of the data are illustrated in Figure 2(a). In Figure 2(b), the empirical cdf and 

the estimated cdf plots for the data are shown. Furthermore, the goodness-of-fit plots for BTLE, 
BE, TLE, and E distributions that consist of Q-Q and P-P plots are presented in Figure 3, 

respectively. The conclusion of these plots indicates that BTLE distribution provides a better fit 
for the data. 
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Table 3 The MLEs (SEs), minus log-likelihood, AIC, BIC, and Anderson-Darling test 

 

Parameter estimates 
Distributions 

E TLE BE BTLE 

𝑎̂ - - 
17.476 

(3.127) 

0.381 

(0.195) 

𝑏̂ - - 
47.795 

(115.945) 

115.368 

(130.168) 

𝑐̂ - 
31.296 
(9.497) 

- 
23.309 

(15.724) 

𝜆̂ 
0.664 

(0.084) 

1.305 

(0.119) 

0.209 

(0.443) 

0.454 

(0.178) 

-log-likelihood 88.83 31.383 24.002 15.467 

AIC 179.661 66.767 54.004 38.934 

BIC 181.804 71.053 60.434 47.506 
𝐴∗ 

(p-value) 
3.127 

(0.024) 
4.286 

(0.006) 
3.127 

(0.024) 
1.378 

(0.208) 

 
 

 
Figure 2 (a) The histogram of the data and plots estimated densities of the fitted distributions 

(b) The empirical cdf of the data and plots estimated cdfs of the fitted distributions 
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Figure 3 (a)-(b) Q-Q and P-P plots for the BTLE distribution,  (c)-(d) Q-Q and P-P plots for  BE 

distribution, (e)-(f) Q-Q and P-P plots for TLE distribution, and (g)-(h) Q-Q and P-P plots for E 
distribution fitted to the data 

 

In addition, the variance-covariance matrix for the data is 
 

𝚺 = [

0.038 5.100 −2.826 −0.027
5.100 16937.844 −882.456 −15.980

−2.826 −882.456 247.195 2.643
−0.027 −15.980 2.643 0.032

] 

 
Finally, we will obtain the 100(1 − 𝛼)% asymptotic confidence intervals of the BTLE parameters 

𝚯 = (𝑎, 𝑏, 𝑐, 𝜆)𝑇, where 𝛼 =  0.90,0.95,0.99 in Table 4. 

 

Table 4 The asymptotic confidence intervals of the BTLE parameters based on the data 

 

Parameters 
90% 95% 99% 

Lower Upper Lower Upper Lower Upper 

𝑎 0.060 0.702 -0.001 0.763 -0.121 0.883 

𝑏 -98.739 329.475 -139.757 370.493 -219.923 450.659 

𝑐 -2.555 49.173 -7.509 54.127 -17.193 63.811 

𝜆 0.161 0.747 0.105 0.803 -0.004 0.921 

 

Conclusions 
 

A new four-parameter distribution called the beta Topp-Leone exponential distribution is 
proposed. Its cdf and pdf of the proposed distribution are derived. Some of its mathematical 

properties, i.e. some expansions of pdf and cdf, transformation, quantile function, ordinary 

moments and mgf are presented. The maximum likelihood estimation is used to find out the 
parameter estimates for the BTLE distribution. Through Monte Carlo simulation study we 

demonstrated that, the bias and RMSE of MLEs decrease as the sample size increases. Results of 
fitting the BTLE, BE, TLE and E distributions to the real data set are evaluated. Considering the 

values of AIC, BIC, and Anderson-Darling test, it suggests that the BTLE distribution could  
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outperform the other distributions. We hope that the BTLE distribution may attract wider 

applications in various areas such as reliability, engineering, and others. 

 
Acknowledgement 
 

 This paper was made possible by Department of Statistics, Faculty of Science, Kasetsart 

University, Graduate School Kasetsart University and Science Achievement Scholarship of 
Thailand (SAST). 

 
References 
 

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on 
 Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705 
Al-Shomrani, A., Arif, O., Shawky, A., Hanif, S., & Shahbaz, M. Q. (2016). Topp–leone family of 

 distributions: some properties and application. Pakistan Journal of Statistics and 
 Operation Research, 12(3), 443-451. https://doi.org/10.18187/pjsor.v12i3.1458 

Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous 
distributions. Metron, 71(1), 63-79. https://doi.org/10.1007/s40300-013-0007-y 

Barreto-Souza, W., Santos, A. H., & Cordeiro, G. M. (2010). The beta generalized exponential 

 distribution. Journal of Statistical Computation and Simulation, 80(2), 159-172.  
https://doi.org/10.1080/00949650802552402 

Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. 
 Communications in Statistics-Theory and methods, 31(4), 497-512. https://doi.org/ 

10.1081/STA-120003130 

Gilbert, P., & Varadhan, R. (2019). numDeriv: Accurate numerical derivatives. R package version  
2016.8-1.1.  

Gupta, R. D., & Kundu, D. (1999). Theory & methods: Generalized exponential distributions. 
 Australian & New Zealand Journal of Statistics, 41(2), 173-188. https://doi.org/ 

10.1111/1467-842X.00072  
Majumder, K. L., & Bhattacharjee, G. P. (1973). Algorithm AS 64: Inverse of the incomplete beta 

function ratio. Journal of the Royal Statistical Society. Series C (Applied Statistics), 22(3), 

411-414. https://doi.org/10.2307/2346798 
Nadarajah, S. (2011). The exponentiated exponential distribution: a survey. AStA Advances in 
 Statistical Analysis, 95, 219-251. https://doi.org/10.1007/s10182-011-0154-5 
Nadarajah, S., & Kotz, S. (2006). The beta exponential distribution. Reliability Engineering & 
 System Safety, 91(6), 689-697. https://doi.org/10.1016/j.ress.2005.05.008 
Nash, J. C., & Varadhan, R. (2016). optimr: A replacement and extension of the optim function. 

http://cran. r-project. org/web/packages/optimx/index. htmll  

R Core Team, R. (2020). R: A Language and Environment for Statistical Computing. R Foundation 
for Statistical Computing. Vienna, Austria. 

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2),            
 461-464. https://doi.org/10.2307/2958889 

Smith, R. L., & Naylor, J. (1987). A comparison of maximum likelihood and bayesian estimators 

 for the three-parameter weibull distribution. Journal of the Royal Statistical Society: 
 Series C (Applied Statistics), 36(3), 358-369. https://doi.org/10.2307/2347795 

Stephens, M. A. (1974). Edf statistics for goodness of fit and some comparisons. Journal of the 
American statistical Association, 69(347), 730-737. https://doi.org/10.2307/2286009  


