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Abstract 
 

The discrete exponentiated Pareto (DEP) distribution is developed by using the 

discretization method based on the survival function. It is discretized from the exponentiated 

Pareto distribution.  In this paper, a probability mass function of the DEP distribution is derived. 
Some mathematical properties and model parameters estimation are discussed. In addition, we 

applied the DEP distribution to two real datasets. The results of model fitting of these datasets 
based on the DEP distribution are reasonably constructive. The proposed distribution performs 

well with a goodness of fit test and some criterions. The distribution can be used as an alternative 

model for discrete data analytics. 

 
Keywords: exponentiated Pareto distribution, discretization method, survival function,   

                   maximum likelihood estimation 

 
Introduction 
 

Lifetime data are usually described by continuous distribution such as exponential 

distribution, Pareto distribution, and Weibull distribution. Because of the precision of the 
measuring instrument for collecting the data and the nature of the data in the long term, 

sometimes the data are obviously presented in a discrete sense. For instance, in Figure 1, (a) the 
temperature is presented in the mobile application and (b) battery charging which is shown as a 

percentage in the mobile phone. These examples are actually continuous data in nature but they 

are always presented in discrete integer value for some specified purposes. So, it can be implied 
that the variables are continuous in nature but they are presenting in a discrete sense. 

In such a situation, there is a method to generate the discrete distribution from the 
continuous distribution, it is so-called the discretization method (Chakraborty, 2015). The most 

popular method is the discretization that utilized the survival function to construct the discrete 
distribution. For example, Nakagawa and Osaki (1975) proposed the discrete Weibull distribution 

and Roy (1993) studied between the exponential distribution and the geometric distribution that 

both were related, these distributions were presented by applying the discretization with survival 
function. In addition, several researchers have proposed the new discrete distributions such as 

discrete normal distribution (Roy, 2003), discrete Maxwell distribution (Krishna & Pundir, 2007), 
discrete Burr distribution (Krishna & Pundir, 2009), discrete Pareto distribution (Krishna & Pundir, 

2009), discrete Lindley distribution (G mez-D niz & Calder n-Ojeda, 2011), discrete gamma 
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distribution (Chakraborty & Chakravarty, 2012), discrete Gumbel distribution (Chakraborty & 

Chakravarty, 2014), discrete inverse Rayleigh distribution (Hussain & Ahmad, 2014) and discrete 
asymmetric Laplace distribution (Sangpoom & Bodhisuwan, 2016). 

 

                             
       (a)                        (b) 
 

Figure 1 Some examples of the continuous data which they were presented in a discrete sense. 

 
In this paper, we present a discrete analogue of the exponentiated Pareto distribution by 

discretizing the continuous exponentiated Pareto distribution utilized the method of Roy. The 
exponentiated Pareto distribution is modified from the Pareto distribution and proposed for wider 

applicability (Nadarajah, 2005). In addition, the exponentiated Pareto distribution is studied by 
many researchers such as in 2015, Fatima and Roohi introduced the transmuted exponentiated 

Pareto-I distribution via the transmutation technique (Fatima & Roohi, 2015). Jabbari Nooghabi 

studied the parameter estimation of the exponentiated Pareto distribution in the presence of 
outliers in 2017 (Jabbari Nooghabi, 2017). Moreover, Bhatti and Ali presented the 

characterizations of transmuted exponentiated Pareto-I distribution in 2019 (Bhatti & Ali, 2019). 
The rest of the paper is as follows. In the part of methods, the proposed distribution is 

introduced. Its essential mathematical properties and parameter estimation are discussed in 

results and discussion. The applications of the DEP distribution are demonstrated which we 
applied the proposed distribution to some real datasets. Furthermore, the conclusion is presented 

in the last section. 

 
Methods 
 

There are several ways to derive discrete analogues of continuous distribution such as 

the method based on probability mass function (pmf), cumulative distribution function (cdf), 
survival function, hazard rate function, etc. (Chakraborty, 2015). For this paper, we determine 

the survival function to discretize the continuous to discrete distribution which is the well-known 

method of discretization. 
The discretization method based on survival function is using the difference values 

between survival values  and . If the underlying continuous random variable  

has the survival function , and the random variable  where  is the largest 

integer but not greater than  and , then the pmf of  is 
 

          

 

       

   

                   (1) 
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       (a)             (b) 
 

Figure 2 (a) The survival plot of a continuous random variable  and (b) the pmf plot of 

discretizing . 
 

The exponentiated Pareto distribution was developed by Nadarajah (2005) with 
distribution function 

 

    , 
 

for ,  is a scale parameter and  is a shape parameter. 
 

Immediately, the survival function of the exponentiated Pareto distribution can be 
obtained as 

 

  .    (2) 
 

Some probability density function (pdf) and survival plots of the exponentiated Pareto 

distribution are illustrated in Figure 3. All of the pdf and survival plots are a decreasing function. 
The scale of distribution is in keeping with parameter  and it is increased when  is increasing. 

 
Results and Discussion 
 

Discrete Exponentiated Pareto Distribution 
 

We use the discretization method based on the survival function to develop the DEP 
distribution. The verification of the pmf and the survival function are presented in the following 

in theorems. 
 

Theorem 1. Let  be a random variable of the DEP distribution, . The 

pmf of the DEP distribution is 

 
 

 ,    (3) 
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Figure 3 Some pdf (left) and survival (right) plots of the exponentiated Pareto distribution 
according to different values of  and . 
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where  ,  is a scale parameter and  is a 

shape parameter.  
 

Proof:  Underlying the survival function of the exponentiated Pareto distribution and the random 
variable , the pmf is  
 

     

 

 

 . 
 

Theorem 2.  Let  is a random variable of the DEP distribution, . The cdf of  is 
 

       (4) 
 

where   and parameters . 
 

Proof:  If  be a random variable of the DEP distribution with the pmf in Equation (3), then the 

cdf of  can be obtained from 
 

     

 

, 

since    is a geometric series, then the cdf of  is 

. 
 

Theorem 3. If  is a random variable of the DEP distribution, denoted by , then 

its survival function is 
 

,     (5) 
 

where   and parameters . 
 

Proof: Since  with the cdf in Equation (4) and  is defined as the survival 

function of DEP distribution. Thus,  
 

     

 

. 
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Figure 4 Some pmf plots of the DEP distribution with various values of  and . 
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Figure 4 shows some pmf plots of the DEP distribution. Evidently, the scale of distribution 

changes according to the parameter . The random variable  can be a negative integer when 

 less than 1. The shape of distribution respect to parameter . It appears that clearly, the pmf 

decreases faster as parameter  increases and it is a unimodal curve when  less than 1. So, the 

DEP distribution has the right skew and unimodal curve.  

 
Mathematical Properties 
 

 Some mathematical properties of the DEP distribution, especially the moment generating 

function (mgf) and quantile function are provided in this section. 
 

Moment Generating Function 
 

Theorem 4. Let  be a random variable of the DEP distribution, . The mgf of , 

denoted by , is 
 

      (6) 

 

where ,  and . 
 

Proof: The mgf of the DEP distribution can be obtained from 
 

  

 

 

 

 , 

 

since  is the geometric series, then the mgf will be  

 

      

 

 

 . 
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By using the first four raw moments, we can find the mean, variance, skewness, and 

kurtosis of  by successively differentiating  and then evaluating the result at , 

, for . Consequently, the first four raw moments of  are 

 

 , 

 

 , 

 

  

       

 

and  
 

   

  

    

                   . 

 

Hence, the mean, variance, skewness, and kurtosis of  according to its 

first four raw moments, respectively, are  
 

     , 

 

  , 

 

      

 
and  
 

 . 
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Quantile Function 
 

Let  be a random variable of the DEP distribution with cdf, . The quantile function 

is the generalized inverse of . Let  be distributed as the uniform on ,  and 

the quantile function denoted by . According to the quantile function, if  when 

, then . Thus, the quantile function of the DEP 

distribution is  
 

    (7) 

 

where  and . 
  

There are many methods to generate random variates from a probability distribution. 

The method that simplicity and generality is the inverse of cdf. Therefore, the quantile function 

in Equation (7) is very useful for generating a random variable Y of the DEP distribution. 

 
Parameter Estimation 
 

The maximum likelihood estimation (MLE) is the widely used method for model 

parameter estimation. In this section, the MLE of the DEP distribution will be discussed.  
 

Let  be an independent and identically distributed (iid) random variables of 

the DEP distribution with the pmf of Equation (3). The likelihood function of the DEP distribution 

is given by 
 

 

    . 

 

The log-likelihood function of  observations of  can be written as 
 

 

     .  (8) 

 

For the parameter estimation of the DEP distribution, two parameters are estimated. 
First, we estimate the parameter , since , the likelihood function is maximized with  

 

 . 
 

(See Rytgaard, 1990 and Mukhopadhyay & Ekwo, 1987 about estimation problems for k ). 
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Next,  is plugged into the Equation (8) and we take the derivative of the log-likelihood 

function with respect to  is given as 
 

      

 

                  .     (9) 

 

The parameter  of the DEP distribution is estimated by setting this differential equation 

in the Equation (9) to zero, then solving this equation. The estimator of parameter  is 
 

 . 

 

However, for convenience and less complicated of the parameter estimation, the 
maximum likelihood estimators can be obtained by a numerical method. The bbmle package 

(Bolker & Team, 2019) of the R programming language (R Core Team, 2019) is the package for 
fitting maximum likelihood models, extended and modified from the mle function in stat4 

package. In this work, the bbmle package is employed. 

 
Applications 
                                

We consider two real datasets to fit with the DEP distribution and the discrete Pareto 

(DP) distribution (Krishna & Pundir, 2009). The first dataset is the infant and child mortality in 
Sri Lanka from the Sri Lanka fertility survey in 1975 (Meegama, 1980). And the dataset is the 

electron-microscopic studies of the density of dystrophin in the fibers of the human quadriceps 

muscle, the number of attached particles from Immunogold data (Mathews & Appleton, 1993). 
In this work, the bbmle package of the R programming language is used to estimate parameters. 

Tables 1 and 2 show the results of fitting between the DEP and DP distributions to these real 

datasets. The appropriate distribution for fitting data is verified with the Anderson-Darling (AD) 
goodness of fit test for discrete data (Choulakian et al., 1994). The discrete AD test is obtained 
by using the dgof package (Arnold & Emerson, 2011) in the R language. Other criteria for model 

selection that used to show the performance of the model are the minus log-likelihood (-LL), the 

Akaike information criterion (AIC), and the Bayesian information criterion (BIC). Furthermore, the 
comparison between real datasets and expected values of fitted distributions can be illustrated 

in Figure 5. 
The fitted distributions for the number of infant and child deaths and the number of 

attached particles from Immunogold data are shown in Tables 1 and 2, respectively. The p-value 

based on the discrete AD test of the DEP distribution is greater than the DP distribution. Moreover, 
the DEP distribution gives the values of -LL, AIC, and BIC smaller than the DP distribution. Thus, 

the DEP distribution is more appropriate than the DP distribution. 

Figure 5 displays the plots of the fitted frequency of the DEP and the DP distributions 
with the number of infant and child deaths and the number of attached particles from 

Immunogold data. It illustrates that the DEP distribution can be fitted more closely to these real  



The Journal of Applied Science                                                                                 Vol. 19 No. 2: 24-36 [2020] 
วารสารวทิยาศาสตรป์ระยกุต ์         doi: 10.14416/j.appsci.2020.02.003 

 - 34 - 

 
datasets than DP distribution. Therefore, the DEP distribution is more appropriate than the DP 

distribution related to the results in Table 1 and Table 2. 

 
Table 1 Results of parameter estimation for the infant and child deaths data. 
 

Number of infant and 

child deaths 

Observed number of 

mothers 

Expected frequency 

DP DEP 

1 176 186.5613 172.0648 
2 44 32.7931 50.7275 

3 16 11.1243 14.9553 

4 6 5.0337 4.4091 
5 2 2.6860 1.2999 

Estimated parameters 
         = 1 

 = 2.0868 

 = 2.7183 

 = 1.2214 

-LL 217.2600 209.8100 

AD-statistics (p-value) 1.3036 (0.1199) 0.2136 (0.6980) 

AIC 436.5173 421.6231 
BIC 440.0145 425.1203 

 

Table 2 Goodness of fit test for the DP and DEP distributions for the number of attached particles 
from Immunogold data. 
 

Number of attached 

particles 
Observed frequency 

Expected frequency 

DP DEP 

1 122 139.6299 125.6493 
2 50 29.8019 45.9132 

3 18 11.3608 16.7770 

4 4 5.5945 6.1305 
5 4 3.1911 2.2401 

Estimated parameters 
 = 1 

 = 1.7622 

 = 2.7183 

 = 1.0067 

-LL 219.5200 204.8100 

AD-statistics (p-value) 3.6074 (0.0079) 0.1457 (0.8235) 

AIC 441.0385 411.6270 
BIC 444.3268 414.9153 

 
Conclusions 
 

A discrete version of the continuous exponentiated Pareto distribution is proposed which 
called the DEP distribution. It is developed based on the discretization method of the survival 

function. We derived some essential mathematical properties, for instance, pmf, mgf, mean, 

variance, and quantile function. In addition, the parameter estimation by the maximum likelihood 
estimation is discussed. Furthermore, the proposed distribution is applied to two real datasets. 

The results for the comparison of -LL, AIC, and BIC and according to the p-value of the discrete 
AD test indicated that the DEP distribution is a better fit than the DP distribution for these real 

datasets. In conclusion, the DEP distribution may be a useful alternative to other distributions for 
discrete data analytics. 
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Figure 5 The fitted frequency of the DEP and the DP distributions to real datasets. 
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