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Abstract

The discrete exponentiated Pareto (DEP) distribution is developed by using the
discretization method based on the survival function. It is discretized from the exponentiated
Pareto distribution. In this paper, a probability mass function of the DEP distribution is derived.
Some mathematical properties and model parameters estimation are discussed. In addition, we
applied the DEP distribution to two real datasets. The results of model fitting of these datasets
based on the DEP distribution are reasonably constructive. The proposed distribution performs
well with a goodness of fit test and some criterions. The distribution can be used as an alternative
model for discrete data analytics.

Keywords: exponentiated Pareto distribution, discretization method, survival function,
maximum likelihood estimation

Introduction

Lifetime data are usually described by continuous distribution such as exponential
distribution, Pareto distribution, and Weibull distribution. Because of the precision of the
measuring instrument for collecting the data and the nature of the data in the long term,
sometimes the data are obviously presented in a discrete sense. For instance, in Figure 1, (a) the
temperature is presented in the mobile application and (b) battery charging which is shown as a
percentage in the mobile phone. These examples are actually continuous data in nature but they
are always presented in discrete integer value for some specified purposes. So, it can be implied
that the variables are continuous in nature but they are presenting in a discrete sense.

In such a situation, there is a method to generate the discrete distribution from the
continuous distribution, it is so-called the discretization method (Chakraborty, 2015). The most
popular method is the discretization that utilized the survival function to construct the discrete
distribution. For example, Nakagawa and Osaki (1975) proposed the discrete Weibull distribution
and Roy (1993) studied between the exponential distribution and the geometric distribution that
both were related, these distributions were presented by applying the discretization with survival
function. In addition, several researchers have proposed the new discrete distributions such as
discrete normal distribution (Roy, 2003), discrete Maxwell distribution (Krishna & Pundir, 2007),
discrete Burr distribution (Krishna & Pundir, 2009), discrete Pareto distribution (Krishna & Pundir,
2009), discrete Lindley distribution (Gomez-Déniz & Calderin-Ojeda, 2011), discrete gamma
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distribution (Chakraborty & Chakravarty, 2012), discrete Gumbel distribution (Chakraborty &
Chakravarty, 2014), discrete inverse Rayleigh distribution (Hussain & Ahmad, 2014) and discrete
asymmetric Laplace distribution (Sangpoom & Bodhisuwan, 2016).
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Figure 1 Some examples of the continuous data which they were presented in a discrete sense.

In this paper, we present a discrete analogue of the exponentiated Pareto distribution by
discretizing the continuous exponentiated Pareto distribution utilized the method of Roy. The
exponentiated Pareto distribution is modified from the Pareto distribution and proposed for wider
applicability (Nadarajah, 2005). In addition, the exponentiated Pareto distribution is studied by
many researchers such as in 2015, Fatima and Roohi introduced the transmuted exponentiated
Pareto-I distribution via the transmutation technique (Fatima & Roohi, 2015). Jabbari Nooghabi
studied the parameter estimation of the exponentiated Pareto distribution in the presence of
outliers in 2017 (Jabbari Nooghabi, 2017). Moreover, Bhatti and Ali presented the
characterizations of transmuted exponentiated Pareto-I distribution in 2019 (Bhatti & Ali, 2019).

The rest of the paper is as follows. In the part of methods, the proposed distribution is
introduced. Its essential mathematical properties and parameter estimation are discussed in
results and discussion. The applications of the DEP distribution are demonstrated which we
applied the proposed distribution to some real datasets. Furthermore, the conclusion is presented
in the last section.

Methods

There are several ways to derive discrete analogues of continuous distribution such as
the method based on probability mass function (pmf), cumulative distribution function (cdf),
survival function, hazard rate function, etc. (Chakraborty, 2015). For this paper, we determine
the survival function to discretize the continuous to discrete distribution which is the well-known
method of discretization.

The discretization method based on survival function is using the difference values
between survival values Sx (x) and Sx (z + 1). If the underlying continuous random variable X
has the survival function Sx(x), and the random variable Y = | X | where | X | is the largest
integer but not greater than X and y = 0, 1,2, ..., then the pmf of Y is

f(y) Y =y)

[ X] =y)
=Ply<X<y+1)
=Fx(y+1)— Fx(y)

= Sx(y) — Sx(y +1) @

= P(
= P(
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Figure 2 (a) The survival plot of a continuous random variable X and (b) the pmf plot of
discretizing X.

The exponentiated Pareto distribution was developed by Nadarajah (2005) with
distribution function

F(z) =1 — k%)
for x > logk, k > 0 is a scale parameter and a > 0 is a shape parameter.

Immediately, the survival function of the exponentiated Pareto distribution can be
obtained as

S(z) =1— F(z) = k%%, )

Some probability density function (pdf) and survival plots of the exponentiated Pareto
distribution are illustrated in Figure 3. All of the pdf and survival plots are a decreasing function.
The scale of distribution is in keeping with parameter k& and it is increased when £ is increasing.

Results and Discussion
Discrete Exponentiated Pareto Distribution

We use the discretization method based on the survival function to develop the DEP
distribution. The verification of the pmf and the survival function are presented in the following
in theorems.

Theorem 1. Let Y be a random variable of the DEP distribution, Y ~ DEP(k, a). The
pmf of the DEP distribution is

fly) = ke ™ (1-e™), (3)
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Figure 3 Some pdf (left) and survival (right) plots of the exponentiated Pareto distribution
according to different values of k£ and a.
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where y = |logk|, | (logk) + 1|, |(logk) + 2| ,..., k > 0 is a scale parameter and @ > 0 is a
shape parameter.

Proof: Underlying the survival function of the exponentiated Pareto distribution and the random
variable Y = | X |, the pmfis

fly) =P =y)
=S x/(y) - Sx (y+1)
= ke~ W — ey tl)

= k%W (1 - e_“) )
Theorem 2. Let Y is a random variable of the DEP distribution, Y ~ DEP(k, a). The cdf of Y is
F(y) =1 ke oD (4)
where y = [logk]| , | (logk) + 1], | (logk) + 2], ... and parameters k,a > 0.

Proof: If Y be a random variable of the DEP distribution with the pmf in Equation (3), then the
cdf of Y can be obtained from

Fly)= Y f)

y=logk
y

= 3 ke — e

y=logk
Y
=k%(1—e"% Z e” Y,
y=logk
Yy k=4 _ p~aYp—a
since e % = ———— is a geometric series, then the cdf of Y is
1—e
y=logk

F(y) =1— ke 2w+,

Theorem 3. If Y is a random variable of the DEP distribution, denoted by Y ~ DEP(k, a), then
its survival function is

S(y) = ke, (5)
where y = [logk]| , | (logk) + 1], | (logk) + 2], ... and parameters k,a > 0.

Proof: Since Y ~ DEP(k,a) with the cdf in Equation (4) and S(y) is defined as the survival
function of DEP distribution. Thus,

S(y) =1-F(y)
—1- (1 - kae—a(y+1))
_ pap—aly+1)
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Figure 4 Some pmf plots of the DEP distribution with various values of £ and a.
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Figure 4 shows some pmf plots of the DEP distribution. Evidently, the scale of distribution
changes according to the parameter k. The random variable Y can be a negative integer when
k less than 1. The shape of distribution respect to parameter a. It appears that clearly, the pmf
decreases faster as parameter a increases and it is a unimodal curve when a less than 1. So, the
DEP distribution has the right skew and unimodal curve.

Mathematical Properties

Some mathematical properties of the DEP distribution, especially the moment generating
function (mgf) and quantile function are provided in this section.

Moment Generating Function

Theorem 4. Let Y be a random variable of the DEP distribution, Y ~ DEP(k, a). The mgf of Y,
denoted by My (t), is

(e® — 1) k!

el — et

My (t) = (6)
where k > 0,a >0and ¢t < a.
Proof: The mgf of the DEP distribution can be obtained from

My (t) = E (")

=> ¥ f(y)
Vy

oo

= Z eV . ke (1 — e_“)
y=|logk|
= k® (1 - ef") Z elv—ay
y=|logk]
> Lt—a
since Z W= — T s the geometric series, then the mgf will be
Llogk] et
y=|log

My (t)=k" (1 —e ) <lft:_a>
=k*(1—e %) (1]“_%;)

(e — 1)kt

ed — gt
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By using the first four raw moments, we can find the mean, variance, skewness, and
kurtosis of Y by successively differentiating My (t) and then evaluating the result at ¢t =0,
d’l”
EY") = WMy(t)\t =0, for r = 1,2, .... Consequently, the first four raw moments of Y are

(e* —1)logk + 1

et —1 !

EY)=

(e —1)?log?k + 2 (e* — 1) logk + (e® — 1) + 2
(e® —1)* '

E(Y?) =

B = (- 1) [(e“ — 1)+ (e - 1)2:g_3k1)+33(ea — 1)logk +3

+3( (e — 1) + (% — 1)?log?k + 2 (e* — 1) logk + 2)
(e — 1)

and

E(Y") =(e"—1) [((6—11)3) ((ea—1)+4(e“—1)logk+5

+< (e” — 1) log’k ((e* — 1) logk —2)) + 3 (e* — 1) log2k> + <(all)4>
(9 (e — 1) + 6 (% — 1)%log3k + 3 (e* — 1) log2k +24 (¢ — 1) logk + 24)

+ ((11)5) (12 (€% —1) +12 (e —1)*log?k +24 (¢* — 1) logk + 24)
ea

Hence, the mean, variance, skewness, and kurtosis of Y ~ DEP(k, a) according to its
first four raw moments, respectively, are

(e* —1)logk + 1

E(Y)=

et —1 !
Var(Y) = W ,
Skewness(Y) = L (Ys) —3E(Y)E (Yz) + Q(E(Y))B

(Var(y))*/?
and

E(Y'Y) —4E(Y)E(Y®) +6E (Y?) (E(Y))* - 3(E(Y))"

Kurtosis(Y) = (Var (V)
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Quantile Function

Let Y be a random variable of the DEP distribution with cdf, Fy (y). The quantile function
is the generalized inverse of Fy (y). Let U be distributed as the uniform on (0,1), u € (0,1) and
the quantile function denoted by @(u). According to the quantile function, if Fy (y) = u when
uw=1- k% U@+ then Qy (u) =y = Fy '(u). Thus, the quantile function of the DEP
distribution is

_ log (172
y—Fﬂu)——(H(ak)) 7)
where k > 0and a > 0.

There are many methods to generate random variates from a probability distribution.

The method that simplicity and generality is the inverse of cdf. Therefore, the quantile function
in Equation (7) is very useful for generating a random variable Y of the DEP distribution.

Parameter Estimation

The maximum likelihood estimation (MLE) is the widely used method for model
parameter estimation. In this section, the MLE of the DEP distribution will be discussed.

Let Y7,Y5, ...,Y,, be an independent and identically distributed (iid) random variables of
the DEP distribution with the pmf of Equation (3). The likelihood function of the DEP distribution
is given by

n
L(k* a’|yi) = H f (yi7 ka Cl)
=1
= H ke Wi (1 - efa) .
i=1
The log-likelihood function of n observations of Y~ can be written as

n
I =logL(k,aly;) = 10gH ke~ (1 —e™®)
i=1

=3 log (ke (1 e79)). ()
=1

For the parameter estimation of the DEP distribution, two parameters are estimated.
First, we estimate the parameter %, since y = logk, the likelihood function is maximized with

k= min{e?, e%, . e}

(See Rytgaard, 1990 and Mukhopadhyay & Ekwo, 1987 about estimation problems for k).
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Next, kis plugged into the Equation (8) and we take the derivative of the log-likelihood
function with respect to a is given as

d - d | . _ e
da = da [Z log(k“c_ayz (1 —e ))]
i=1

n
o n
=nlogh + —— — > y;.
7wg+w_1iﬂy 9

The parameter a of the DEP distribution is estimated by setting this differential equation
in the Equation (9) to zero, then solving this equation. The estimator of parameter a is

. n
a=log |1+ .
>ty — nlogk

However, for convenience and less complicated of the parameter estimation, the
maximum likelihood estimators can be obtained by a numerical method. The bbmle package

(Bolker & Team, 2019) of the R programming language (R Core Team, 2019) is the package for
fitting maximum likelihood models, extended and modified from the mle function in stat4

package. In this work, the bbmle package is employed.

Applications

We consider two real datasets to fit with the DEP distribution and the discrete Pareto
(DP) distribution (Krishna & Pundir, 2009). The first dataset is the infant and child mortality in
Sri Lanka from the Sri Lanka fertility survey in 1975 (Meegama, 1980). And the dataset is the
electron-microscopic studies of the density of dystrophin in the fibers of the human quadriceps
muscle, the number of attached particles from Immunogold data (Mathews & Appleton, 1993).
In this work, the blbom1 e package of the R programming language is used to estimate parameters.
Tables 1 and 2 show the results of fitting between the DEP and DP distributions to these real
datasets. The appropriate distribution for fitting data is verified with the Anderson-Darling (AD)
goodness of fit test for discrete data (Choulakian et al., 1994). The discrete AD test is obtained
by using the dgof package (Arnold & Emerson, 2011) in the R language. Other criteria for model
selection that used to show the performance of the model are the minus log-likelihood (-LL), the
Akaike information criterion (AIC), and the Bayesian information criterion (BIC). Furthermore, the
comparison between real datasets and expected values of fitted distributions can be illustrated
in Figure 5.

The fitted distributions for the number of infant and child deaths and the number of
attached particles from Immunogold data are shown in Tables 1 and 2, respectively. The p-value
based on the discrete AD test of the DEP distribution is greater than the DP distribution. Moreover,
the DEP distribution gives the values of -LL, AIC, and BIC smaller than the DP distribution. Thus,
the DEP distribution is more appropriate than the DP distribution.

Figure 5 displays the plots of the fitted frequency of the DEP and the DP distributions
with the number of infant and child deaths and the number of attached particles from
Immunogold data. It illustrates that the DEP distribution can be fitted more closely to these real
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datasets than DP distribution. Therefore, the DEP distribution is more appropriate than the DP
distribution related to the results in Table 1 and Table 2.

Table 1 Results of parameter estimation for the infant and child deaths data.

Number of infant and  Observed number of Expected frequency
child deaths mothers DP DEP
1 176 186.5613 172.0648
2 44 32.7931 50.7275
3 16 11.1243 14,9553
4 6 5.0337 4.4091
5 2 2.6860 1.2999
. k=1 k =2.7183
Estimated parameters 4 = 2.0868 4 =12214
-LL 217.2600 209.8100
AD-statistics (p-value) 1.3036 (0.1199) 0.2136 (0.6980)
AIC 436.5173 421.6231
BIC 440.0145 425.1203

Table 2 Goodness of fit test for the DP and DEP distributions for the number of attached particles
from Immunogold data.

Number of attached Expected frequency

Observed frequency

particles DP DEP
1 122 139.6299 125.6493
2 50 29.8019 45,9132
3 18 11.3608 16.7770
4 4 5.5945 6.1305
5 4 3.1911 2.2401
. k=1 k =2.7183
Estimated parameters G = 1.7622 4 = 1.0067
-LL 219.5200 204.8100
AD-statistics (p-value) 3.6074 (0.0079) 0.1457 (0.8235)
AIC 441.0385 411.6270
BIC 444.3268 414.9153

Conclusions

A discrete version of the continuous exponentiated Pareto distribution is proposed which
called the DEP distribution. It is developed based on the discretization method of the survival
function. We derived some essential mathematical properties, for instance, pmf, mgf, mean,
variance, and quantile function. In addition, the parameter estimation by the maximum likelihood
estimation is discussed. Furthermore, the proposed distribution is applied to two real datasets.
The results for the comparison of -LL, AIC, and BIC and according to the p-value of the discrete
AD test indicated that the DEP distribution is a better fit than the DP distribution for these real
datasets. In conclusion, the DEP distribution may be a useful alternative to other distributions for
discrete data analytics.
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Figure 5 The fitted frequency of the DEP and the DP distributions to real datasets.
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