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Abstract

The objective of this article is to discuss on rheology properties used in 3 types of conventional
extension flow experiments; uniaxial, biaxial and planar elongational flows. These standard flow experiments can
be tested in either steady extensional rate é‘o which is called steady elongational flow, and unsteady extensional
rate & (t) such as extensional oscillatory, stress growth, stress relaxation (or some time called step elongational
strain) and creep experiments. To synchronize these standard test properties and symbol notations, the society of
rheology (SOR), United State of America, has declared those properties and symbol notations for its rheologist

members from time to time.

Keywords: rheology of elongational flows, oscillatory elongation, elongational stress growth, elongational creep,

elongation relaxation.
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A = U
MINATOVIAAINIA
vy
TumsnaaoudnfandI9iAN191Re7 (steady uniaxial clongational flow) FunagouIzgnInaalu
A X, awdasluziln 6 Tasszarugudasunseataasliasiiume
é(t)=¢, (14)
Y o o a A = Y A R o ~ A 9
uahimsiamsaeuaueIveInNUIRI BAtAREzANMALEaRR LA luA13 190 2 (n) ledpuEYNIA Y
Qy 2K a = =2 9 [ A R A . a o g’./ <3 a 2 A
FunadoumsaiianufeIgnasIssaanine & Tufiemia X, dniuanusalufiame x, Fediow
Tuaumsa (12) fie
dx,

Vs, :E:éoxs (15)
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9 1 ) 1
BunsInIAnaAnAENRY t, =0 ddeuvedlraegndwmis X, = ¢, /2 fana1 t 1a 9 dewveslua

1 9
pgnd Mg X, = £/2 la ) daniy

JJ/Z 0% J.t &, at’ (16)

0/2 X trer =0
A A A= A vy A ' = o
LUDANUIATYAYRAN & !.!ﬁﬂ\ﬂ“l«!ﬁﬂﬂ’]ﬂ/‘l (13) ﬂ\ﬂ«!LﬁZﬂZ / 5$W'J'Nﬂf]u"llﬂ\?vh’iﬁ‘ﬂ'ﬂgﬁ$W'J’]\1ﬂ’]§ﬂ\1LL1J1Jﬂ\W]'J

a v o Jdo a A . I~
SUANVUAUNUTNUANNUIATIALVULEUANET (Hencky strain) (ﬂglhfl 6)

V. X
anA‘—S:g’i
F 2 2

(M) ty =0 @ a1t laq

a v =< A a A 2 Y o A= a4 . v
3‘1]7] 6. L!ﬁﬂ\ﬁ$ﬂ$1/]']\‘15314'J'Nﬂ@u@uﬂ']ﬂsluw]ﬁﬂﬁﬂﬂﬂ'l%ﬂﬂ?ﬂgﬂﬂﬂﬂflﬂﬂﬁﬁ?ﬂﬂﬂﬂﬂﬂﬂ &y (n) ﬂﬂuleﬂ\ivlﬂﬁ
= 2 9 v = Yy A Y .
fnansudu t,, =0 uaz (v) douvedluaninm t la o iduyuuuyNUEANFUNIINT 1A (streamlines)
£ o
Tuiioag
. 14
e=¢gt=In— (17)
0
= < [ J o [ A a A =R @
naglinNuIIveTaquaslanFuveTaaNinenn 7, — 7, 1A 7,, —7;;, IMAITNATOVIARIAIND

(steady clongational flow) 1uDA19 9 fandaslua1sieh 3 Taem liudrnnuniladadsianaufen 7. 0
o A o A g ' A Ao A < 7 . . Ay v
oasuRoudm 9 wliauiy 3 mwesnnunilaidnsunewilugud 77, (zero-shear-rate viscosity) 1 14910N13

NATUUVUINOU

lim 77 = 317, (18)
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A X a

) ¥
Lla3ﬂ31ﬂwuﬂﬁﬂﬂﬂﬂﬁﬂ1\jlaﬂq 77E f"h?ﬁﬂ51]6\1IlﬁﬁujiﬂluﬂuﬂnlﬁﬂiﬁﬂggﬂﬁﬂﬂjWﬂjWﬂJWﬁﬂWgﬁ’ﬁu 77-|— Wd\l'ﬂ
A A Yy o o oA & A A = A Ao A 5
Lﬂulﬂﬂﬁ@l!ﬂﬂﬂuv‘lﬂﬂ’nuﬁﬂwu‘ﬁu (Trouton, 1906) Glu"llfl‘l%Wﬂ’J’]Nwuﬂﬂﬂﬂ\iffﬂ\?‘ﬂﬁﬂ’l\iﬂﬂ@]ﬁ’“ﬂﬂu@n q AU

A A R a A d ' A Ao A 3 s .
HNUAYAAITDINANIN 778 %zumu]u 6 m']ﬂlfNﬂ’Nlqu@Vl@@lﬁHﬂ@umufﬁlﬂ 770 (Bird et al., 1977; 1987)

!:_rg Mg (50) =677, (19)

A S|
mynagevdariailusou
I o '
mMIsnadoudanaluson (oscillatory elongation) mmmmmﬂﬁ’wmﬂgﬂlmu (Menard, 2008) L6
1 1 Yy H v Y 1
sUnuuhdehganomsiu (Wiea) FunadouiodizrIiItTuFunagouu-asll-u1 (quni 3 vos
[} < a 4 a a a
Haddad, 1995) 131 msnadoudanaiilusoy (oscillatory elongation) N l8a1nATednT1zMIFananaia
@ { wa 3 <
(dynamic mechanical analyzer, DMA) Tuderatianiiauaauazivitie) (hard and tough materials) Uona1naziiu
9 ]
MINATOUNIAINI (fatigue) YBITAY VATV ANYITIWAVNITINATOOUANS 1D (crack) 11D99INMTAIRD
v Y ' 1
Y0IidAA10 (Jearanaisilawong et al., 2016) ua luNis 1wz AnITaghilauiangunila (viscoelastic) 1 lxiina
Y @ d' 9 o = = Gy A :ﬂ' A o
misduiiesnnlassadvesiag lulimsnasuudadliauanunssansemsidonnunmvesduiaiang

lauan (aging)
o [ a s wa g < . A < a Y
fﬂ‘ﬂillWﬂﬂlu@iﬂuﬁuﬂﬁlﬂuﬂl@ﬂlﬁlﬂ (solid polymer) fﬂiﬂﬂﬁﬂﬂﬂﬂﬁﬂlﬂui@ﬂuﬂ“ﬂﬂﬁﬂﬂﬂ?ﬂﬂ?'i
Y A = o a A R A a Y o 9 '
ﬂ')ﬂﬂllﬂ'ﬂlllﬂuﬂﬂﬂQLLﬁg'Jﬂﬂ'J"IlllﬂiﬂﬂfJﬂﬂ\?“ﬁ\?fﬂllTiﬂﬂlWllLﬂllhlﬂﬂWﬂW'J"U@ 5.1 U939 Menard (2008) Li§1
lﬁ'ﬂ\?"l]']ﬂcluﬂ'ﬁﬁﬂﬂ']ﬂ']ﬁﬁ\?gﬂ"’UENﬁ'ﬁaga']fJW'fJSLNﬂgllﬁ$Wﬂalll'f)gﬁaﬂﬂlﬁﬁjiﬂﬂﬂqﬂﬂgzﬂﬂﬁﬂﬂIﬂﬂﬂ?ﬂﬂll

A

o ~ A =R o Y A 2 o A ° Yo ~ A = @
gasuATAgARLaz IanNUANTARIA A A1 199 2 (V) Taemsmrualioas uassaganaveIidgne
£(t)=¢,cosmt (20)
. I I o = 2~ =
Tae &, Wuvnaluvuiavedns uATeAdaaA (clongational strain rate amplitude) FILANNIATBATAA
< a
dullaweaumsh (13)
t )
g(O,t)=.[ &, cosat’ dt’ = g, sin wt @1
0
A < a A =R . . . A g = v o
e &, WUYUIAYDIANUIATEAEAR (clongational strain amplitude) AN UVIN (+) tarue tazANNTURUT
@ % ~ A R A
AUVHIAVDIOAT AT HATANIAD
&y = W&, (22)
F
Aa A o a I a =
TaguinmsnadeusiailiniziounaaenlugluuudanailusounaAn19@e (oscillatory  uniaxial
I a [ ] <
elongation) (Kee & Fong, 1995) uazdanatluseuaeananIg (oscillatory biaxial stretching) HADE13 15N
I S 4 o
msnaaevdanailuseuluseu (oscillatory planar elongation) Niimsnageutiie 14vna lnmsuendives

a 14 1 a o 1
NYAN1TAL YN ALNDT (breaking of polymer solution droplet) (Li & Sarkar, 2005) L4ANITAAANTUINISLUANG
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A I a = a nmy = d‘dy dysl [
NnMInaaevdanailuseuiamudsiazaesnamauas 1uldnandalunil vennniidrvuiavessni
= I ° . . =
13 uAdAY A UTO UM (small amplitude oscillatory elongational flow, SAOE) aumIaNuAudanavziinmy
1 a v W =) 1 o =) I
vguniiaudunusasuaiondaa (linear viscoelastic behavior) AR IIUIAYDITAT UATBATANAITIUTOUFA
(large amplitude oscillatory elongational flow, LAOE) @uminnuidudaasas liulinnuvguniiaiaduny
8@3UA38A0ARY (nonlinear viscoelastic behavior) tagauiiamenszuanm lavinminageudrominiugu
Yy A K Y @ ~ A R 1 [ ~ A =R Y @ Y A
ANUAUIAAIAIIANNUIATIATAAIIZUANA NDINMINATOD TABAIUANOAT AT BATAAILEITAANNAUDA
d'g 1 J A o =) I ° ] gﬂ o [
a1 luntlvenanduamsnageunivuIaveIdnIIATsadanAilusa UM (SAOE) 111K d1mSumsnaasy
= @ ~ <] 1 A a
mmﬂmmamnmaﬂﬁwmﬂuiauqa (LAOE) ansameiiuay lden Bejenariu et al. (2010) {tag Dessi
etal. (2017)
) o A I a 2 . . . . 4 <
dmsumsnaaovsarialluseuNANILAL) (oscillatory uniaxial elongation) namasaNus lums
A g a = 3 A v ¥ ¢ v 4 '
naaevganaiusouiiamuded aziulUawaunmsh (12) Aniumugessasimsulasunilasgisn (rate

. A I a = A
of deformation tensor) lumsnagevsanalluseunaniufeIne

—&, cos at 0 0
7(t)= 0 —&, cos wt 0 (23)
0 0 2¢,cosmt ) .
' 4 Y A = =~ v v Jdu a oA
HAZAUNULEDIANUAUIAAISUANNTUNUTANTUNITN (24) HUAD
o 0 0
=0 o O (24)
0 0 20

123
Y A =R ~ A 1o = o ~ A = = a
IﬂﬂﬂjWHLﬂuﬂﬂﬂﬂﬁﬂUﬁuﬂQ (stress response) "l]gllﬂmllﬂﬂ/lhlﬂﬂﬂ'ﬂllﬂsll't‘]\'ii‘)ﬁi“ﬂiﬂﬂﬂﬂﬂﬂllﬁuigﬂglv‘IﬁW

UANAIAY (phase difference) NA1IAD
o(t)=o,sin(wt+05) (25)
Tav & Wuszoznlaiiunneiadiu (phase difference) szninNuAulaRazsnT UATOATAR A2 0, 1T
YUAVBIANUAUTARIAD VAU (elongational stress response amplitude) «T}qmmmﬂuﬁmﬁ @Ellﬂillmﬁ
ANNTOHIA Ty — T3y 191N
Ty — T, =—20—0 =—30 (26)
@mmaﬂanmiﬁ (26) §10 -1 nazunumAYM TN (25) 9218
—(743 =7, ) =30, sin(wt+6) (27)
1Hondnuains Tnaez 1

—(743 =731 ) =30, (Sin wt cos § +cos wtsin 5) (28)
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§ a o ' o &
et WA AAYATgUYEIEIT (Young’s elastic modulus) 7D

Ton—T
E=- 33 11 (29)
&(t)
Taesanuasendana e(t) M Idnnaumsi (13) Weunuaraunmsn 28) asluaumsn 29) a2 1d
Ton—T .
—M: E’sin wt + E" cos wt (30)
&
Ia ﬂﬁuﬂ@ﬁvﬁ Azantang (elongational storage modulus)
3o
E'(w)=—2c0sé G1)
&y
uazuenangdedafY (clongational loss modulus)
30, .
E"(w)=—Lsins (32)

&

o I 1% [ 1% 1 o o =)
Taguogaaazautanuiluanuawnsavesiaglumsgadundsnuszninmssuvaauaz venddgyde
A R J = 1 o @ [ Y k) a 1%
gaduilumsgades (Janilasey) wasnunnmsiulvasdaasimuarsmsnfseumeudumsnszaou
vosgninuiialuzln 7 uazueadaazaudanwuasneqaagy dedaniduiusiuuendaazauuazuondd

= A <3| . A
guyaslumsnadeunauiluson (oscillatory shear) Ao

E' =3G’ (33)
E"=3G" (34)
Lf}i‘)
G’(a)):ﬁcow (35)
7o
G”(a)):&siné (36)
Yo

o o = < Y
Tag G’ Aowenaddzeaw (storage modulus) way G” Aoweadagayde (loss modulus) vz ldmsnaden
A < A a A . a Y v o
Mewiluseu ansadalaningdnssuanudanguiasngdnssuveuratesninlanien q du lae 7,
3 ~ < Y . = A
Wuvannueion uag 7, 1JUIUIAYEIANUAUABU AU (stress response  amplitude) FUTUAIAIN
~ I J =l I a =t

Tuyaziminaeasznianuuganuazanuaseatan lumsnageudanaiusouzinaesoudmne
aa . @ A X < A = 1 1 4 A Y o ~ wvaa a a
5%a (hysteresis  loop) aanaaalugiln 8 sudunuigydeasritsiundiagliauiadalndaradn

(viscoelastic property) ﬁuﬁa
AW = (ﬁ ode (37)
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a Y 1w A ' P . v YA 1 a = A A
aun1sn 37) Llﬁﬂ\jiwlwu’)T}]ﬁﬂ‘ﬂﬂﬂunﬁuu‘liﬂJ (purely elastic) Lﬂ1uuﬂﬁ]3llulﬂﬂj\1§'ﬂuaﬁl‘ﬂﬂj‘;ﬂﬁ

a

=

< ' o A 1o oA = Y < ~
(hysteresis loop) HufovzdnslFusspaazlasendumnunszezdamediy msnagevdanadluseviims

S a 4 ° & T o ] ' A4
Ilansugadoumesslumssamiioulumsnaseunesuwiusouuiuuaaz lunanneluni

I

S :

£
vagadgady
1, +Ar

_Y
A

(Loss modulus)

£
v w_ d
woaaanniny

(Storage modulus)

Y

d‘ = @ a A ' Y 1A
31]71 7. UEAIMI LAY (storage) L1AZMITYLAY (loss) WA UVeIgRIMUiangnilaseliangiu

|
|
|
|
|
|
|
AW !
|
|
|
|
|
|
|
|
|

& &

~ = A . = < < I~ = dy I~
3‘1]7] 8. LLAAINIDUITNOINA (hysteresis loop) 1uﬂ1iﬂﬂﬁ@'ﬂfJﬂWﬂL']J1!iﬁlﬂlﬂuﬂ‘LJﬂQfglﬁﬂﬂﬂﬁu'JﬂWUﬂ

lﬁﬁNi]1ﬂﬁ'ﬁﬂﬁﬁnﬁa§ﬁ1ﬂ§mﬁaﬂ (viscoelastic property)
a Y A =
NIINATOUMIINHNAINIAHEAR

A Y A R . o o o ~ = A
NTNATDUNITIWNANULAUYAA (elongatlonal stress growth) ‘1/]WHl@Sﬁﬂﬂﬂﬁﬂ"l‘ﬂuﬂﬂﬁi%ﬂiﬂﬂﬂﬂﬂﬂ

o . ' v A o o A o A
UUUANA 80 ’E‘)En\jWuﬂﬂuiﬂﬂ\jllﬁﬂ\jiuﬂ131\1ﬂ 2 (ﬂ) UHUND
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t<0

37)
t>0 (

3 o J o o { a A v
Lms‘ﬁflﬂ’ﬂlﬂ’i]ﬂ]ﬂﬂ’f]ﬁﬂuﬁzﬁﬂﬂ"lfuéllﬂﬂ’flﬁﬂﬁmﬂiﬂﬂ Ty~ Ty Uas 7,, =744 Glumima'emmsmummmu

LRGN (elongational stress growth) HUVAN gl aaaaslunisei 4 (O & Sridhar, 1999; Wang et al., 2011;

Bhattacharjee et al., 2016)

3 3 o 7w o { a 2
M3190 4. agUanuEivesiaquazsifanTuueITagNNANIN T, — 7y, UAE T,, —7;; TWMINAABUMIIAN

mmﬁuﬁﬂﬁa (elongational stress growth) BISIERN d|

< o
Mg ANIFTIVOITAR T3 — Ty Ty — Ty
fnant>0 o o
(M MINUANUAUTAR :
_Z0
TGRS 2
o,
.. . = . E + .
(uniaxial elongational V= _ ﬁ X __g} =1 (t, 6‘0) 0
2 0
startup) 2
) &, X
[b=0uaz & >0] 073 /123
) MINUANUAUTAR ;
0
ADINAN 2
_ . o .
(biaxial elongational V= B &, X __,g" =Tl (t, 80) 0
A 2 0
startup) 2
. E X
[(b=0uaz & <0] 073 /123
@  mamvanususanely
EEATRM —E£X,
_ P ) P .
(planar elongational V= 0 —= 7];1 (t,é‘o) ——= 77;2 (t,é‘o)
. &y &o
startup) 80X3 123
[(b=1uay & >0]
+ . A A A = oa = + . A A A a o
Ineme 77, (t,go) ABANUNLABARINANINALY, 775 (t,go) ADANUKUATAAITDINANI LAY

+ . + . A A AR o v A 2 Y A
e (t,go) e 1y (t,go) AoaNMurUATaAslusZIIUAIALN 1 uay 2 TuUMINATOUMINNANUAUER
1 2

=
AN
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A < '
MINAABUMINUANUAUTARS (clongational stress growth) 1HumMInagevitiloumsnageums
v v v
INUANMAUIR DU (shear stress growth) NA1IABMINATBUMINNANWAUTART eIsad 1@ Tasmsaam
. Y A
8as1daRInedn &, edviuiiulamenszmnniunadevuazithgnmsaouaussvesnnuduluiiotagain
7o Aa gy 9 = 2 A Y A = .
gilnsaldausanaa lidndunilsvesiunaaon TuvaziinsnaaeunsanasuenuALEAAY (clongational
] o Y a a wua d' ] Y a [ ~ =S A
stress decay) Tiamnsosildas slumalfiid iieson iawsoniuguldinansanasvesdasuaseanta
o . Y A K Y o S =3 12 o Jya
HUUAIAD &, lumsnadeumsanasvesanuaubadeld duiuddlitianusuiulunmsddewns

nAFoUMIaNadveIANNIALTARLABE19 1A (Morrison, 2001)

MINATOUMIAMAIVDIANMAUEAN
@ Y A = A =2 A I H . .
MINATOUNIAANAIVDIANIAUIAAINITONTAITAIT UATU (elongation stress relaxation or step
v 9 v
elongational ~ strain) 9%11A8N15AIAI1OATUATIATAAIAIAD & Tugsraardu 9 t, avuusUnaaoy
2 Y o A A = o . H ' H o A o q v
(NIEHINFUNATDUAIIOATUATIATAAININD £ 1 AT IUTIAEY 9 t,) aanaaalua1sen 2 (1) v
=) G Al =R [
NATDUNANULATYAYIAAIDYINDIT &

0 t<0
e(t)=limq &t 0<t<t, (38)

ty—0
& =¢&t, t=ft,

Y o o Y A K A o A A o A A=A
LAININTIAANUIAUIANN O NABDY €] AATYAIANLTDY ) Tﬂﬂllﬂﬁi"llﬂiﬂﬂﬂﬂﬂﬁﬂﬂ

0 t<O0
é(t):t'oiﬂ?) & 0<t<t, (39)
0 t=t,

Tugsduanudugads o(t) 819921MAMINTZHIN (overshoot) tHivd91nLsINTENIHINATAT UATIATARS
@ . ] Z; g’/ @ a G A R ' Y A K 1
A3A2 £, Turanan ty du 9 UY 1AINNeANIATBATARIEE1ND1IT &, ANUAUTaRl o(t) vzhee 9

(5 J o @ A a
AD1YNIN (stress relaxation) (Wang et al., 2011) ﬂaﬂ%umamﬁ@mﬂmm Ty — Ty MOT Ty, — Ty Tums
nagouMsAaeiIveInNuIAudaaaaaluasei 5

MINATOUNITAAIBAIVDIANNIAUTARITIMITONATD DRI TAUF U TefiAn19ReT (filament

stretching) AAA 114317 3 (1) (Orr & Sridhar, 1996; 1999; Bhattacharjee et al., 2016) W3BNTNATOUNS

o Y A = ax o . . 2 J
AMEAIVOINNNAUTAAIT T ONATOD TABIDNABA (lubricated squeezing) FUTUMTNATDULUVMIANY
o a o { o <
Avesnnudubafasaosianiesawaaslugii 4 (n) 1482 (Soskey & Winter, 1984; 1985) usiog1e lsnam
MINATOUMIANIBAIVDIANUAUTARIHEuNATO IO IANEAAAHDUAAY (relaxation modulus) Tuws297

Faglianuaseatana g, A
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< Y o a . . . .
Tmm’J"lﬂummg]aﬁwauﬂmﬂ?}ﬂﬁws@fmuﬁm (uniaxial extensional relaxation modulus)
a g ' v @ a a a A 9 . .
Ec (t,go) wiadlu 3 venegaarouna1sueIianIa IndaafnBudu (relaxation modulus of linear

viscoelastic) G (t) nl&nnminaasumInasdIveInNUIRUIRDY (Barroso et al., 2003) NA1IAD

Ec (t,go) =

Tay — 7.
811 -3G(t) (40)
&
v A R a . . . . = = Y
LAZNOANTNDUANIYIAAINDINAN (biaxial extensional relaxation modulus) EB (t, 80) NANUATIAUDY )
=) o v Jda [ [ ] 1% a a a a

ﬁ]$JJﬂ’J'liJ?fJJWuﬁl%iLéJUﬂUNﬂﬂﬂﬁNﬂuﬂﬁ1ﬂﬂlﬂﬂ3ﬁﬂ3ﬁiﬂﬂﬁ1ﬁ@]ﬂl“ﬁ\i!.’s?f}u (relaxation modulus of linear
viscoelastic) G (t) 1FUNU (Soskey & Winter, 1985)

lim E, (t,5,) =—2 11 - 6G t) (41)

£—0 60

a

ieveqaaneunaievesiagidlnomaandududnsodousgluglvesannaiuveauainounate

a

(spectrum of relaxation times, ﬂ,l ) L!ﬁ%uﬂﬂﬁﬁﬁﬂmﬂmﬂ (relaxation moduli, g)
N
G(t)=> gexp(-t/4) (42)
i-1

v o oA 9 @ Y A = yyd
anuduwusuasalFlumsasisasunanisnaaesluminageunisaatealvesnnuAugana ldily
VoA A a 9 o Aa wa g o A ) 4
pgnAosnInlndudriaqnliauidaiiuves lnavzimanagoums Inanuuineulddioniminaaeunis
Tnanvudans TuvaznmInaeaIveInNUALEARITSIVIALMINATOUMIAAIAIVDIANUIAUR DU

IriAuedanounaIRedIn (Khan & Larson, 1991)

=8 A
NIINATOIUNIAIND
' A R A =2 A . 3 Aq ¥
ANINNITNATDUIAAIULUVUDU €] NITNATOUNTAIAY (elongatlonal creep) L‘]Juﬂ"liﬂﬂﬁﬂﬂﬂﬁlﬁ
Y A = o A Yo A ~ =2 A ] ' oMY 1 1 Y]
AITUIAUYAAIAIN O, LWﬂiﬁ?ﬁﬂLﬂﬂﬂ'ﬂiﬂﬂiﬂﬂ@Nﬂﬂ g(o,t) ¥ ) YNNI VHHlﬂEJEJNNEJ 9 Iﬂﬂfﬂirl‘]f

H 2L Y
@j’um‘wuﬂ (dead weight) HUIUDNFUNATDY (sample) aaaaslu

31U 9 1iune
0 t<O
Ton =T, =0 = (43)
33 11
o, t=0
Ty o, AeAIANUIAUIARIAIAT (steady clongational stress) uazinnwemlasumlasllamnaids
waaalu
a A o v A A R . . A
A1519N 6 (D) maﬂmuﬂ“lwmquuﬂuaﬂm (elongational creep compliance) A9
£(0,t)

Oy

D(t,0,)=- (44)
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HeANUIATIATARIAY & (0, t) Aoy luaumsin (13) Famn'ldnnanuennalasuutlaslawesraran'ld

1NMITIA

Y < o 7w o da
M35190 5. agUanuEIvesiaquasfanTuueTaqnANIN T, — 7y UAT T, —7;; IWMINATOUNS

AABAIVDIANUANTAR (elongational stress relaxation) HULAN 9

< o
MINATOU AU IV Tyl Ty
a1 0<t<t, € &
(M MINALAIVBIANUAY &
A K A = ——O
IAAINANIUAYD 2
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MINATOUMIAMLHINNMIANAD
MINATOUMIADIBAIINNTAIAY (elongational creep recovery test) NATINNITHYANNUIAUTAR S
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M58 6. 1AAINIAIVANTOYYAIT1-00n (Input and Output) TUMITNARBINIAIAVUAZNITAAIBAININAITA

A Y A = o A A9
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v
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. S . . 2 9
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. . o Y
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g ¥ % 1
m3astatuiu (elongation relaxation or step elongational strain) “TNﬂﬁ‘ﬂﬂfdﬁ‘]Jlﬂﬁﬁﬁiummﬁ‘mﬂﬁlﬂﬂll
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