
35

Research Paper : A New, Fully Decentralized Grid Generation Method

วารสารเทคโนโลยีสารสนเทศปีท่ี 5 ฉบับที ่10 กรกฎาคม - ธันวาคม 2552

Abstract
 In order to manage search-, and routing-functionality in
structured P2P-networks, a lot of algorithms like CAN, Chord,
Tapestry, Pastry, and more have been developed. In this paper
we introduce a distributed algorithm which uses a set of simple
rules to build and maintain a complete, parallel-growing and
although contradiction-free grid-structure just by the use of
local knowledge of each node. This leads to a large-scale growth
of a decentralized network based on a global n-dimensional
Cartesian coordinate-system built without any global instance.

Keyword: P2P, pattern formation, grid, fault-tolerance,
scalability

1. Introduction
 Decentralized approaches for organizing networks have
big advantages in managing and maintaining the high
dynamics that occur especially in community based networks
[1, 3, 4, 8]. Three main-operations have to be implemented
for those decentralized networks: The Join-operation, that
integrates new peers into an existing network, the Leave-
operation,which keeps the network in a consistent state, when
a peer leaves the network, and  nally the Lookup-operation,
that locates desired resources in the network. Unstructured P2P
networks use broadcast-mechanisms to perform resource
lookups and routing [2]. Adding and removing nodes can be
performed with low costs, since there is no special structure
that has to be kept consistent. But, on the other hand, due to
the absence of an ef cient searchable structure, performance
in  nding resources is poor [10].
 Algorithms for structured P2P networks, like Chord,
Tapestry, Pastry, or CAN have much more complexity in
Join- and Leave- operations, because they maintain certain
structures, like rings, trees, or meshes, that make Lookup-
operations more efficient and therefore increase their
performance [9, 10].
 Networks and topologies based on those regular grids
have signi cant advantages in managing computing resources
[1, 3]. Ef cient routing and fault-tolerant routing algorithms
have been developed for these topologies [5]. However,
whenever those grid-structures are built, they are built
staticly or under centralized control.
 In this paper we introduce a distributed locally working
algorithm which can set up a complete and regular grid in a
decentralized, dynamic environment.
 Our approach is to simplify the structure formation and
managing process by letting a network grow as a regular grid1).
 In section 2.1 we shortly describe the problems and

Panchalee Sukjit* and Daniel Berg*

requirements that arise when building a grid without any
global view to the grid itself and with limited knowledge
about the existing neighbourship. Then, in section B the
growth algorithm is introduced. Section 2.2 gives a formal
de nition of the algorithm. Section 3 discusses the simulation
setup, performance evaluation, fault tolerance and possible
optimisations. In Section 4,  nally, we give a short outlook
to further investigations.

2. A Decentralized Grid-Building Algorithm.
 2.1 Requirements
 Grids are easy to set up under centralized control and
if the number of involved machines is static [6, 7]. Setting
up a grid only with local knowledge in opposite is not that
simple, if we assume that a node within a grid only knows
about its four direct neighbours. Commonly, following
requirements are the base for our approach:
 • The structure must be built fast and with noncomplex
algorithms.
 • The structure does not appear in a previously fixed
coordinate or cell space system
 • It must be easy to repair in case that any changes in the
network appear.
 • The algorithm is running locally on each peer and only
can use the information available on this peer and eventually
on its neighborhood peers (since global information is not
available).
 • The generated overhead shall be minimal and the
achieved ef ciency maximal.
 Uncontrolled joining of new nodes could result in holes
within the grid (Fig. 1a). Another problem, which is implied
by the existence of those holes is that a node cannot see the
situation behind gaps that come up with holes.

*Department of Communication Networks, Faculty of Mathematics and Information Fernuniversity in Hagen

A New, Fully Decentralized Grid Generation Method

Figure 1 : Uncontrolled growth process will lead to holes
and to overlapping areas

Research Paper : A New, Fully Decentralized Grid Generation Method

36 วารสารเทคโนโลยีสารสนเทศ ปีท่ี 5 ฉบับที ่10 กรกฎาคม - ธันวาคม 2552

 This situation is shown in Fig. 1b at the position denoted
with X: Assume, that Node (4, 2) accepts X to be its new
neighbour. Since every node just knows about its direct
neighbours, the node at position (4, 4) does not know about
the existence of X. Node (4, 4) still assumes that position
(4, 3) is free and therefore is ready to accept a new node at
this position. That would lead to the contradiction situation
that two nodes could reside at the same position (4, 3).
 The rules on which the growth process is based must
ensure that holes or contradiction situations cannot occur.
Furthermore it is necessary to fix holes that arose from
peer-failures within the grid.
 2.2 The growth process
 To describe the growing process we assume to have a
virtual cartesian 2-D coordinate-system and a root-node in
the origin of this coordinate-system, i.e. it has the coordinates
(0, 0). To keep things easy we focus on the  rst quadrant.
The discussed algorithm and its rules are symmetric, and
therefore work analogous in the other three quadrants. The
term ‘a node N grows in a certain direction’ means, that N can
declare a new node N’ to be its neighbour in that direction.
 We call nodes that reside within the quadrant (x > 0 and
y > 0) inner nodes. Nodes that reside on one of the axises
(x = 0 OR y = 0) we call skeleton nodes.
 An inner node N can grow in diagonal direction away
from the origin, if and only if N already has a neighbour on
its north-side as well as on its east-side (Fig. 3, 4b).

 This rule is also valid for the skeleton nodes. Additionally,
skeleton rules can grow in the direction of the axis on which
they reside (Fig. 3, 4).
 Using these rules the quadrant will be  lled up without
producing any holes and without putting more than one node
at the same position. The nodes themselves just use local
knowledge, i.e. they just know their direct neighbours in
north-, east-, south-, and west-direction. After a new node
was added the neighbourship information can easily be updated
just by informing the grown node’s north-neighbour, that
it has a new east-neighbour, respectively the grown node’s
east-neighbour, that it has a new north-neighbour.
 The next section gives a mathematical description for this
structure and its growth process, that ful lls the requirments
given in section 2.1.
 2.3 The algorithm
 Let Z denotes the set of integers, and let Q be the in nite
grid graph with vertex set V (Q) = Z2 where two distinct
vertices (x, y) and (x’, y’) are adjacent in Q if and only if

 We call a sub-graph G of Q nice, if

 It is easy to see that every nice sub-graph of Q is
connected and induced.
 A directed graph T with vertex set Z2 is de ned as
follows. The edge set F of T is F = F1 F2 F3 with

 If ((x, y), (x’, y’)) is an edge in T we say that (x’, y’) is
a descendant of (x, y) and (x, y) is the ancestor of (x’, y’).
The following claims are immediate consequences of the
de nitions given above:
 Claim 1:
 The vertex (0, 0) has no ancestor. All other vertices have
precisely one ancestor.
 Claim 2:
 There is a directed path from (0, 0) to any other vertex
(x, y) in T.
 Let G be a nice sub-graph of Q. The following rules

Figure 2 : A simulation with 100, 000 nodes

Figure 3 : The growth process at an initial state.
The position denoted with x show,

to where the grid currently could grow

 or

if

if

if

37

Research Paper : A New, Fully Decentralized Grid Generation Method

วารสารเทคโนโลยีสารสนเทศปีท่ี 5 ฉบับที ่10 กรกฎาคม - ธันวาคม 2552

de ne how G can grow:
 R1:
 then add a new
vertex (x+1, 0) and a new edge from (x, 0) to (x+1, 0)
 R2:
 then add a new
vertex (0, y+1) and a new edge from (0, y) to (0, y+1)
 R3:

 then add new vertex (x+1, y+1) and the edges from
(x, y+1) to (x+1, y+1) and from (x+1, y) to (x+1, y+1).
 R1 and R2 describe the growth process of skeleton nodes
along the axises, while R3 describes, how inner nodes grow.
 Claim 3:
 Let G be a nice sub-graph of Q, and let G’ be a graph
from G by simultaneously adding vertices following the
rules R1, R2, and/or R3 then G’ is a nice sub-graph of G.
In the next section we discuss the algorithm’s performance.

3. Performance Evaluation and Fault Tolerance
 3.1 Simulation Setup
 To observe, how this algorithm performs under real-time
conditions, P2PNetSim [11] – a distributed network simulator
was utilities. P2PNetSim allows large scaled network
simulations,and analysis on cluster computers. Peer-Behaviour
of skeleton- and inner nodes can be implemented in Java
and then be distributed over the nodes of the simulated
network. At simulation start up the peers are interconnected
small-world-like in order to simulate the typical physical
structure of computers interconnected in the Internet. On top
of this structure an overlay-network is built using the
grid-algorithm. This allows it to compare metrics of the physical

network with those of the overlay-grid. Furthermore, the
efficiency of optimisations, like exchanging nodes in the
grid, in order to adapt spatial relationships in the overlay to
the physical structure (see section “optimisations”), can be
observed and analyzed. Fig. 2 shows the output of a simulation,
that generated a grid with apprx. 100,000 nodes.

 3.2 Performance Evaluation
 Based on the described algorithm the network grows at
diagonal locations at the grid’s border. Border sides which
are parallel to one of the axises will not grow until new
nodes from a axis will cause new situations to which the
growth-rule R3 can be applied.
 The more the network structure converges to a rectangle
the less it will be able to grow.
 On the other hand, if the skeleton nodes grow too fast
in comparison to the inner nodes, the network tends to get
degenerated at its axises, which grow far out of the grid’s
dense area.
 Fig. 5 shows how the inner node/skeleton node growth
ratio in uences the grid’s overall ability to grow. The slower
the skeleton grows, the more time the whole network needs
to grow. Fig. 6 shows the number of free nodes (parallelity)
depending on the skeleton-growth-probability. Free nodes
are those that are able to accept new nodes. The parallelity
increases with increasing skeleton-growth-probability.
 3.3 Fault Tolerance
 Assuming that any node in the grid could fail at any time,
there must be mechanisms to  x holes reliably. One possibility
is, that whenever a node detects a missing neighbour it may
initiate a process which moves a node from the grid’s border
to the defective position. This moving process, of course, must
still follow the rules R1-R3. This might lead into situations
where holes can’t be refilled until other nodes fix their
neighbourships. In this case the moving process could be
delegated to another node that resides at the border of the
hole, and that is able to apply one of the rules R1,R2 or R3
to accept a new neighbour.
 Another approach to handle leaving nodes is implied by
claim 1. Every node (except the root node) has precisely
one ancestor. In the  rst quadrant, for any node D at position
(x, y) x, y > 0, its ancestor A resides at position (x - 1, y - 1).
 For skeleton nodes on the x - axis (x > 0, y = 0) the

Figure 4 : The visualized growth
rules R1, R2 (a), and R3 (b)

Figure 5 : Scalable growth characteristics
depending on the skeleton’s growth rate

Figure 6 : Dependency of growth-parallelity from the
skeleton’s growth-rate

if

if

if

Research Paper : A New, Fully Decentralized Grid Generation Method

38 วารสารเทคโนโลยีสารสนเทศ ปีท่ี 5 ฉบับที ่10 กรกฎาคม - ธันวาคม 2552

ancestors can be found at positions (x - 1, 0), and ancestors
of skeleton nodes on the y-axis at (0, y > 0) sit at positions
(0, y - 1).

 These relationships span up a tree within the grid, where
the root-node at position (0, 0) is mapped to the tree’s root,
while all other peers model the tree’s inner nodes (Fig. 7).
The peers at the top of the tree (the tree’s leafs) are those
that are able to grow, i.e. to accept joining nodes to extend
the grid. If any node failure occurs, the tree explicitly and
uniquely denotes the next ancestor as the node, that is
responsible for handling this failure. This node might incur
the missing node’s routing capabilities and therefore adheres
the grid virtually. Another possibility would be, that the
responsible node reorganizes the grid in that way, that it asks
a node at the grid’s border for changing its position in order
to  x the hole. The exchange of nodes could be performed
quickly, since this just requires a node’s coordinates to be
changed.
 In the next chapter, we suggest some optimisations, that
could decrease the complexity for  nding nodes at the grid’s
border.
 3.4 Optimizations
 Following optimisations are suggested to improve
performance and fault-tolerance:
 • Finding alternatives to skeleton nodes
 The growth-behaviour of the skeleton nodes decides,
how the grid grows. Special tuning is required to control the
skeleton growth, and therefore the growth of the whole grid.
Alternatives should be investigated to make the growth-process
more ef cient and independent from the skeleton-concept.
 • Higher dimensions
 Instead of limiting the structure to two dimensions, the
grid could grow in three or more dimensions.
 • Grid hierarchies
 Setting up hierarchies of grids with lower granularity, to
improve lookup- and join-operation performance.
 • Flatpacks
 Flatpack of planes with increasing and then decreasing
granularity. The granularity depends on communication

bandwidth available on each node.
 • Node exchange
 pairwise node exchange, in order to reflect physical
neighbourships within the logical grid. Beside the physical
neighbourship, any other criteria could be used for this
kind of reorganisation, for example, to set up a content- or
resource-based neighbourship.
 • Jumper nodes
 Permanently available nodes with high bandwidth may
act as jumper stations. Jumpers are connected using UTH
network structures [4]. They can be used for speeding up far
distance connections, when they are found on a processed
routing path [12].
 • Pheromone paths to jumpers
 Ant-like pheromones are used to mark paths to jumper
nodes. When detected by a message on its routing path, the
pheromone-level in uences the routing path and leads the
message to a quick jumper node.
 • Self organizing path systems
 Finding different paths for difference directions. Avoids
message-collisions. Number of detected collisions can be
used to decide when, and where to set up an alternative route.

4. Conclusion and Outlook
 In this article we described a distributed algorithm that
sets up an anarchic growing, complete and regular grid.
It can be used as an overlay-network. Though the algorithm
just works with local knowledge, the upcoming grid is hole-
and contradiction-free (i.e. no overlapping areas occur).
This logical grid can be used for routing, and resource lookups.
It is  exible in that way, that nodes could change their positions,
for example to reflect any thematic similarities in nodes’
relationships to each other.
 The scalability of the grid depends on the ratio of the
number of grow-able nodes at the border of the grid and the
number of inner nodes. This ratio, again, depends on the
growing behaviour of the skeleton-nodes. Further investigations
must be done, to  nd the ideal growing behaviour of those
skeleton nodes, or even to get rid of the skeleton nodes at all
by replacing them by a better concept.
 Another task of further investigations, is to create grids
with higher dimensions. This would raise the scalability on the
one hand, and would reduce routing- and lookup-complexity
on the other hand.

5. References
[1] D. Tavangarian and G. Hipper, “A New Architecture
 for Ef cient Parallel Computing in Workstation Clusters:
 Concepts and Experiences”, Proc. The High-Performance
 1998, Tentner, Boston, Massachusetts, Boston,
 Massachusetts, pp.271-276, April. 1998.
[2] J. Widmer, C. Fragouli and J.-Y.Le Boudec, “Low-
 complexity energy-ef cient broadcasting in wireless
 ad hoc networks using network coding”, Proc. First
 Workshop, Netw. Coding, Theory, and Appl. (NetCod
 2005), Riva del Garda Italy, April. 2005.
[3] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp and

Figure 7 : Relationships (diagonal lines, and vertical
& horizontal lines on the axises) form a tree

39

Research Paper : A New, Fully Decentralized Grid Generation Method

วารสารเทคโนโลยีสารสนเทศปีท่ี 5 ฉบับที ่10 กรกฎาคม - ธันวาคม 2552

 S. Shenker, “A Scalable Content Addressable Network”,
 Proc. ACM SIGCOMM, 2001.
[4] D. Berg, H. Coltzau, P. Sukjit, H. Unger and
 J. Nicolaysen, “Passive RFID tag Processing using
 a P2P architecture”. Proc. Malaysian Software
 Engineering Conference, 2007.
[5] A. Mello, L. Copello Ost, O. Gehm Moraes, N. Laert
 and V. Calazans, “Evaluation of Routing Algorithms
 on Mesh Based NoCs”, Proc. Technical Report Series
 No.040, May. 2004.
[6] T.M. Riaz, R.H. Nielsen, J.M. Pedersen and O.B. Madsen,
 “On Line Segment Length and Mapping 4-Regular-
 Grid Structures in Network Infrastructures”, Proc. of
 5th International Symposium, CSNDSP 19-21, July 2006,
 Patras Greece, pp. 435-439, 2006.
[7] Fritzke: “Growing Grid - a self-organizing network
 with constant neighbourhood range and adaptation
 strength”, Proc. In Springer Netherlands on Neural
 Processing Letters, Vol. 2, April. 2006.
[8] G. Sakarian, H. Unger and U. Lechner, “About the

 value of Virtual Communities in P2P networks.” Proc.
 ISSADS 2004, Guadalajara, Mexico, Lecture Notes in
 Computer Science (LNCS) 3061, Guadalajara Mexico,
 2004.
[9] I. Stoica, R. Morris, R. David, Karger, M. Frans Kaashoek
 and H. Balakrishnan, “Chord: A scalable peer-to-peer
 lookup service for internet applications”. In Sigcomm’01,
 Proc. of the 2001 conference on Applications
 technologies architectures and protocols for computer
 communications, ACM Press, pp. 149-160, 2001.
[10] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma and S. Lim,
 “A Survey and Coparism of Peer-to-Peer Overlay
 Network Shemes”, IEEE Communications Survey and
 Tutorial, March. 2004.
[11] H. Coltzau, “Speci cation and Implementation of a
 Simulation Environment for Large P2P-Systems”,
 Diploma, University Of Rostock, 2006.
[12] D. Easley and J. Kleinberg, “The Small-World
 Phenomenon”, In Networks: Spring 2007, 2007.

