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Abstract
 In order to manage search-, and routing-functionality in 
structured P2P-networks, a lot of algorithms like CAN, Chord,
Tapestry, Pastry, and more have been developed. In this paper
we introduce a distributed algorithm which uses a set of simple
rules to build and maintain a complete, parallel-growing and 
although contradiction-free grid-structure just by the use of 
local knowledge of each node. This leads to a large-scale growth 
of a decentralized network based on a global n-dimensional 
Cartesian coordinate-system built without any global instance.
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scalability

1.  Introduction
 Decentralized approaches for organizing networks have 
big advantages in managing and maintaining the high 
dynamics that occur especially in community based networks 
[1, 3, 4, 8]. Three main-operations have to be implemented 
for those decentralized networks: The Join-operation, that 
integrates new peers into an existing network, the Leave-
operation,which keeps the network in a consistent state, when
a peer leaves the network, and  nally the Lookup-operation, 
that locates desired resources in the network. Unstructured P2P 
networks use broadcast-mechanisms to perform resource 
lookups and routing [2]. Adding and removing nodes can be 
performed with low costs, since there is no special structure 
that has to be kept consistent. But, on the other hand, due to 
the absence of an ef cient searchable structure, performance 
in  nding resources is poor [10].
 Algorithms for structured P2P networks, like Chord, 
Tapestry, Pastry, or CAN have much more complexity in 
Join- and Leave- operations, because they maintain certain 
structures, like rings, trees, or meshes, that make Lookup-
operations more efficient and therefore increase their 
performance [9, 10].
 Networks and topologies based on those regular grids 
have signi cant advantages in managing computing resources
[1, 3]. Ef cient routing and fault-tolerant routing algorithms
have been developed for these topologies [5]. However,
whenever  those grid-structures are built, they are built 
staticly or under centralized control.
 In this paper we introduce a distributed locally working 
algorithm which can set up a complete and regular grid in a 
decentralized, dynamic environment.
 Our approach is to simplify the structure formation and 
managing process by letting a network grow as a regular grid1).
 In section 2.1 we shortly describe the problems and 

Panchalee Sukjit*  and  Daniel Berg*

requirements that arise when building a grid without any 
global view to the grid itself and with limited knowledge 
about the existing neighbourship. Then, in section B the 
growth algorithm is introduced. Section 2.2 gives a formal 
de nition of the algorithm. Section 3 discusses the simulation
setup, performance evaluation, fault tolerance and possible 
optimisations. In Section 4,  nally, we give a short outlook 
to further investigations.

2.  A Decentralized Grid-Building Algorithm.
 2.1 Requirements
 Grids are easy to set up under centralized control and 
if the number of involved machines is static [6, 7]. Setting 
up a grid only with local knowledge in opposite is not that 
simple, if we assume that a node within a grid only knows 
about its four direct neighbours. Commonly, following 
requirements are the base for our approach:
 • The structure must be built fast and with noncomplex 
algorithms.
 • The structure does not appear in a previously fixed 
coordinate or cell space system
 • It must be easy to repair in case that any changes in the 
network appear.
 • The algorithm is running locally on each peer and only 
can use the information available on this peer and eventually 
on its neighborhood peers (since global information is not 
available).
 • The generated overhead shall be minimal and the 
achieved ef ciency maximal.
 Uncontrolled joining of new nodes could result in holes 
within the grid (Fig. 1a). Another problem, which is implied 
by the existence of those holes is that a node cannot see the 
situation behind gaps that come up with holes.
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Figure 1 : Uncontrolled growth process will lead to holes 
and to overlapping areas
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 This situation is shown in Fig. 1b at the position denoted 
with X:  Assume, that Node (4, 2) accepts X to be its new 
neighbour. Since every node just knows about its direct 
neighbours, the node at position (4, 4) does not know about 
the existence of X. Node (4, 4) still assumes that position 
(4, 3) is free and therefore is ready to accept a new node at 
this position. That would lead to the contradiction situation 
that two nodes could reside at the same position (4, 3).
 The rules on which the growth process is based must 
ensure that holes or contradiction situations cannot occur. 
Furthermore it is necessary to fix holes that arose from 
peer-failures within the grid.
 2.2 The growth process 
 To describe the growing process we assume to have a 
virtual cartesian 2-D coordinate-system and a root-node in 
the origin of this coordinate-system, i.e. it has the coordinates
(0, 0). To keep things easy we focus on the  rst quadrant. 
The discussed algorithm and its rules are symmetric, and
therefore work analogous in the other three quadrants. The 
term ‘a node N grows in a certain direction’ means, that N can 
declare a new node N’ to be its neighbour in that direction.
 We call nodes that reside within the quadrant (x > 0 and 
y > 0) inner nodes. Nodes that reside on one of the axises 
(x = 0 OR y = 0) we call skeleton nodes.
 An inner node N can grow in diagonal direction away 
from the origin, if and only if N already has a neighbour on 
its north-side as well as on its east-side (Fig. 3, 4b).

 This rule is also valid for the skeleton nodes. Additionally,
skeleton rules can grow in the direction of the axis on which 
they reside (Fig. 3, 4).
 Using these rules the quadrant will be  lled up without 
producing any holes and without putting more than one node 
at the same position. The nodes themselves just use local 
knowledge, i.e. they just know their direct neighbours in 
north-, east-, south-, and west-direction. After a new node 
was added the neighbourship information can easily be updated
just by informing the grown node’s north-neighbour, that 
it has a new east-neighbour, respectively the grown node’s 
east-neighbour, that it has a new north-neighbour.
 The next section gives a mathematical description for this 
structure and its growth process, that ful lls the requirments
given in section 2.1.
 2.3 The algorithm 
 Let Z denotes the set of integers, and let Q be the in nite 
grid graph with vertex set V (Q) = Z2 where two distinct 
vertices (x, y) and (x’, y’) are adjacent in Q if and only if

 
 We call a sub-graph G of Q nice, if

 It is easy to see that every nice sub-graph of Q is 
connected and induced.
 A directed graph T with vertex set Z2 is de ned as 
follows. The edge set F of T  is F = F1  F2  F3 with

 

 If ((x, y), (x’, y’)) is an edge in T we say that (x’, y’) is 
a descendant of (x, y) and (x, y) is the ancestor of (x’, y’). 
The following claims are immediate consequences of the 
de nitions given above:
 Claim 1: 
 The vertex (0, 0) has no ancestor. All other vertices have 
precisely one ancestor.
 Claim 2: 
 There is a directed path from (0, 0) to any other vertex 
(x, y) in T.
 Let G be a nice sub-graph of Q. The following rules 

Figure 2 : A simulation with 100, 000 nodes

Figure 3 : The growth process at an initial state. 
The position denoted with x show, 

to where the grid currently could grow
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de ne how G can grow:
 R1:  
       then add a new 
vertex (x+1, 0) and a new edge from (x, 0) to (x+1, 0)
 R2:
       then add a new 
vertex (0, y+1) and a new edge from (0, y) to (0, y+1)
 R3:

 then add new vertex (x+1, y+1) and the edges from
(x, y+1) to (x+1, y+1) and from (x+1, y) to (x+1, y+1).
 R1 and R2 describe the growth process of skeleton nodes
along the axises, while R3 describes, how inner nodes grow.
 Claim 3: 
 Let G be a nice sub-graph of Q, and let G’ be a graph 
from G by simultaneously adding vertices following the 
rules R1, R2, and/or R3 then G’ is a nice sub-graph of G.
In the next section we discuss the algorithm’s performance.

3.  Performance Evaluation and Fault Tolerance
 3.1 Simulation Setup 
 To observe, how this algorithm performs under real-time 
conditions, P2PNetSim [11] – a distributed network simulator
was utilities. P2PNetSim allows large scaled network 
simulations,and analysis on cluster computers. Peer-Behaviour
of skeleton- and inner nodes can be implemented in Java 
and then be distributed over the nodes of the simulated 
network. At simulation start up the peers are interconnected 
small-world-like in order to simulate the typical physical 
structure of computers interconnected in the Internet. On top 
of this structure an overlay-network is built using the 
grid-algorithm. This allows it to compare metrics of the physical 

network with those of the overlay-grid. Furthermore, the 
efficiency of optimisations, like exchanging nodes in the 
grid, in order to adapt spatial relationships in the overlay to 
the physical structure (see section “optimisations”), can be 
observed and analyzed. Fig. 2 shows the output of a simulation,
that generated a grid with apprx. 100,000 nodes.

 3.2 Performance Evaluation
 Based on the described algorithm the network grows at 
diagonal locations at the grid’s border. Border sides which 
are parallel to one of the axises will not grow until new 
nodes from a axis will cause new situations to which the 
growth-rule R3 can be applied.
 The more the network structure converges to a rectangle 
the less it will be able to grow.
 On the other hand, if the skeleton nodes grow too fast 
in comparison to the inner nodes, the network tends to get 
degenerated at its axises, which grow far out of the grid’s 
dense area.
 Fig. 5 shows how the inner node/skeleton node growth 
ratio in uences the grid’s overall ability to grow. The slower 
the skeleton grows, the more time the whole network needs 
to grow. Fig. 6 shows the number of free nodes (parallelity) 
depending on the skeleton-growth-probability. Free nodes 
are those that are able to accept new nodes. The parallelity 
increases with increasing skeleton-growth-probability.
 3.3 Fault Tolerance
 Assuming that any node in the grid could fail at any time,
there must be mechanisms to  x holes reliably. One possibility
is, that whenever a node detects a missing neighbour it may
initiate a process which moves a node from the grid’s border
to the defective position. This moving process, of course, must
still follow the rules R1-R3. This might lead into situations 
where holes can’t be refilled until other nodes fix their 
neighbourships. In this case the moving process could be
delegated to another node that resides at the border of the 
hole, and that is able to apply one of the rules R1,R2 or R3 
to accept a new neighbour.
 Another approach to handle leaving nodes is implied by 
claim 1. Every node (except the root node) has precisely 
one ancestor. In the  rst quadrant, for any node D at position   
(x, y) x, y > 0, its ancestor A resides at position (x - 1, y - 1).
 For skeleton nodes on the x - axis (x > 0, y = 0) the

Figure 4 : The visualized growth 
rules R1, R2 (a), and R3 (b)

Figure 5 : Scalable growth characteristics 
depending on the skeleton’s growth rate 

Figure 6 : Dependency of growth-parallelity from the 
skeleton’s growth-rate 
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ancestors can be found at positions (x - 1, 0), and ancestors 
of skeleton nodes on the y-axis at (0, y > 0) sit at positions 
(0, y - 1).

 These relationships span up a tree within the grid, where 
the root-node at position (0, 0) is mapped to the tree’s root, 
while all other peers model the tree’s inner nodes (Fig. 7). 
The peers at the top of the tree (the tree’s leafs) are those 
that are able to grow, i.e. to accept joining nodes to extend 
the grid. If any node failure occurs, the tree explicitly and 
uniquely denotes the next ancestor as the node, that is 
responsible for handling this failure.  This node might incur 
the missing node’s routing capabilities and therefore adheres 
the grid virtually. Another possibility would be, that the 
responsible node reorganizes the grid in that way, that it asks 
a node at the grid’s border for changing its position in order 
to  x the hole. The exchange of nodes could be performed 
quickly, since this just requires a node’s coordinates to be 
changed.
 In the next chapter, we suggest some optimisations, that 
could decrease the complexity for  nding nodes at the grid’s 
border.
 3.4 Optimizations
 Following optimisations are suggested to improve 
performance and fault-tolerance:
 • Finding alternatives to skeleton nodes
 The growth-behaviour of the skeleton nodes decides, 
how the grid grows. Special tuning is required to control the 
skeleton growth, and therefore the growth of the whole grid. 
Alternatives should be investigated to make the growth-process
more ef cient and independent from the skeleton-concept.
 • Higher dimensions
 Instead of limiting the structure to two dimensions, the 
grid could grow in three or more dimensions.
 • Grid hierarchies
 Setting up hierarchies of grids with lower granularity, to 
improve lookup- and join-operation performance.
 • Flatpacks
 Flatpack of planes with increasing and then decreasing 
granularity. The granularity depends on communication 

bandwidth available on each node. 
 • Node exchange
 pairwise node exchange, in order to reflect physical 
neighbourships within the logical grid. Beside the physical
neighbourship, any other criteria could be used for this 
kind of reorganisation, for example, to set up a content- or 
resource-based neighbourship.
 • Jumper nodes
 Permanently available nodes with high bandwidth may 
act as jumper stations. Jumpers are connected using UTH 
network structures [4]. They can be used for speeding up far 
distance connections, when they are found on a processed 
routing path [12].
 • Pheromone paths to jumpers
 Ant-like pheromones are used to mark paths to jumper 
nodes. When detected by a message on its routing path, the 
pheromone-level in uences the routing path and leads the 
message to a quick jumper node.
 • Self organizing path systems
 Finding different paths for difference directions. Avoids 
message-collisions. Number of detected collisions can be 
used to decide when, and where to set up an alternative route.

4. Conclusion and Outlook
 In this article we described a distributed algorithm that 
sets up an anarchic growing, complete and regular grid. 
It can be used as an overlay-network. Though the algorithm 
just works with local knowledge, the upcoming grid is hole- 
and contradiction-free (i.e. no overlapping areas occur). 
This logical grid can be used for routing, and resource lookups.
It is  exible in that way, that nodes could change their positions,
for example to reflect any thematic similarities in nodes’ 
relationships to each other.
 The scalability of the grid depends on the ratio of the 
number of grow-able nodes at the border of the grid and the 
number of inner nodes. This ratio, again, depends on the 
growing behaviour of the skeleton-nodes. Further investigations
must be done, to  nd the ideal growing behaviour of those 
skeleton nodes, or even to get rid of the skeleton nodes at all 
by replacing them by a better concept.
 Another task of further investigations, is to create grids 
with higher dimensions. This would raise the scalability on the 
one hand, and would reduce routing- and lookup-complexity 
on the other hand.
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