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Associations Rule Mining By Using Top Weight of

Complete Symmetric Digraphs
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Abstract

Association rules mining from transaction data can be
used to recommend the items that are often purchased
together frequently. However, it is difficult to set minimum
support threshold. If the minimum support threshold is set
too high, then there may be only a small or even no result.
If the threshold is set too low, it may generate many
uninteresting associations. In addition, each supporting a
different set of data, enabling users to find the optimal difficult.
This paper presents a new approach to the collection

frequency by using top weight of complete symmetric digraphs.
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Using the top weight, the association rule with the maximum

support can be calculated and it works with any dataset.

Keywords: Association Rule Mining, Complete Symmetric

Digraphs, Adjacency Matrix, Data Mining.
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TUMINIANG ()
o(X VYY)
N

s(X >Y)= (1)

ANANNLTONUTUGNVDINY NI ULNUAIY minconf
[1] R1N1IDFIWIIUAT Confidence IMNFNNT (2) T1LNTT
X uaz Y 43N 38N aasasiningnis X

o(XuY)
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() (2)

c(X->Y)=
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M5 1 ﬁaymmmﬁawwﬁuﬁv

TID Items Bought TID A4 B C D
01 {Apple, Bread, Cake} or 1 1 1 0
02 {Apple, Bread, Cake, Diaper} 02 1 1 1 1
03 {Apple, Cake} 03 1 0 1 O
04 {Cake, Diaper} TID =4 04 0 0 1 1
05 {Bread, Cake, Diaper} 05 0 1 1 1
06 | {Bread, Cake } 066 0 1 1 O
07 {Bread, Diaper} 07 01 0 1
08 {Bread, Cake, Diaper} 08 0 1 1 1

3.2 MItuaNNAZasNEMsBaIaERE

%u@auﬁ“ﬂumimﬂgmmé’uﬁ'u%mnmymmzﬂ%
fum azvnmyivenuilasluuassiaumensaens
1a y%ﬁaaaﬂayam smadwavianelsda (adjacency matrix)
LLa:ﬁnmiLﬁu{a;&asl,ul,snaarmisg (Cell Array, { }) lag
TUABWIBMINIUTIN fougaslunng 3

Algorithm1 FEG Frequency-Edge-Graph Construction
load data to transaction][]
[M, N ] = Transaction[]
fori=1 to M
forj=1to N /*count items in each TID */
if transaction(i, j)==
Items[]= j

end
for k = 1 to size(Items)
FEG{}= [Items{M, N}, i]
end
end
end

= & ad % =
AMNN 3 VUABUIBTNITULAIING

o [01] [01] oo o [01,02] [01,02[ [02]
01] o o 01,02] o 01,02] [02
FEG - [01] [01] FEG - [01,02] [01,02] [02]
[01] [01] © [01,02] [01,02] oo [02]
© o o © [02] [02] [02] 0

NN 4 mﬁﬁmmﬁaymwmﬁawwﬁ 01 az 02
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WUURNNIATLAZLALANENGUTI8NNITae (TID = 01)

a9@2uUs FEG {} @a@18318n13T81891 02 (TID = 02)

a v . o > a s
FMonIFUM items = {A, B, C, D} tanasaidwanineg
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IuL‘Hﬂaa’]iLiﬂL@&l ﬂﬁﬂadﬂﬁi‘ﬂﬁ(ﬂ%l,ﬂflﬂu VaanIN
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Algorithm?2 Association rule Generation
[M, N ] = size(FEG)
fori=1to M
forj=1to N
/*find Maximal Weight for each item */
If ( sum(items(m,n)) > max_items
max_items = items(m,n)
end
end
Top Weight[] = max_items
Sort(Top_Weight)

end
[M, N ]=FEG{}
Top Weight[] = d /* define Top Weight level */
minconf=d
for (L1 Items >= Top Weight)
forL, to L Items
sort(intersect(items(L,,L,, =L ) >Top_Weitht
and items(items(L,,L,, —>L ) > minconf
Asso_rule[] = (items(L ,L,, =L )
end
end
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Top_weight[1] =5
Top_weight[2] =5
Top_weight[3] =4

""~.___Top_weight[4] =3
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Wi 9 m@ﬂaua Bakery ﬂs:namﬁvm 5,000 1M
sﬁamﬂauﬂﬂu 50 aum mauuaumma ﬂaum (max
L2) 3¢ Nﬂ’] 0.0512 mumw*n 10 mmama supermarket
‘].]i“’ﬂa‘]JvL‘]_]@]’w 4,627 71 6§33 91 yaummﬂ 217 Fuen
mauuaummawmum (max L.2) 9801 0.505079 uaz
ﬂ’]W‘YI 11 mmaua Chess ﬂima‘uvl,ﬂmsl 3, 196 immi
Foan yaummn 33 Fuen mauuaumma ﬂaum (max
1.2) asiien 0.56383 mnmimaaaﬂwmamma qvnln
Wwlan Lma:"gw’uagaumauumgmm:mmwLmawﬁlu
srauRuanaiuamIn e S sufoulasiansed
4 lagiRanuniiNgs 5 5ué’u1,l,inﬁmmnﬂlﬁgdqﬂ

A5 N 3 Namiﬁm?mau‘”uagugag@ 5 auay

Dataset Chess Supermarket | Bakery
1 0.56383 0.505079 0.0512
2 0.56383 0.502485 0.0496
3 0.513454 0.49665 0.0472
4 0.480914 0.473525 0.044
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