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Abstract

This paper aims to discover influential rules by using
sequential rule mining. The influential rules with sufficient
frequency and confidence are exploited to show influential
persons and their influenced persons. The rules are generated
from post/comment dataset on Facebook groups based on the
assumption that if influential persons post or commend any

topics, the influenced persons always commend to the topics.

Keyword: Influence, Obsession, Sequential Rule Mining,

Social Network.
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Algorithm:The RuleGrowth algorithm
Input: S: a sequence database, min_supp and min_conf:
The two user-specified thresholds
Output: The set of valid sequential rules
1. Scan S once. For each item ¢ found, record the sids
(transaction ids) of sequences that contains ¢ in a
variable sids(c)
Scan S a second time and remove each item ¢ such
that |sids(c)|/|S|<min_supp
for each pair of items 7, j
sids(i—>j)= @; sids(i—>j)= &
for each sid se(sids(i)Nsids(f))
if i occurs before j in s, sids(i = j): sids(i—> j)J{s}
if j occurs before i in s, sids(j — i): sids(j —> i)\ {s}
if (|sids(i —>j)|/|S|)=min_supp then
EXPANDLEFT({i} = {j}, sids(i), sids(i = }))
0. EXPANDRIGHT({i} = {j}, sids(i), sids(j),
sids(i —>J))
11. if (Jsids(i = )|/|S|)>min_supp then
12. EXPANDLEFT({j} = {i}, sids(y), sids(i = }))
13. EXPANDRIGHT({j} = {i}, sids(}), sids(i),
sids(j —> 1))
14. if(|sids(j — i)|/|sids(j)| =min_conf then output
rule {j} > {i}

i
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Algorithm:The CMRules algorithm

Input: S: a sequence database, min_supp and min_conf:

The two user-specified thresholds

Output: The set of valid sequential rules

1. Consider S as a transaction database.

2. Find all association rules from the transaction
database by appling the Apriori algorithm.
Select rules having support >min_supp and
confidence >min_conf

3. Scan S to calculate the sequential support and
sequential confidence of each association rule
found in the previous step. Eliminate each rule
having support<min_supp and confidence<min_conf

4. return the set of rules

AN 2 TUAa%ID CMRules [12]
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ITATIATLAITY LT% N7 {2} = {e.f} UAZ (b} > {e.f)
E]%ﬂ% Right equivalence class @I ﬁ]’]ﬂﬂﬁ‘wﬁl 3 LRGN
Tuaa% ERMiner lapi3uamnmsaunuwingfiiawa
1*1luuanz Equivalence classes Inuurimsvnengln
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Algorithm:The ERMiner algorithm

Input: SDB: a sequence database, min_supp and

min_conf: The two user-specified thresholds

Output: The set of valid sequential rules

1. leftStore <— O,

2. rule < @ ;

3. Scan SDB once to calculate EQ, the set of all

equivalence classes of rules of size 1*1

for each left equivalence class HeEQ do
leftSearch(H, rules);

end

for each right equivalence class JEEQ do
rightSearch(J, rules, leftStore);

9. end

10. for each left equivalence class KeleftStore do

11.  leftSearch(X, rules);

12.end

13. return rules;

e A

AINT 3 TUAaHID ERMiner [13]
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Data Collection
‘i Facebook Graph API

|

Data Preparation
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Influential Rule Generation
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LNBIILTINYD H ﬂﬂdiuiﬂ wua H 8 MySQL

id post_id user_id post_date action

496 289443467819333_787814331315575 849338825122598  2015-04-23 03:08:08 post

497 289443467819333_786420194788322 937318199651810  2015-04-20 13:44:17 post
498 289443467819333_786420194788322 937318199651810  2015-04-20 13:44:17 comment
499 289443467819333_786420194788322 10153252804829648 2015-04-20 13:44:17 comment
500 289443467819333_786420194788322 10204889349611782 2015-04-20 13:44:17 comment
501 289443467819333_786420194788322 937318199651810  2015-04-20 13:44:17 comment

2015-04-20 13:44:17 comment

502 289443467819333_786420194788322 4722138587555

i 5 draesveyanTIuTIN UG INYaYA MySOL
Y8V Group1

A15797 1 a"’nwmwaymma:n@y

nan | #&an3n A1adune

Group1 791 | WlunquiwIuaaIANALARTILE IR
LW I@ﬂﬁam"?jnagluamﬂ'mﬁ HIN

Group2 | 30,003 Lﬂun@uﬁm%‘mmmmwﬁmLﬁmﬁmﬁ'ﬂ
27190 lapNguNEninaInsnuLaInG

Group3 | 57,090 | .unaudmiuuaasnuAaARNEIAY
mamalasludszna Sxandnrainnans
mUszine
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User Action

ul post

u2 comment
ul comment
u2 post

ul comment
u3 comment
u2 post

u3 comment
ul comment
us comment
u3 post

ul post

u2 comment
u4 comment
u3 comment
u$ comment

@159 3 wa.yaﬁr‘ivmmﬂmzﬂuﬁyn’mﬂﬁyuuﬂm

Transaction id Sequence
1 ul, u2, u3
2 u2, ul, u3
3 u2,u3, ul, us
4 ul, u2, u4, u3, us
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