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Abstract
	 The winner determination problem (WDP) for a single 
object auction is a relatively easy problem to solve using the 
greedy algorithm. However, a booth auction is one of the 
nonidentical multiple-object auctions which is NP-hard problem. 
Formulation of the winner determination model for a linear 
arrangement of a multiple-object auction is explained in this 
study – the integer linear programming model. Moreover, this 
research improves the polynomial time complexity algorithm 
from the previous study of allocation in geometry-based 
structure.  Finally, the comparison of a running time exhibits 
the advantage of our proposed algorithm. The simulation 
results are discussed.

Keywords: multi-object auction, winner determination 
problem, integer programming model, polynomial time  
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1.  Introduction
	 Auction is a well-known process to determine allocation 
of some scarce objects which are highly demanded by many 
agents [1]. In the general auction, there is only one owner, 
so-called auctioneer, and several agents, so-called bidders to 
participate in the event. The auctioneer imposes justifiable 
competition rule such as a price submission method and a 
payment method for bidders. Next, bidders submit their 
competitive price according to their willingness to pay.  
Finally, the auctioneer evaluates those offers and determines 
the most advantageous bidder to be the winner of the auction. 
This kind of optimization problem is known as the winner 
determination problem (WDP).
	 WDP is one part of research in combinatorial auction [2]. 
WDP focuses on the termination process of auction – allocation 
for bidders which is an optimal decision for auctioneer. The 
other part is the analysis of strategic behaviors among bidder. 
Since they could submit the price which is lower than their 

estimation, the auctioneer would lose some benefit from this 
manner. Therefore, the auctioneer has to design a mechanism 
to create sufficient incentive for bidders to tell their truthful 
estimation for price submission. However, in this paper, we 
treat the strategic behavior as given before computation in 
WDP. Indeed, we are interested just in improving the solution 
time for the optimal bidding solution.
	 The difficulty of WDP depends on the number and the 
type of objects in the auction, which is the effect of the bidding 
process and payment rule [1]. First, the object in the auction 
is the major source of complexity to determine the winner in 
the auction. The bidding strategy for a single object is simple, 
but WDP becomes the combinatorial problems when bidders 
have more options to bid their targets. In addition, if the 
object is indivisible, then the solution must be integer. As 
well, the case of non-identical multiple objects imposes 
computational burden on the auctioneer in searching for the 
optimal solution. In sum, WDP is an NP-hard problem because 
its decision variable sparsely growing in number of bidders 
and combination of options.

2.  Problem Background 
	 Our problem domain is a linear arrangement of a booth 
auction. There is a big space in a hall; the layout of the hall 
has been planed and divided into blocks in a certain size. We 
specify our problem into two cases: a single line and double 
line. As in Fig. 1, the booths are set up in a single line  
consecutively, or likely in a double line which back side of 
each booth locates back-to-back.

  Figure 1  Single line and double line layout, respectively.
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	 The bidding options are followed by the layout of booth. 
This situation is defined as linear arrangement. Bidders can 
offer one price for one bundle of blocks to rent the consecutive 
blocks only; e.g., bundle S2 and S3, bundle L1, L2 and L3. 
Unconnected or non-rectangular blocks are not permitted; 
e.g., a bundle with S4 and S2, a bundle with R3, R2 and L2. 
In the case of single line, if we have n row blocks, the number 
of possible bundle is n(n+1)/2. An example of the booth of 
three blocks is displayed in Fig. 2 that there are 6 possible 
bidding options. In the case of double line, the number of 
possible bundle is 3n(n+1)/2, which provides rectangular 
blocks. These combinations are from two times of single line 
case plus crossing line case. Therefore, the option in this 
combinatorial auction does not really grow exponentially. 
This is a special structure of the linear arrangement in our 
problem domain.
	 Next, the rational behavior of the auctioneer  is discussed. 
The rational auctioneer has to select the offers from many 
bidders to maximize his benefit. In order to obtain the optimal 
allocation in this combinatorial auction, it is necessary to 
compare each offer more carefully than single object auction. 
The greedy algorithms  would not be appropriate. For instance, 
the situation of three-block single line has price offer from 
each options –S1, S2, S3, S1∪S2, S2∪S3, S1∪S2∪S3 – 
as the following price offers in Fig. 2. There are bidders A 
and B compete in the auction. If the auctioneer begins with 
the biggest bundle S1∪S2∪S3, he obtains bid value 7. Next 
step, the auctioneer compares result with partition [S1, S2∪S3]; 
the revenue becomes 1+4=5. This new partition returns less 
than the former; therefore, the greedy algorithm terminates  
with the result [S1∪S2∪S3]. However, the partition [S1, 
S2, S3] provides better solution which the bid result is 
1+5+2=8. Hence, the greedy algorithm might not give the 
optimal solution for the auctioneer.

	 Indeed, this research employs other methods to better 
solve the winner determination problem in a linear arrangement 
of booth auction; i.e., integer programming approach and 

dynamic programming approach. Their specific details are 
explains in the methodology section.

3.  Literature Review
	 Combinatorial auction has been studied in a theoretical 
aspect and an algorithmic aspect. The former focuses on  
auction design and the latter on efficient algorithms. Auction 
design is the study for effective auction rules. However, the 
effectiveness of the rules would be lessened if the computation 
is excessively costly and impractical in reality [2]. Therefore, 
scholars consider on the specific problem domains observed 
in reality, and propose manageable solving method. This 
section briefly reviews some literatures on WDP for some 
specific problems, such as, internet ad-slot auction and  
geometric allocation.
	 Geometric allocation is our main concern in this paper. 
Rothkopf et al [3] explicitly identify this type of problem 
domain. They begin with the computability with limitation 
on permitted combinatorial bids; e.g., nested structures, 
cardinality-based and geometry-based structure. Nested 
structures are that only one type of combination is able to bid 
together, while the cardinality-based structures illustrate more 
than one type of group. The geometry-based structure is the 
most relevant to our problem which binding biding options 
depending on their adjacency as explained in the problem 
background. According to those structures, they propose the 
polynomial time algorithms to solve and prove the optimal-
ity in auctions.
	 In addition, Tennenoltz [4] further investigates the tractable 
case for combinatorial auction. He proves polynomial  
solutions for a combinatorial network auctions, various  
sub-additive combinatorial auctions, and some restricted 
forms of multiple-objects auctions. The allocation of objects 
in geometry-based structure could be one of the restricted 
forms. In his proofs for polynomial complexities solutions, 
he elaborates b-matching techniques in graph algorithms to 
identify those tractable combinatorial auctions [5]. Even 
though there are no implementation results in this work, the 
computationally tractable in polynomial complexity are 
guaranteed for combinatorial auction in geometry-based 
structure.
	 Internet ad slot auction is another important research 
target actively conducted by researchers not only in academics 
but in private research institutes, Yahoo and Google. Internet 
ad slot auction is similar to booth auction that bidders want 
the best position for high rate of visits. Regarding to bidders’ 

    Figure 2  Bidding in combinatorial case which greedy 	
	       algorithm cannot provide optimal solution.

Bundle A   B   Max

S1 1    1     1 

S2 3    5     5

S3 2    1     2

S1∪S2 4    5     5

S2∪S3 4    3     4

S1∪S2∪S3 7    6     7
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variables are defined by xi (S)∈{0, 1}; xi (S) = 1 means that 
the bundle S is allocate to bidder i and otherwise

	 WDP is formulated in a binary integer programming as 
in (IP1). The meaning of each line is straightforward. The 
objective function is to maximize revenue for each set, and 
the constraints are to prevent duplicated allocation of each 
object. Moreover, one bidder is able to get more than one 
bundle if the solution is still feasible. Specifically, this WDP 
is in the OR bidding language defined in [2]. We explicitly 
illustrate the matrix  Ai as the coefficient matrix in the 
constraint for bidder i, and the sparse structure of coefficient 
is observed.
	 For simplicity, we assume the size of to G be 4 to 
demonstrate the structure of coefficient matrix. The possible 
bundle is illustrated as s = [a, b]: a is the begin block position 
and b is the end block position. For example in Fig. 1, [S2, S2] 
means only one single block at S2 in single line case. For 
double line case, [L1, R3] is a rectangular six blocks from L1 
to R3, and [L2, L4] is a bundle of three blocks on the left side 
from L2 to L4 consecutively. Thus, we can represent all  
possible options as index of column in coefficient matrix.
	 Single line case
	 Let m be the number of row blocks, m = |G|.

	

	 According to the special structure of these coefficient 
matrices, total unimodular property are claimed by Schrijver 
[8] and Ahuja et al [5]. For the sake of integer value in right 
hand side and total unimodularity, the integer formulation 
(IP1) is reducible to (LP1) which becomes a linear programming 

pricing for different position and budget constraint, Feldman 
et al [6] set up an allocation rule for advertisement slot and 
algorithms to solve WDP. Since the unit of marginal benefit 
to acquire from ad slot in this auction is number of clicks, the 
nature of auction object is divisible when consider the  
allocation as proportion occupied each slot. Moreover, bidder 
is not able to request for specific ad slot position, while he 
could obtain just the clicks which redistribute after each  
winners being determined. Thus, the bidders’ specific option 
in position arrangement has not yet been studied for the  
internet ad slot auction.
	 Among those special structures in combinatorial auction, 
this paper focuses on the linear arrangement of a multiple-
object auction. The research problem is that the auctioneer 
arranges the auction to distribute blocks lined on a row and 
bidders can inquire for one block or several consecutive blocks 
without separation. Basically, this structure of problem is 
solvable in integer programming, and reducible to linear 
programming formulation. This mathematical programming 
method is compared with our modified algorithm of Rothopf 
et al [3] for single line. Moreover, we successfully extend our 
algorithm to the double line case of booth auction.
	 The structure of this paper after introduction is as the 
following: methodologies, experimental results, and conclusion.
	
4.  Methodology
	 In this section, our main solving method for WDP is  
explained: integer programming and dynamic programming 
approach. Initially, integer programming is very flexible to 
solve WDP [7]; however, the computation complexity is the 
main concerns of this method. That the bidding option grows 
rapidly and the number of decision variables increase sharply 
incurs computation cost. On the other hand, dynamic  
programming is an alternative to avoid expensive calculation 
[3,4]. While the efficient calculation is guaranteed, the con is 
the limitation to solve for a specific domain of problem, unlike 
integer programming for general WDP. The explanations of 
both methodologies are followed as below.
	 A. Integer programming
	 The winner determination problem is based on the assignment 
problem. In this paper, we use binary decision variables to 
indicate the optimal solution and allocation constrains. There 
is a finite set of bidders N , with n bidders, and a finite set of 
indivisible objects, G , with m row blocks.  Each bidder i∈N 
has a non-negative, integer valuation for each bundle of  
objects S⊆G denoted by bi (S)∈N0. The binary decision 
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which yields integer outcome, in this case just 1 or 0. Hence, 
it is eligible to employ just linear programming, (LP1) and 
(LP2), instead of integer programming.

	 B. Dynamic programming
	 A dynamic programming can be used to solve the  
optimization problem. We exert a square matrix and its index 
to construct data structure which is suitable to work for  
dynamic programming. The idea is influenced by the setup 
for single line  of Rothkopf et al in algorithm 3 of [3], called 
RPH’s method. Their algorithm is rewritten in Pseudocode 1 
and 2. RPH’s complexity is O(n2) for a single line with fixed 
start, say [1, n]. Pseudocode 1 demonstrates this method; 
specifically, it has                                          comparison works.
	 The method which is suitable to our problem is the intervals 
on the line. They interpreted as the intervals on the circle of 
which computational complexity is O(n3). The reason is 
simple that it repeats each block to start again by renumerating 
the objects. The first round is [1, n], then the second round is 
[2, n+1] which n+1 refer to the first block, and so on. After 
that, we bring those n outcomes to contest for the most valuable 
solution. This method is displayed in Pseudocode 2. Precisely, 
the count is n2(n-1)/2 + n. The former part is to repeat the 
previous algorithm n time, and the latter is to compare the 
results of each round.

	 On the other hand, our modified methods for single line 
case and double line case are in Pseudocode no.3 and no.4 
respectively. Firstly, the single line case has computational 
complexity equivalent to O(n3). Precisely, the work is counted 
as                                                       which is less than the 
case of algorithm in Pseudocode 2.

	 Our algorithm works more efficiently since we reap the 
benefit of data structure more effectively than the RPH’s 
method in Pseudocode 2. Further that, our approach can easily 
apply to double line case which has complexity in O(n3) as 
well. The calculation burden is obviously three time of the 
single line case, since it works repetitively for the left, right 
and crossing line. Thus, we improve RPH’s method our approach 
in dynamic programming is effective for booth auction.
	 In dynamic programming, the data structure for RPH’s 
method and our method is two-dimension array. There is a 
little difference for the algorithm in pseudo code 3 because 
of the repetitively and elongation. The algorithm of RPH will 
reorder that the first block connect to the end and the second 
block becomes a new fixed start.  However, the basic idea of 
operation is to pick up input value from the matrix to searching 
for the optimal solution. Optimality in dynamic programming 
is proved by mathematical induction as regarded in [9].
	 To implement each algorithm, the bidding values are 
necessary to rearrange in descendent order. The most valuable 
bid in each option becomes the first input in square matrix of 
the algorithms. For a single line case, only one matrix is  
sufficient to keep the highest bid for every option. However, 
for a double line case, it is necessary to utilize three matrices 
for valuation inputs; i.e., left, right and crossing line. These 
three matrices represent the best price of each option.
	 In Pseudocode 3 and 4, WDP is characterized and  
recursively defined easily by two-dimension array. Step 1 
informs the stage of computation. Next, step 2 characterizes 
the maximum value referred to a related value from the  
previous stage. Subsequently, it leads to the maximum value 
in the final stage. In another word, the final result depends on 
comparison of their substitutable pair that each component 
also relies on the relevant pair backwardly. Those previous 
comparison results are put conveniently in the callable 
memory in our data structure. In double line case, the sequence 
is more complex. There are more moving to compare the 

Pseudocode 1: Fixed start 
step 0	 Input 	 p(i, j) for all i, j
step 1	 Set 	 w(1) = p(1,1). Set r = 2.
step 2	 Set 	 w(r) = p(1,r).
step 3	 For 	 i = 2 to r
		  If 	 w(i-1) + p(1, r) > w(r)
		  Then w(r) = w(i - 1) + p(1, r)
step 4	 If r < n, then set r = r + 1 	 and go to step 2
	 Otherwise, terminate with optimal revenue w(n).

Pseudocode 2: Intervals on the circle 
step 0	 Input 	 p(i, j) for all i, j
step 1	 For k = 1: n
   	 1.1	 Set   w(k) = p(k, k). Set r = k + 1.
	 1.2 	Set	 w(r) = p(k, r).
	 1.3	 For 	 i = k + 1 to r
		  If	  w(i - k) + p(k, r) > w(r)
		  Then  	 w(r) = w(i - k) + p(k, r) 
	 1.4 	If r < n+1- k, then set  r = r+1 and go to step 1.2
		  Otherwise, get the kth round optimality w(n+1-k)
step 2	 w(opt) = Max{ w(n),..., w(2n-1)}
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option crossing between left and right line; however, the main 
idea, to compare bidding price from the lowest single level 
first and consecutively move to the biggest bundle later, is 
unchanged.

5.  Experimental Results
	 The experimental environments, parameter setting and 
simulation results are described in this section. First, the 
computer for simulation experiments has the following 
specification: CPU is Intel Core 2 Quad Processor 2.83 GHz 
with RAM 2 GB. The operating system is Windows XP  
service pack 3. Linear programming solver and the other 
algorithmic codes are implemented by Matlab.
	 Next, bidding values vector for each option are generated 
randomly by Matlab internal pseudorandom generating  
command. To pick up simulated value, we also maintain two 
assumptions. One is additive bundle assumption that the more 
combining blocks the greater valuation, the other is that the 
nearer the gate the more expected benefit. For the case of n 
bidders, vector of random number is converted to the ceiling 

integer number to represent each individual evaluation. Even 
though the various parameters setting are adjustable, the 
comparison results in Tab. I and Tab. II are restricted to the 
case of 10 row blocks for the sake of limited space. The 
simulation round is one thousand.
	 The time measurement is recorded from their actual jobs. 
The solver for linear programming is the simplex method, 
and the time is measured soon after the optimal solution  
revealed. For dynamic programming, the running time in 
preprocess, to select the best offer for each option, is  
included and sum with the computation time of comparison 
process. The average time from the 1,000 simulation experiments, 
the case of 10 row blocks auction, is indicated in Tab. I and 
Tab. II, corresponding with total number of bidders in the 
auction. We have two parts of simulation as the following: 
single line case and double line case.
	 A. Single line case
	 The experimental results of single line case is obvious 
that the dynamic programming approach, RPH’s and author’s 
method, are further effective than linear programming  
approach. Moreover, the average of operation time in our 
method is significantly less than RPH’s method. This simulation 
result consequently supported to our computational thought 
in the methodology. The line plot also shows the advantage 
of our method over linear programming and RPH’s method.

Pseudocode 3: Single line algorithm
step 0	 Given square matrix array size n×n, say B ~ n×n
step 1	 step 1	 Let k = 0 be the diagonal line in the matrix; 	
		  k+1 is the consecutive lower diagonal line.
step 2	 For 	 k ≥ 1
		  For 	 j = 1 to n
			   w = j + k
		       If 	 w ≤ n
		           For 	k  = j to (w-1)
			        If        B(w, j) < B(k, j) + B(w, k+1)
			        Then   B(w, j) = B(k, j) + B(w, k+1)
step 3	     Terminate when k = n.

Pseudocode 4: Double line algorithm
step 0	 Run single column algorithm for the left and right 	
		  column and keep result in the square matrix L 	
		  and R respectively. 
		  Given a square matrix C for cross-side options value
step 1	 Let k = 0 be the diagonal line in the matrix; k+1 
		  is the consecutive lower diagonal line.
step 2	 For k ≥ 0
		  For 	 j = 1 to n
				    w = j + k
			   If 	w = j
				    If  C(j, j)  <  L(j, j) + R(j,j)
				    Then 	 C(j, j)  =  L(j, j) + R(j, j)
			   If 	w ≤ k
			   	 For  k  = j to (w-1)
				          If  C(w, j) < C(k, j) + C(w, k+1)
				         Then 	C(w,j) = C(k, j) + C(w, k+1)
step 3	 Terminate when k = n. Table 1  Average running times of each algorithm for single 

	         line case, unit: micro seconds.
No. of bidders 1 2 3 4 5 6 7 8 9 10

Linear Prog 4330 4680 5233 5753 6241 6837 7531 8281 9205 10327

RPH 74 92 98 109 119 130 144 157 173 193

Authors 56 65 66 68 70 71 74 77 79 82

   Figure 3  The comparison results of average time among 	
	      linear programming, RPH and our method. 	
	      The y-axis is running time in log scale and the 	
		  x-axis is the number of bidders. 

Single line case
Average time in log scale
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	 B. Double line case
	 In double line case, the result is consistent to the single 
line case. Hereafter, the dynamic programming approach 
hereafter refers to the authors’ method only since RPH’s 
method is not adaptable to double line case. The box plots 
displayed in Fig. 4 expands the whole picture of simulation. 
The vertical axis is running time in micro seconds and the 
horizontal axis is the total number of bidders in the auction. 
It is obvious that running time monotonically increase when 
the number of bidders grows up for both algorithms. The 
dynamic programming shows many outliers, which the further 
analysis might be necessary.
	 From the result in Tab. 2 and box plots, the average time 
operated in dynamic programming approach is far superior 
to linear programming approach. The first reason is the  
structure of coefficient matrix in linear programming bears 
too many feasible solutions. In addition, iteratively solving 
for linear programming approach is very costly because it has 
to update sparsely matrix too often [10].

6.	 Conclusion
	 Experimental results suggest that the dynamic programming 
approach is averagely more superior to linear programming 
approach in our setting environment – a booth auction in 
single line and double line. When changing the quantity of 
row blocks and number of bidders, the results would reinforce 
the inefficient trend of linear programming approach. While 
the sparse matrix structure is the root cause of linear  
programming approach, the two-dimension array data  

structure contributes realizes the recursive benefit of dynamic 
programming that brings about higher performance.
	 Actually, the real layout can utilize our method to determine 
winner in booth auction. Some modification techniques in 
programming are necessary for the booth allocation which 
has obstacles in the layout. The applications of this method 
would not probably be limited to the allocation of booth space, 
but the virtual space like the internet ad slot would be implied. 
The probabilistic argument of visitors is very important and 
should be defined before conduct further analysis.
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