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Abstract

The winner determination problem (WDP) for a single
object auction is a relatively easy problem to solve using the
greedy algorithm. However, a booth auction is one of the
nonidentical multiple-object auctions which is NP-hard problem.
Formulation of the winner determination model for a linear
arrangement of a multiple-object auction is explained in this
study —the integer linear programming model. Moreover, this
research improves the polynomial time complexity algorithm
from the previous study of allocation in geometry-based
structure. Finally, the comparison of a running time exhibits
the advantage of our proposed algorithm. The simulation

results are discussed.

Keywords: multi-object auction, winner determination
problem, integer programming model, polynomial time

algorithm style.

1. Introduction

Auction is a well-known process to determine allocation
of some scarce objects which are highly demanded by many
agents [1]. In the general auction, there is only one owner,
so-called auctioneer, and several agents, so-called bidders to
participate in the event. The auctioneer imposes justifiable
competition rule such as a price submission method and a
payment method for bidders. Next, bidders submit their
competitive price according to their willingness to pay.
Finally, the auctioneer evaluates those offers and determines
the most advantageous bidder to be the winner of the auction.
This kind of optimization problem is known as the winner
determination problem (WDP).

WDP is one part of research in combinatorial auction [2].
WDP focuses on the termination process of auction —allocation
for bidders which is an optimal decision for auctioneer. The
other part is the analysis of strategic behaviors among bidder.

Since they could submit the price which is lower than their

estimation, the auctioneer would lose some benefit from this
manner. Therefore, the auctioneer has to design a mechanism
to create sufficient incentive for bidders to tell their truthful
estimation for price submission. However, in this paper, we
treat the strategic behavior as given before computation in
WDP. Indeed, we are interested just in improving the solution
time for the optimal bidding solution.

The difficulty of WDP depends on the number and the
type of objects in the auction, which is the effect of the bidding
process and payment rule [1]. First, the object in the auction
is the major source of complexity to determine the winner in
the auction. The bidding strategy for a single object is simple,
but WDP becomes the combinatorial problems when bidders
have more options to bid their targets. In addition, if the
object is indivisible, then the solution must be integer. As
well, the case of non-identical multiple objects imposes
computational burden on the auctioneer in searching for the
optimal solution. In sum, WDP is an NP-hard problem because
its decision variable sparsely growing in number of bidders

and combination of options.

2. Problem Background

Our problem domain is a linear arrangement of a booth
auction. There is a big space in a hall; the layout of the hall
has been planed and divided into blocks in a certain size. We
specify our problem into two cases: a single line and double
line. As in Fig. 1, the booths are set up in a single line
consecutively, or likely in a double line which back side of
each booth locates back-to-back.

Entrance Entrance
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Figure 1 Single line and double line layout, respectively.
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The bidding options are followed by the layout of booth.
This situation is defined as linear arrangement. Bidders can
offer one price for one bundle of blocks to rent the consecutive
blocks only; e.g., bundle S2 and S3, bundle L1, L2 and L3.
Unconnected or non-rectangular blocks are not permitted,;
e.g., a bundle with S4 and S2, a bundle with R3, R2 and L2.
In the case of single line, if we have n row blocks, the number
of possible bundle is n(n+1)/2. An example of the booth of
three blocks is displayed in Fig. 2 that there are 6 possible
bidding options. In the case of double line, the number of
possible bundle is 3n(n+1)/2, which provides rectangular
blocks. These combinations are from two times of single line
case plus crossing line case. Therefore, the option in this
combinatorial auction does not really grow exponentially.
This is a special structure of the linear arrangement in our
problem domain.

Next, the rational behavior of the auctioneer is discussed.
The rational auctioneer has to select the offers from many
bidders to maximize his benefit. In order to obtain the optimal
allocation in this combinatorial auction, it is necessary to
compare each offer more carefully than single object auction.
The greedy algorithms would not be appropriate. For instance,
the situation of three-block single line has price offer from
each options —S1, S2, S3, S1US2, S2\US3, S1US2US3 —
as the following price offers in Fig. 2. There are bidders A
and B compete in the auction. If the auctioneer begins with
the biggest bundle S1\US2\US3, he obtains bid value 7. Next
step, the auctioneer compares result with partition [S1, S2\US3];
the revenue becomes 1+4=5. This new partition returns less
than the former; therefore, the greedy algorithm terminates
with the result [S1\S2US3]. However, the partition [S1,
S2, S3] provides better solution which the bid result is
1+5+2=8. Hence, the greedy algorithm might not give the

optimal solution for the auctioneer.

Bundle A B Max
S1 1 1 1
S2 3 5 5 S1US2US3
S3 21 2 *i;a \ *w
S1US2 4 5 5 51,5203 S1Us2,53
-~ . . ks

S2US3 4 3 4 ‘. e

$1,52,53
S1US2US3 |7 6 7

Figure 2 Bidding in combinatorial case which greedy
algorithm cannot provide optimal solution.
Indeed, this research employs other methods to better
solve the winner determination problem in a linear arrangement

of booth auction; i.e., integer programming approach and

17 211U 14 nIngIAN - SINAN 2554
Vol. 7, No. 14, July - December 2011

Research Paper : The Winner Determination Model and Computation for Linear Arrangement of Booth Auction

dynamic programming approach. Their specific details are

explains in the methodology section.

3. Literature Review

Combinatorial auction has been studied in a theoretical
aspect and an algorithmic aspect. The former focuses on
auction design and the latter on efficient algorithms. Auction
design is the study for effective auction rules. However, the
effectiveness of the rules would be lessened if the computation
is excessively costly and impractical in reality [2]. Therefore,
scholars consider on the specific problem domains observed
in reality, and propose manageable solving method. This
section briefly reviews some literatures on WDP for some
specific problems, such as, internet ad-slot auction and
geometric allocation.

Geometric allocation is our main concern in this paper.
Rothkopf et al [3] explicitly identify this type of problem
domain. They begin with the computability with limitation
on permitted combinatorial bids; e.g., nested structures,
cardinality-based and geometry-based structure. Nested
structures are that only one type of combination is able to bid
together, while the cardinality-based structures illustrate more
than one type of group. The geometry-based structure is the
most relevant to our problem which binding biding options
depending on their adjacency as explained in the problem
background. According to those structures, they propose the
polynomial time algorithms to solve and prove the optimal-
ity in auctions.

In addition, Tennenoltz [4] further investigates the tractable
case for combinatorial auction. He proves polynomial
solutions for a combinatorial network auctions, various
sub-additive combinatorial auctions, and some restricted
forms of multiple-objects auctions. The allocation of objects
in geometry-based structure could be one of the restricted
forms. In his proofs for polynomial complexities solutions,
he elaborates b-matching techniques in graph algorithms to
identify those tractable combinatorial auctions [5]. Even
though there are no implementation results in this work, the
computationally tractable in polynomial complexity are
guaranteed for combinatorial auction in geometry-based
structure.

Internet ad slot auction is another important research
target actively conducted by researchers not only in academics
but in private research institutes, Yahoo and Google. Internet
ad slot auction is similar to booth auction that bidders want
the best position for high rate of visits. Regarding to bidders’
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pricing for different position and budget constraint, Feldman
et al [6] set up an allocation rule for advertisement slot and
algorithms to solve WDP. Since the unit of marginal benefit
to acquire from ad slot in this auction is number of clicks, the
nature of auction object is divisible when consider the
allocation as proportion occupied each slot. Moreover, bidder
is not able to request for specific ad slot position, while he
could obtain just the clicks which redistribute after each
winners being determined. Thus, the bidders’ specific option
in position arrangement has not yet been studied for the
internet ad slot auction.

Among those special structures in combinatorial auction,
this paper focuses on the linear arrangement of a multiple-
object auction. The research problem is that the auctioneer
arranges the auction to distribute blocks lined on a row and
bidders can inquire for one block or several consecutive blocks
without separation. Basically, this structure of problem is
solvable in integer programming, and reducible to linear
programming formulation. This mathematical programming
method is compared with our modified algorithm of Rothopf
etal [3] for single line. Moreover, we successfully extend our
algorithm to the double line case of booth auction.

The structure of this paper after introduction is as the

following: methodologies, experimental results, and conclusion.

4. Methodology

In this section, our main solving method for WDP is
explained: integer programming and dynamic programming
approach. Initially, integer programming is very flexible to
solve WDP [7]; however, the computation complexity is the
main concerns of this method. That the bidding option grows
rapidly and the number of decision variables increase sharply
incurs computation cost. On the other hand, dynamic
programming is an alternative to avoid expensive calculation
[3,4]. While the efficient calculation is guaranteed, the con is
the limitation to solve for a specific domain of problem, unlike
integer programming for general WDP. The explanations of
both methodologies are followed as below.

A. Integer programming

The winner determination problem is based on the assignment
problem. In this paper, we use binary decision variables to
indicate the optimal solution and allocation constrains. There
is a finite set of bidders N, with n bidders, and a finite set of
indivisible objects, G , with m row blocks. Each bidder i€ N
has a non-negative, integer valuation for each bundle of
objects SS G denoted by b,(S) € N,. The binary decision
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variables are defined by x, (S) € {0, 1}; x,(S) = 1 means that
the bundle § is allocate to bidder i and otherwise

(IP1) n
max Z Zbl. (s)x;(s)
i=l ScG
> ¥ x(s)<1 foralljeG
i=l ScG,S§
x(s) € {0, 1}.

WDP is formulated in a binary integer programming as
in (IP1). The meaning of each line is straightforward. The
objective function is to maximize revenue for each set, and
the constraints are to prevent duplicated allocation of each
object. Moreover, one bidder is able to get more than one
bundle if the solution is still feasible. Specifically, this WDP
is in the OR bidding language defined in [2]. We explicitly
illustrate the matrix A, as the coefficient matrix in the
constraint for bidder 7, and the sparse structure of coefficient
is observed.

For simplicity, we assume the size of to G be 4 to
demonstrate the structure of coefficient matrix. The possible
bundle is illustrated as s = [a, b]: a is the begin block position
and b is the end block position. For example in Fig. 1, [S2, S2]
means only one single block at S2 in single line case. For
double line case, [L1, R3] is a rectangular six blocks from L1
to R3, and [L2, L4] is a bundle of three blocks on the left side
from L2 to L4 consecutively. Thus, we can represent all
possible options as index of column in coefficient matrix.

Single line case

Let m be the number of row blocks, m = |G].

2 s = S=[a, b]
11 1 1 0 0 O O O O

A=1lo 1 1 1 1 1 1 o o offorallibidder
1
000 1 1 0 1 1 1 1 0 Ai~m><0.5m(m+1)
000 0 1 0 0 1 0 1 1

A=A . A A
Double line case
|:Ai 0 A}for all 7 bidder 7%; 2mx1.5m(m+1)
0 A, A,
A=[A..A .. A,]

According to the special structure of these coefficient
matrices, total unimodular property are claimed by Schrijver
[8] and Ahuja et al [5]. For the sake of integer value in right
hand side and total unimodularity, the integer formulation

(IP1)is reducible to (LP1) which becomes a linear programming
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which yields integer outcome, in this case just 1 or 0. Hence,
it is eligible to employ just linear programming, (LP1) and

(LP2), instead of integer programming.

(LP1) (LP2)
> bx, max 35, %
maX; X ~
3 dx <1 4% <1
e =l
x; 20 X, 20

i

B. Dynamic programming

A dynamic programming can be used to solve the
optimization problem. We exert a square matrix and its index
to construct data structure which is suitable to work for
dynamic programming. The idea is influenced by the setup
for single line of Rothkopf et al in algorithm 3 of [3], called
RPH’s method. Their algorithm is rewritten in Pseudocode 1
and 2. RPH’s complexity is O(n°) for a single line with fixed
start, say [1, n]. Pseudocode 1 demonstrates this method;
specifically, it has ZZ: k=n(n-1)/2 comparison works.

The method which is suitable to our problem is the intervals
on the line. They interpreted as the intervals on the circle of
which computational complexity is O(n’). The reason is
simple that it repeats each block to start again by renumerating
the objects. The first round is [1, n], then the second round is
[2, nt+1] which n+1 refer to the first block, and so on. After
that, we bring those n outcomes to contest for the most valuable
solution. This method is displayed in Pseudocode 2. Precisely,
the count is n’(n-1)/2 + n. The former part is to repeat the
previous algorithm » time, and the latter is to compare the
results of each round.

Pseudocode 1: Fixed start
step 0 Input p(i, j) forall i j
stepl Set  w(l)=p(1,1). Setr=2.
step2 Set  w(r)=p(1,r).
step3 For i=2tor
If w(i-1) + p(1, r) > w(r)
Then w(r) =w(i - 1) + p(1, r)
step4 Ifr<m,thensetr=r+1 and go to step 2
Otherwise, terminate with optimal revenue w(n).

On the other hand, our modified methods for single line
case and double line case are in Pseudocode no.3 and no.4
respectively. Firstly, the single line case has computational
complexity equivalent to O(#%). Precisely, the work is counted
as Y k(n—k)=n(n=1)(n+1)/6 which is less than the
case of algorithm in Pseudocode 2.
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Pseudocode 2: Intervals on the circle
step 0 Input p(i, j) forall i, j
stepl Fork=1:n
1.1 Set w(k)=p(k, k). Setr=~k+ 1.
1.2 Set  w(r)=p(k,r).
1.3 For i=k+1tor
If w(i - k) + p(k, r) > w(r)
Then w(r)=w(i-k)+ p(k, r)
If r <nm+1- k, then set »=r+1 and go to step 1.2
Otherwise, get the kth round optimality w(n+1-k)
step 2 w(opt) = Max{ w(n),..., w(2n-1)}

1.4

Our algorithm works more efficiently since we reap the
benefit of data structure more effectively than the RPH’s
method in Pseudocode 2. Further that, our approach can easily
apply to double line case which has complexity in O(n°) as
well. The calculation burden is obviously three time of the
single line case, since it works repetitively for the left, right
and crossing line. Thus, we improve RPH’s method our approach
in dynamic programming is effective for booth auction.

In dynamic programming, the data structure for RPH’s
method and our method is two-dimension array. There is a
little difference for the algorithm in pseudo code 3 because
ofthe repetitively and elongation. The algorithm of RPH will
reorder that the first block connect to the end and the second
block becomes a new fixed start. However, the basic idea of
operation is to pick up input value from the matrix to searching
for the optimal solution. Optimality in dynamic programming
is proved by mathematical induction as regarded in [9].

To implement each algorithm, the bidding values are
necessary to rearrange in descendent order. The most valuable
bid in each option becomes the first input in square matrix of
the algorithms. For a single line case, only one matrix is
sufficient to keep the highest bid for every option. However,
for a double line case, it is necessary to utilize three matrices
for valuation inputs; i.e., left, right and crossing line. These
three matrices represent the best price of each option.

In Pseudocode 3 and 4, WDP is characterized and
recursively defined easily by two-dimension array. Step 1
informs the stage of computation. Next, step 2 characterizes
the maximum value referred to a related value from the
previous stage. Subsequently, it leads to the maximum value
in the final stage. In another word, the final result depends on
comparison of their substitutable pair that each component
also relies on the relevant pair backwardly. Those previous
comparison results are put conveniently in the callable
memory in our data structure. In double line case, the sequence

is more complex. There are more moving to compare the
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Pseudocode 3: Single line algorithm

step 0 Given square matrix array size nxn, say B ~nxn
step 1 step 1 Letk=0bethe diagonal line in the matrix;
k+1 is the consecutive lower diagonal line.
step2 For k>1
For j=1ton
w=j+k
If w<n
For £ =j to (w-1)
If B(w, j) <B(k, j) + B(w, k+1)
Then B(w,j)=B(k,j) + B(w, k+1)
step 3 Terminate when k = n.

Pseudocode 4: Double line algorithm

step 0 Run single column algorithm for the left and right
column and keep result in the square matrix L
and R respectively.
Given a square matrix C for cross-side options value

step 1 Let k=0 be the diagonal line in the matrix; k+1
is the consecutive lower diagonal line.
step2 Fork>0
For j=1ton
w=j+k
fw=j

If CG.j) < LG.J) + RGJ)
Then  CG.j) = LG.J) + RG.))
Ifw<k
For k =jto (w-1)
If COw j) < Clk, j) + Cw, k+1)
Then C(wy) = C(k, j) + C(w, k+1)
step 3 Terminate when k = n.

option crossing between left and right line; however, the main
idea, to compare bidding price from the lowest single level
first and consecutively move to the biggest bundle later, is

unchanged.

5. Experimental Results

The experimental environments, parameter setting and
simulation results are described in this section. First, the
computer for simulation experiments has the following
specification: CPU is Intel Core 2 Quad Processor 2.83 GHz
with RAM 2 GB. The operating system is Windows XP
service pack 3. Linear programming solver and the other
algorithmic codes are implemented by Matlab.

Next, bidding values vector for each option are generated
randomly by Matlab internal pseudorandom generating
command. To pick up simulated value, we also maintain two
assumptions. One is additive bundle assumption that the more
combining blocks the greater valuation, the other is that the
nearer the gate the more expected benefit. For the case of n

bidders, vector of random number is converted to the ceiling
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integer number to represent each individual evaluation. Even
though the various parameters setting are adjustable, the
comparison results in Tab. I and Tab. II are restricted to the
case of 10 row blocks for the sake of limited space. The
simulation round is one thousand.

The time measurement is recorded from their actual jobs.
The solver for linear programming is the simplex method,
and the time is measured soon after the optimal solution
revealed. For dynamic programming, the running time in
preprocess, to select the best offer for each option, is
included and sum with the computation time of comparison
process. The average time from the 1,000 simulation experiments,
the case of 10 row blocks auction, is indicated in Tab. I and
Tab. II, corresponding with total number of bidders in the
auction. We have two parts of simulation as the following:
single line case and double line case.

A. Single line case

The experimental results of single line case is obvious
that the dynamic programming approach, RPH’s and author’s
method, are further effective than linear programming
approach. Moreover, the average of operation time in our
method is significantly less than RPH’s method. This simulation
result consequently supported to our computational thought
in the methodology. The line plot also shows the advantage
of our method over linear programming and RPH’s method.

Table 1 Average running times of each algorithm for single
line case, unit: micro seconds.
No. of bidders 1 2 3 4 5 6 7 8 9 10

Linear Prog 4330 | 4680 | 5233 | 5753 | 6241 | 6837 | 7531 | 8281 | 9205 | 10327

RPH 74 92 98 109 119 130 144 157 173 193

Authors 56 65 66 68 70 71 74 77 79 82

Single line case
Average time in log scale

10,000

HHHH

1,000

i

100

HiH

10

-

1 2 3 4 5 6 7 8 9 10

asesen Linear Prog === RHP == Authors

Figure 3 The comparison results of average time among
linear programming, RPH and our method.
The y-axis is running time in log scale and the

x-axis is the number of bidders.
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B. Double line case

In double line case, the result is consistent to the single
line case. Hereafter, the dynamic programming approach
hereafter refers to the authors’ method only since RPH’s
method is not adaptable to double line case. The box plots
displayed in Fig. 4 expands the whole picture of simulation.
The vertical axis is running time in micro seconds and the
horizontal axis is the total number of bidders in the auction.
It is obvious that running time monotonically increase when
the number of bidders grows up for both algorithms. The
dynamic programming shows many outliers, which the further
analysis might be necessary.

From the result in Tab. 2 and box plots, the average time
operated in dynamic programming approach is far superior
to linear programming approach. The first reason is the
structure of coefficient matrix in linear programming bears
too many feasible solutions. In addition, iteratively solving
for linear programming approach is very costly because it has

to update sparsely matrix too often [10].
Table 2 Average running times of each algorithm for double
line case, unit: micro seconds.

No. of bidders

1

2

3

4

5

6
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structure contributes realizes the recursive benefit of dynamic
programming that brings about higher performance.
Actually, the real layout can utilize our method to determine
winner in booth auction. Some modification techniques in
programming are necessary for the booth allocation which
has obstacles in the layout. The applications of this method
would not probably be limited to the allocation of booth space,
but the virtual space like the internet ad slot would be implied.
The probabilistic argument of visitors is very important and

should be defined before conduct further analysis.
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