Aa o A , v g ~ - o ¢
UNANNIVY : nameimazaufigaasduaawinineasdiidnuuuvasiagizain

NISHIANIKU:AUNZQQ28IUADUDISINDDAUICN
luuKa1gaanuUs:avn
Optimization by Multi-Objective Chaos-Memetic Algorithm

> o % & %
NI WHAIAK (Paranya Ammaruekarat) WTWE 3§32 (Phayung Meesad)*

UNAAL
Ao & ° ad ‘oA

UNAMNIL AT U THLRUDAITITHIAN AN TN
¥ & A A o A v &
mﬂw@]am’ﬁmaaaﬁﬁ@ﬂaaﬂaﬁwLLuwmmmqmmm
(Multi-Objective Chaos-Memetic Algorithms: MOCMA)
Wunsdiudsiddnaanaitualiungujaiiueaiv
(Chaos Theory) ’Lumsﬂ%’uﬂgmi:mmﬁmau’l,%q"l,@w‘h

Aad =2 ae A ¥, & aad o
AaUNaTw FluwinuiItaflainrwaawdIsniiawa Ll
v o & v
negauunUWIRNNMILLY 2 Jagdszainanngaveys
DTLZ1-4 WLRIRINALaaEN lAaINNIINAFaLNIIA
ammu:maanquﬁmauﬁﬁﬁq@ 2 a1% Ao A2Ia
ammuﬂumumsgmegﬂﬁgm‘imauﬁl,ma‘%a RS
! o dl g q’o = =
m:mwaonqummauwm% uazlavinmdIsuniay
8NTIDUT MOCMA NU NSGAII (Non-dominated Sorting
Genetic Algorithmll) WU @IAFUITOUVAIRGDL
AUMIYNFAINBUNUNTIIVEI MOCMA 908517
ALUFAINBUUNITIANIN NSGAIL wazluaiuwniIa
FUTINULVDIAIADUATUNIINIEINLVBINFUAIADY
MOCMA §n13n32n 8@ &NaNINNIN NSGAIT T3
e . . .

1A% MOCMA ﬁmmﬂ,naguﬂ 41NN NSGAII

a

o o o Ada as o s a
ANd1ATY: Numﬂaaﬂaiﬁ&lLLUﬂﬁﬂ'lﬂ'ﬂ@]ﬂqﬂi$ﬁﬂﬂ N3

o

ANUBRIN

Abstract
In this research, we discuss the efficacy improvement for
Multi-Objective Memetic Algorithms: MOMA by using

Chaos theory. Chaos theory is used to improve the population

to achieve a better result. The technique can be referred to
in abbreviation as MOCMA: Multi-Objective Chaos
Memetic Algorithms. In this research, such technique is
applied to solve Multi-Objective equa-tion:2 objective
DTLZ1-4. The resulted outcomes will then be measured for
their capabilities to find out the best outcome group in 2
aspects namely; the capability to converge to the true outcome
and the capability to spread the outcome groups found. The
capabilities of the technique will be compared with those of
NSGAII(Non-dominated Sorting Genetic Algorithm II).
The research shows that the Convergence Measurement of
MOCMA process has a better rate of convergence than that
of NSGAIland Measurement of MOCMA is scattered more
evenly than that of NSGALIL. It can be seen that the value of
MOCMA'’s capability measurement in both aspects is closer

to 0 than those of NSGAII.

Keyword: Multi-Objective Memetic Algorithms, Chaos
Theory.
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Parameter Value
Population size 100
Number of Generation 200
Crossover probability 0.9
Mutation probability 0.8
Local search probability 0.5

Q ¢ g
5.1 nausgasuaansannsnasgaunsiansen
TNMINARDIE 5 139 Vasuaszw) anaanaita
MOCMA gnihwiifioufisy asusadlunng 3, 4, 5

Ji= (1+g) cos (x, 1)
f (1+g) sin (x, 7)
—100[10+Z((x -0.5)? —cos(207r(x -0.5))]

i=2

x €[0,11,i €{1,...,11}

fi= (1) cos (x¢ &)
5= (1+g) Sln(xfﬂ)
= Z(x 0. 5)

o€ =100
€[0,1],i € {1,...,11}

Information Technology Journal

Msarsnaluladarsaning

DTLZ | Var. Objective functions LLae 6
1 0.50 %’.sﬁ
f= 3% () T
! 12 ! 0.40 %%
1 |6 f= 7 (x,)(1+g) e
6 -
g=100[5+ Z((xl. -0.5)> —cos(207z(x, —0.5))] a0 - o,
i=2 W
x €[0,1],i € {1,....6} =
0.20 w.
_ T g
S fi= (1+g) cos (x, ) .
f= (1 + g) sin (X ﬁ ) a0 Eapture fvage—Print Seresn J*ﬁ
g= Z(x -0. 5) .
x E [0 1] l e {1 } 0.00 0.05 0.10 0135 020 025 i)?ﬂ 035 0.40 043 050
3 11

AN 3 mslSeuieuwnslawsanwvay DTLZI

M 3, 4, 5 waz 6 aziinlan anwuslanson
231 4 Joym Ae DTLZ1-4 1w dlavmmasasan
§ane3su MOCMA lagnasssdndamiss 5 31 dslu
Lwia:ﬂ%y’ﬂﬁwnﬂmwgamamﬂﬂzym"l,mmmiwﬁ‘u ua
uanansruluauasmsnszngesnqudasuiimla
ey

s atiun1 ansax - Nguwew 2555
Vol. 8, No. 1, January - June 2012



Ao o . v g - ~ o o
LI—:l_-| UNANNIVY : mamaniminzaniigaameduaanwininoesiiianuuunaeiaglzaim

120
1.00
Aoy,
gy -
™ .
o
e,
0.0 i
Gapture Tmage  Frink Screen
0.60 %
%,
o %
k]
%
0.20 !
[ ]
0.00 T T T T = 1
0.00 020 040 0.60 050 1.00 120
X1 MZ A3 %4 05

AN 4 nMalSeunguwnslawsauwyay DILZ2

100 S WS

. BN

0.4

%

Caphure Image Print Screef

0.00 T T T T * 1

0.00 0.20 0.40 0.60 0.80 1.00 120

X1 MZ A3 K& 05

AN 5 maSeuneuwnslawsauvay DILZ3

120
Lo L Ft
K
By
x
H “H
0.50 L
s, %
"
0.60 4
]
kY
A
0.40 L7
%ture Image Print Screen
020 ‘i
i

X

[ ]
0.00 T T T T * 1

0.00 0.20 0.40 0.60 0.50 1.00 120
*1 M2 A3 K4 05

AN 6 mMslSuuiisuwnslawsanwvay DILZ4

s atiun1 anyax - Nguwew 2555
Vol. 8, No. 1, January - June 2012

5.2 Nammﬁﬂ‘uLﬁm_lammu:maoﬁmaumumig
Lmﬂqﬂquﬁmauﬁ,mﬁa LS msm:mwmﬂquﬁmau
P > o a = g a s
‘Yl‘ﬁ']vl,(ﬂ I(ﬂEl“/]']ﬂ"liLl]i‘]JL‘YlEl‘Uﬂ‘UaaﬂaiﬁﬁJ NSGAII

AILRAIIUAITIIN 2 WRZNIND 7 ez 8

4 0.00414
| 0.00242

3 0.00175
| | 0.00146

2 — 0.00167
0.00088

0.00248
| 0.00218

T T T T
Convergence

0.0000 0.0010 0.0020 0.0030 0.0040

[l nsga2 [ mocma

oY 1
=

NN 7 mm/%'z/mﬁﬂumunﬁmtmgyn@uﬁmaumm’%\?

U

[V '

NN 7 LLﬁﬂdé’]LﬂgUﬂﬁdgﬁuﬂﬁi’g‘i’L“H’]gﬂQ&I
faaufiuntss lagyinnmsi3euifiunsansssy MOCMA
i 8aN8350 NSGAIT U7 8an8350 MOCMA 813130
;3'nggjﬂ@:wﬁmauﬁLLVT%%@"Le;ﬁﬂiﬂé”aﬂa%%w NSGAII A8
ﬁ?‘hL‘JﬂﬂgﬂuiT (0) MINNNEANE3TY NSGAIL

0.69584

0.33768

0.69137

T T T T T T T

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
M nsga2 M mocma

Spread

a = > ',
AINN 8 fnﬂllgﬂiltWE/U@’]%ﬂ'ﬁﬂ?&’ﬁnﬂ?fﬂdﬂ@ﬂﬂ']@aﬂ

NN 8 LFAIANRFLNIIATUNITNIZN EUDINGN
o A i o ~ a o as
fMaaunu ke lauyvinns wWisuiisuaana3sy MOCMA
N1 NSGAII WU21 88na30y MOCMA 8INNIANIZaNY
VBINQY

Information Technology Journal

MsaIsnalnlag@arsaning




g

(ﬁl")?"l\?ﬂ 3 Aam Iy UINgUaNTIOUS YaIFIAaL

DTLZ | Algorithm | Performance | Convergence | Spread
mean 0.00218 0.11981
MOCMA
variance 0.00093 0.09694
1
mean 0.00248 0.69137
NSGAII
variance 0.00145 0.24249
mean 0.00088 0.02804
MOCMA
variance 0.00029 0.00694
2
mean 0.00167 0.54277
NSGAII
variance 0.00090 0.50476
mean 0.00146 0.05506
MOCMA
variance 0.00030 0.03276
3
mean 0.00175 0.33768
NSGAII
variance 0.00072 0.43764
mean 0.00242 0.11002
MOCMA
variance 0.00107 0.05978
4
mean 0.00414 0.69584
NSGAII
variance 0.00130 0.38014

v

° P Ya ' o AR A Al
ﬂq@]ﬂﬂﬂ%’]vl,@@ﬂ?'] 2anNa3Idtl NSGAII ﬂauﬂ’]lﬂl’ﬂﬂa
& ' = a

fuel (0) WINNINAANETTU NSGAII

6. unayl

unenuAspitlarinmsenesnwamndssansawlnny
?jv'umau%%ﬁﬁ@né’ana%%mmu%mUi’@]qﬂszmﬁ@ﬂmi
lannuanuaniwluaiwuas initialization Procedure o
Mutation Procedure sfavl,@ﬁﬂumiﬂ%'uﬂy Usznidiaey
TwiAedneuiianinlassiduaauisesnadlunasey
LLrTﬂrymaummuwmﬂi'@]qﬂizmﬂr DTLZ1-4 uazin
A 1Basf 1IN MINAROUINALA TSN ENTTO U8
ﬁmamﬂyﬂumigjL{ném\éuﬁmauﬁuﬁﬁa WAL MINTZANY
maaﬂém‘imauﬁmvl,@:

wmwm’mammwmaammu mumiamammau
mmmw aaaaﬂaiﬁu MOCMA 3% uamnmsmma
fNADUUNIZIANINEaNeSEY NSGATI LLEIZI%G]’]%H’]TJ@]

Information Technology Journal

ﬁ Msarsnaluladarsaning

UNAMNIVY

g vy - - o -
ISV VAR EL L Gl LI L L DL LIS VDR HE [l HEEEAT

ammu:maaﬁmaugﬂumim:mwaamjwﬁmau
§ane3%u MOCMA §nisnszansfisdniavaninnin
Sano3su NSGAI S9asifinlemnmyiasussausoaosons
8ana3dd MOCMA ﬁé%{ﬂﬂgﬂug ANNEANeSTY
NSGATI LLa:miﬁnma%u’wia"l,ﬂa:ﬁwmimaauﬁ‘um
w1 DTLZ ﬁﬁwu@"i‘@qm:m@ﬁnﬂﬂiwﬁ

7. 1anasaneds

[1] J. D. Schaffer, “Multiobjective Optimization with
Vector Evaluated Genetic Algorithms” In GAs and
their Application: Proc. Of Ist Inter Conf. on GAs,
pp. 93-100, 1985.

[2] C. M. Fonseca, and P. J Fleming., “Genetic
Algorithms for Multiob-jective Optimization:
Formulation Discussion and Generalization,”
In: Proc. of the 5th Inter. Conf- on GAs, pp. 416-423,
1993.

[3] N. Srinivas, and K. Deb, “Multiobjective Optimization
Using Non-Dominated Genetic Algorithms,”
Evolutionary Computation, vol. 2(3), pp. 221-248, 1994.

[4] J.Horn,and N. Nafpliotis, Multiobjective Optimization
Using Niched Pareto Genetic Algorithm. Tech. Report,
I11iGA1 Report 93005, UTUC, 1993.

[5] J.Horn, N. Nafpliotis, and D. E. Goldberg., “A Niched
Pareto Genetic Algorithm for Multiobjective
Optimization,” In: the Ist IEEE Conf. on Evolutioary
Computation, pp. 82-87, 1994.

[6] J.D. Knowles, and D.W. Corne., “Approximating the
Non-Dominated Front Using the Pareto Archive
Evolution Strategy,” Evolutionary Computation, vol.
8(2), pp.149-172, 2000.

[7] E.Zitzler,and L. Thiele., “Multiobjective Evolutionary
algorithms: A Comparative Case Study and the Strength
Pareto Approach” Transactions on Evolutionary
Computation, vol. 3(4), pp. 257-271, 1999.

[8] M. Reyes-Sierra, and C. A. Coello Coello., “Multi-

Objective Particle Swarm Optimizers: A Survey of the

State-of-the-Art” Int.J. of Computational Intelligence

s atiun1 ansax - Nguwew 2555
Vol. 8, No. 1, January - June 2012



[12]

Research, vol. 2(3), pp. 287-308, 2006.

E. Zitzler, M. Laumanns, and L. Thiele., “SPEA2
improving the strength pareto evolutionary algorithm
for multiobjective optimiza-tion,” in Proc. Evolutionary
Methods Design, Optimization Contr., Barcelona, Spain,
pp- 95-100, 2002.

K. Deb, A.Pratap, S. Agarwal, and T. Meyarivan.,
“A Fast and Elitist Multiobjective Genetic Algorithm:
NSGAII” IEEE Trans. On Evolutionary Computation,
Vol. 6(2), pp. 182-197, 2002.

A. Alkan, and E. Ozcan., Memetic Algorithms for
Time Tabling, Yeditepe University, 34755 Kayisdagi-
Istanbul/Turkey, 2003.

Unsiua g@wn WRWnas fiuqaﬁ'i;u P
WAUNIE LaIRaTamw, “msﬂiqu@iﬁlﬁmmaﬂ
aanassudniudyninsiesausanIlsznay
m_ltuwﬁmﬁmﬁwawﬁlﬁ%mU"S’@]qﬂszmhﬁlmzuuwﬁm
LUV HL? mwa?}" ﬂ’??i/?&’?‘&l'?‘ﬂ’lﬂ’??‘ﬂ"?ﬂd’lu
5ﬂn5mg@7mwmi, Wi 72-77, 2007.

Nguyen Quoc Viet Hung, Ta Quang Binh and Duong
Tuan Anh., “A Memetic Algorithm for Timetabling”
In: Proceedings of 3nd Int ,Conf. RIVF’05 Research
Informatics Vietnam-Francophony, pp. 289-294,2005.
H. Ishibuchi, Y. Hitotsuyanagi, and Y. N. Tsukamoto.,
“Imple-mentation of Multiobjective Memetic
Algorithms for Combinatorial Optimization Problems:
A Knapsack Problem Case Study,” Multi-objective
Memetic Algorithms, pp. 27-49, 2009.

[15] H. Ishibuchi, and T. Murata, “Multi-Objective Genetic

[16]

[17]

Local Search Algorithm” In: Proc. of 1996 IEEE
International Conference on Evolutionary Computation,
pp. 119124, 1996.

Jaszkiewicz, A., “Genetic Local Search for Multi-
Objective Combinatorial Optimization,” European
Journal of Operational Research, 137, pp. 50-71,2002.
J. D. Knowles, and D. Corne., “M-PAES: A Memetic

Algorithm for Multiobjective Optimization,” /n: Proc.

[18]

[19]

Ao o . v g - - o o
UNANNIVY : mamaniminzaniigaameduaanwininoesiiianuuunaeiaglzaim

of 2000 Congress on Evolutionary Computation,
pp. 325-332, 2002.

H. Duan, and X. Yu., “Hybrid Ant Colony Optimization
Using Memetic Algorithm for Traveling Salesman
Problem,” In: Pro-ceedings of the IEEE Symposium on
Approximate Dynamic Pro-gramming and Reinforcement
Learning, pp. 92-95, 2007.

qﬁ'ﬂmum mwﬂﬁa, Uszwa Inswew LLa:Qwaﬁ
waﬁﬁﬁry, “miﬂszqﬂ@iﬁlfmﬂﬁﬂ%'wLﬂa‘vhanaﬂﬂa
Walfiudsansnmminuuesdfdndansite”
ORNET, #w1 162-174, 2007.

[20] E. Emad, H. Tarek, and G. Donald., “Comparison among

(21]

[22]

(23]

[24]

[25]

five evolutionary-based optimization algorithm,”
Advanced Engineering Informatics, pp. 43-53, 2005.
A. Konak, D.W. Coit, and E.S. Alice, “Multi-objective
optimization using genetic algorithms: A tutorial”.
Reliability Engineering and System Safety,
pp- 992-1007, 2006.

K. Kim, M. Wang, M. R. von Spakovsky, and
D. J. Nelson., “Stochastic Modeling and Uncertainty
Analysis with Multi-objective Optimization Strategies
for the Synthesis/Design and Operation /Control of a
PEMFC Fuel Processing Subsystem,” In: International
Mechanical Engineering Congress and Exposition
IMECE’2008, ASME Paper No. IMECE2008-68065,
N.Y., 2008.

P. Merz, B. Freisleben, “A genetic local search approach
to the quadratic assignment problem,” In: Back CT,
editor. Proceedings of the 7th international conference
on genetic algorithms, San Diego, CA: Morgan
Kaufmann, pp. 465-72, 1997.

D. J. Jefferies, J. H. B. Deane and G. G. Johnstone,
“An introduction to chaos,” Electronics and Communication
Engineering Journal, pp. 115-123, 1989.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.,
“Scalable Multi-Objective Optimization Test Problems,”
In: CEC 2002, IEEE Press, pp. 825-830, 2002.

¢

s atiun1 anyax - Nguwew 2555
Vol. 8, No. 1, January - June 2012

Information Technology Journal

MsaIsnalnlag@arsaning




