Research Paper :

Recommendation and Application of Fault Tolerance Pattern to Services

Recommendation and Application of Fault Tolerance
Patternsto Services

Tunyathorn Ledawatcharamas* and Twittie Senivongse*

Abstract

Service technology such as Web services has been one of
the mainstream technol ogiesin today’ s software devel opment.
Distributed services may suffer from communication
problems or contain faults themselves, and hence service
consumers may experience serviceinterruption. A solutionis
to create serviceswhich can tolerate faults so that failures can
be made transparent to the consumers. Since there are many
patterns of software fault tolerance available, we end up with
a question of which pattern should be applied to a particular
service. This paper attempts to recommend to service
developers the patterns for fault tolerant services.
A recommendation model is proposed based on characteris-
tics of the service itself and of the service provision environ-
ment. Once afault tolerance pattern is chosen, afault tolerant
version of the service can be created as a WS-BPEL service.
A softwaretool isdevel oped to assist in pattern recommendation
and generation of the fault tolerant service version.

Keyword: fault tolerance patterns, Web services, WS-BPEL

1. Introduction

Service technology has been one of the mainstream
technologies in today's software development since it enables
rapid flexible development and integration of software systems.
The current Web servicestechnol ogy builds software upon basic
building blocks called Web services. They are software units
that provide certain functionalities over the Web and involve a
set of interface and protocol standards, e.g. Web Service
Definition Language (WSDL) for describing service interfaces,
SOAP asamessaging protocol, and Business Process Execution
Language (WS-BPEL) for describing business processes of
collaborating services[1]. Likeother software, servicesmay suffer
from communication problemsor contain faultsthemselves, and
hence service consumers may experience serviceinterruption.

Different typesof faultshave been classified for services[2],
[3], [4], and can beviewed roughly in three categories: (1) Logic
faults comprise calculation faults, data content faults, and other
logic-related faultsthrown specificaly by theservice. Web service
consumers can detect logic faults by WSDL fault messages or
have away to check correctnessof serviceresponses. (2) System
and network faults are those that can be identified, for example,
through HTTP status code and detected by execution
environment, e.g., communication timeout, server error, service

unavailable. (3) SLA faultsareraised when servicesviolate SLAS,
e.g., response time requirements, even though functional
requirementsarefulfilled. For serviceproviders, oneof themain
gods of service provision is service reliability. Services should
be providedin areliable execution environment and prepared for
various faults so that failures can be made as transparent as
possibleto service consumers. Service designersshould therefore
design services with a fault tolerance mindset, expecting the
unexpected and preparing to prevent and handle potentia failures.

Therearemany fault tol erance patterns or exception handling
strategies that can be applied to make software and systems
morereliable. Common patternsinvolve how to handleor recover
fromfailures, such ascommunication retry or theuse of redundant
system nodes. Inadistributed services context, weend up witha
question of which fault tolerance pattern should be applied to a
particular service. We argue that not all patterns are equaly
appropriate for any services. Thisisdueto the characteristics of
each serviceincluding service semanticsand the environment of
serviceprovision. Inthispaper, we propose amathematical model
that can assist service designers in designing fault tolerant
versions of services. The model helps recommend which fault
tolerance patterns are suitable for particular services. With a
supporting tool, service designers can choose a recommended
pattern and have fault tolerant versions of the servicesgenerated
asWS-BPEL services.

Section 2 discusses related work in Web services fault
tolerance. Section 3 lists fault tolerance patterns that are
considered in our work. Characteristics of the services and
condition of service provisionthat we use ascriteriafor pattern
recommendation are given in Section 4. Section 5 presents
how service designers can be assisted by the pattern
recommendation model. The paper concludesin Section 6 with
future outlook.

2. Related Work

A number of researches in the area of fault tolerance
services address the application of fault tolerance patterns to
WS-BPEL processes even though they may have a different
use of fault tolerance terminology for similar patterns or
strategies. For example, Dobson’swork [5] isamong thefirstin
thisareawhich proposes how to use BPEL language constructs
toimplement fault tolerant serviceinvocation using four different
patterns, i.e., retry, retry on abackup, and parallel invocations
to different backups with voting on al responses or taking the

* Computer Science Program, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University.

Msarsinaluladarsanineg
Information Technology Journal

{17 8 a1iufi 2 nangnaa - Suanaw 2555
Vol.8, No.2, July - December 2012

g

Research Paper :

first response. Lau et a. [6] use BPEL to specify passive and
active replication of services in a business process and also
support abackup of BPEL engineitself. Liueta.[2] proposea
service framework which combines exception handling and
transaction techniques to improve reliability of composite
services. Service designers can specify exception handling logic
for a particular service invocation as an Event-Condition-
Action rule, and eight strategies are supported, i.e., ignore,
notify, skip, retry, retryUntil, alternate, replicate, and wait.
Thaisongsuwan and Senivongse [7] define the implementation
of fault tolerance patterns, asclassified by Hanmer [8], on BPEL
processes. Nine of the architectural, detection, and recovery
patterns are addressed, i.e., Units of Mitigation, Quarantine,
Error Handler, Redundancy, Recovery Block, Limit Retries,
Escalation, Roll-Forward, and Voting. These researches
suggest that different patterns can be applied to different
serviceinvocationsas appropriate but are not specific on when
to apply which. Nevertheless we adopt their BPEL
implementations of the patternsfor the generation of our fault
tolerant services.

Zheng and Lyu present interesting approaches to fault
tolerant Web services which support strategies including
retry, recovery block, N-version programming (i.e., paralel
service invocations with voting on all responses), and active
(i.e., parale serviceinvocationswith taking thefirst response).
For composite services, they propose a QoS model for fault
tolerant service composition which helps determine which
combination of the fault tol erance strategies givesacomposite
servicethe optimal quality [9]. Inthe context of individual Web
services, they propose a dynamic fault tolerance strategy
selection for a service [3]; the optimal strategy is one that
gives optimal service roundtrip time and failure rate. Both
user-defined service constraints and current QoS information
of the serviceare considered in the selection algorithm. In[10],
they view fault tolerance strategies as time-redundancy and
space-redundancy (i.e., passive and active replication) aswell
as combination of those strategies. Although their approaches
and ours share the same motivation, their fault tolerance
strategy selection requires an architecture that supports
service QoS monitoring and provision of replicaservices. This
could betoo much to afford for strategy selection, for example,
if it turnsout that expensive strategiesinvolving replicanodes
are not appropriate. This paper can be complementary to their
approach but it is more lightweight by merely recommending
which fault tolerance strategies are likely to match service
characteristics that are of concern to service designers.

3. Fault TolerancePatterns

In our approach, the following fault tolerance patterns are
supported (Figure 1). They areaddressed in Section |1 and can
be expressed using BPEL whichisthetarget implementation of
our fault tolerant services. Here the term “service” to which a
pattern will be applied refers to the smallest unit of service
provision, e.g., an operation of aWeb serviceimplementation.

{17 8 a1iufi 2 nangnaa - Suanaw 2555
Vol.8, No.2, July - December 2012

Recommendation and Application of Fault Tolerance Pattern to Services

[Fail 1 RetryCondition]
(can service) [WaitCondition]
Ao A
. —~
| Call Service |
A A
(1) Retry (2) Wait .
S \ . R
Call Servica | Call Service |
- _/ __ /
Fail] /7~ ™ Fajl] 7~ -
l { Call Repica | l B[cal N‘.'P)
o S/ .
@ 3
L) ®
(3) RB negiiea {4) RByp
.CJII Replical | | Call Replica2 Call PL-uIiw'.‘s._ { Call MVPT |] Call MVF2 | Call WWFZ |
h J Y h 4 v__ ¥ ¥
Chaose First | [Choose First |
(5) ACTiVE Reglica (6) Activep
v . A . =]] =
Call Replical | | Call Replica2 | | Call Replica3 { Call NP1 .: | Call NVP2 Y " call MvP3
y vy Y ¥y ¥ L 4
veting | Veling |
(7) Voring peplica (8) Voting se
(eal serice)
[Fail and RetryCongittion] | | € Senviee)
[WaitConditior fZ
e —
(cal Se'\.-ice;
(9) Retry + Wait

Figure 1. Fault tolerance patterns.

1) Retry: When service invocation is not successful,
invocation to the same service is repeated until it succeeds or
a condition is evaluated to true. A common condition is the
allowed retry times.

2 Wait: Service invocation is delayed until a specified
time. If the service is expected to be busy or unavailable at a
particular time, delaying invocation until alater timecould help
decreasefailure probability.

3 RecoveryBlockReplica: When serviceinvocationisnot
successful, invocation is made sequentially to a number of
functionally equivalent alternatives (i.e., recovery blocks)
until the invocation succeedsor all alternatives are used. Here

2sarsinaluladarsanina
Information Technology Journal

g

Research Paper :

theaternativesarereplicas of the original service; they canbe
different copies of the orignal service but are provided in
different execution environments.

4) RecoveryBlockNVP: This pattern is similar to 3) but
adopts N-version programming (NVP). Here the original
service and its alternatives are developed by different
development teams or with different technol ogies, algorithms,
or programming languages, and they may be provided in the
same or different execution environment. Thiswould be more
reliable than having replicas of the original services as
alternatives sinceit can decrease the failure probability caused
by faultsinthe original service.

5 ActiveReplica: Toincrease the probability that service
invocationwill returnin atimely manner, invocation ismadeto
agroup of functionally equivalent servicesin parallel. Thefirst
successful response from any service is taken as the
invocation result. Here the group are replicas of each other;
they can be different copies of the same service but are
provided in different execution environments.

6) ActiveNVP: Thispatternissimilar to 5) but adoptsNV P,
Here the services in the group are developed by different
development teams or with different technol ogies, algorithms,
or programming languages, and they may be provided in the
same or different execution environment. Thiswould be more
reliablethan having the group asreplicas of each other sinceit
can decrease the failure probability caused by faults in the
replicas.

7) VotingReplica: To increase the probability that service
invocation will return a correct result despite service faults,
invocation is made to a group of functionally equivalent
servicesin parallel. Given that there will be several responses
from the group, one of the voting agorithms can be used to
determine the final result of the invocation, e.g. majority
voting. Herethe group are replicas of each other; they can be
different copies of the same service but are provided in
different execution environments.

8 VotingNVP: Thispatternissimilar to 7) but adoptsNV P,
Here the services in the group are developed by different
development teams or with different technol ogies, algorithms,
or programming languages, but they may be provided in the
same or different execution environment.

9 Retry + Wait: This pattern is an example of a possible
combination of different patterns. When service invocation is
not successful, invocationisretried for anumber of timesand,
if still unsuccessful, waits until aspecified time before another
invocation is made.

All patterns except Wait employ redundancy. Retry is a
form of time redundancy taking extra communication time to
tolerate faults whereas RecoveryBlock, Active, and Voting
empl oy space redundancy using extraresourcesto mask faults
[10]. RecoveryBlock uses the passive replication technique;
invocation is made to the original (primary) service first and
alternatives (backup services) will be invoked only if the
original service or other aternatives fail. Active and Voting
both usethe activereplication technique; all servicesinagroup
execute a service request simultaneously, but they determine
thefinal result differently. Retry, Wait, and RecoveryBlock can
help tolerate system and network faults. Voting can be used to

2sarsinaluladarsanina
Information Technology Journal

Recommendation and Application of Fault Tolerance Pattern to Services

mask logic faults, e.g., when magjority voting is used and the
majority of service responses are correct. It can even detect
logicfaultsif acorrect responseisknown. Active can helpwith
SLA faults that relate to late service responses.

4. ServiceCharacteristics

Thefollowing arethecriteriaregarding service characteristics
and condition of service execution environment which the
servicedesigner/provider will consider for aparticular service.
These characteristicswill influence the recommendation of fault
tolerance patterns for the service.

1) Transient Failure: The serviceenvironmentisgenerally
reliable and potential failure would only be transient. For
example, the service may be inaccessible at times due to
network problems, but aretry or invocation after await should
be successful.

2 Instance Specificity: The service is specific and
consumers aretied to use this particular service. It can be that
there are no equivalent services provided by other providers,
or the service maintains specific data of the consumers. For
example, aCheckBalance service of abank is specific because
a customer can only check an account balance through the
service of thisbank with which he/she has an account, and not
through the services of other banks.

3 Replica Provision: This relates to the ability of the
service designer/provider to accommodate different replicas
of the service. The replicas should be provided in different
execution environments, e.g., on different machines or
processing different copies of data. Thisability helpsimprove
reliability since service provision does not rely on a single
service.

4) NVPProvision: Thisrelatesto theahility of the service
designer/provider to accommodate different versions of the
service. The service versions may be developed by different
development teams or with different technol ogies, algorithms,
or programming languages, and they may be provided in the
same or different execution environment. This ability helps
improvereliability since service provision doesnot rely onany
single version of the service.

5 Correctness. The service designer expects that the
service and execution environment should be managed to
provide correct results. This relates to the quality of service
environment to provide reliable communication, including the
mechanismsto check for correctness of messages eveninthe
presence of logic faults.

6) Timeliness: The service designer expects that the
service and execution environment should be managed to
react quickly to requests and give timely results.

7) Simplicity: The service designer/provider may be
concerned with simplicity of the service. Provision for fault
tolerance can complicate service logic, add more interactions
to the service, and increase latency of service access. When
service provision is more complex, more faults can be
introduced.

8 Economy: The service designer/provider may be
concerned with the economy of making the service fault
tolerant. Fault tolerance patterns consume extra time, costs,
and computing resources. For example, sequential invocation

{17 8 a1iufi 2 nangnaa - Suanaw 2555
Vol.8, No.2, July - December 2012

g

Research Paper :

is cheaper than parallel invocation to the group of services,
and providing relplicas of the serviceis cheaper than NVP.

5. Fault Tolerance Patter nsRecommendation

The recommendation of fault tolerance patterns to a
service is based on what characteristics the service possesses
and which patterns suit such characteristics.

5.1 Service Characteristics-Fault Tolerance Patterns
Relationship

We first define arelationship between service characteris-
ticsand fault tolerance patterns asin Table 1. Each cell of the
tablerepresentstherelationship level, i.e., how well the pattern
can respond to the service characteristic. Therelationship level
rangesfrom 0 to 8 sincethere are eight basic patterns. Level 8
means the pattern responds very well to the characteristic,
level 7 responds well, and so on. Level 0 means there is no
relationship between the pattern and service characteristic.

For example, for Economy, Retry and Wait are cheaper than
other patterns that employ space redundancy since both of
them require only one service implementation. But Wait
responds best to economy (i.e., level 8) since thereisonly a
single call to the service whereas Retry involves multiple
invocations (i.e., level 7). Sequential invocation in
RecoveryBlock is cheaper than parallel invocation in Active
and Voting because not al service implementations will have
to be invoked; a particular aternative of the service will be
invoked only if the original service and other alternativesfail,
whereas parallel invocation requires that different service
implementations be invoked simultaneously. Recovery Block
Replica(level 6) ischeaper than RecoveryBlockNV P (level 5)
because providing replicas of the service should cost lessthan
development of NVP. Similarly ActiveReplica(level 4) ischeaper
thanActiveNV P (level 3) and VotingReplica(level 2) ischeaper
than VotingNV P (level 1). Note that Voting is more expensive
than Active due to development of a voting algorithm to
determine the final result. For a combination of patterns such
asRetry+Wait, therelationship level isan average of thelevels
of the combining patterns.

Table 1. Relationship between Service Characteristics and
Fault Tolerance Patterns

Fault Toler ance Patterns
Ser\ice
isti RB RB |Active |Active Voting |Votin
Characteristics Retry | Wit g g Retry+
Replica | NVP | Replica | NvP | Replica | nvp | WWait
Transient
Failure (TF) 8 7 0 0 0 0 0 0 75
Instance
. 8 8 7 6 5 4 5 4 8
Specificity (1S
Replica
Provision (RP) 0 0 8 0 8 0 8 0 0
NVP Provision
0 0 0 8 0 8 0 8 0
(NP)
Correctness
2 2 3 4 5 6 7 8 2
(CO)
Timeliness (T1) 4 1 5 6 7 8 2 3 25
Sinplicity (Sl) 8 8 7 6 5 4 3 2 8
Economy (EC) 7 8 6 5 4 3 2 1 75

{17 8 a1iufi 2 nangnaa - Suanaw 2555
Vol.8, No.2, July - December 2012

Recommendation and Application of Fault Tolerance Pattern to Services

For the relationship between other characteristics and the
patterns, wereason in asimilar manner. Retry and Wait suit the
environment with Transient Failure. The patterns that rely on
the execution of a single service at a time respond better to
Instance Specificity than those that employ multiple service
implementations. Replica Provision and NVP Provision are
relevant to the patterns that employ space redundancy. For
Correctness, Voting isthe best sinceit is the only pattern that
can mask/detect byzantine failure (i.e., the case that the
services give incorrect results). Active is better than
RecoveryBlock with regard to byzantine failure because the
chance of getting the result that is incorrect should be lower
than the case of RecoveryBlock due to the fact that the result
of Active can come from any one of the redundant services
that are invoked in parallel. Retry and Wait do not suit
Correctness since they rely on the execution of a single
service. For Timeliness, the comparison of the patternsontime
performancegivenin[2], [3] (ranked in descending order) isas
follows: Active, RecoveryBlock, Retry, Voting, Wait. For
Simplicity, thelogic of Retry and Wait whichinvolvesasingle
serviceisthe ssimplest.

5.2 Assessment of Service Characteristics

The next step is to have the service designer assess what
characteristicsthe service possesses; the characteristicswould
influence pattern recommendation.

1) Identify Dominant Characteristics. The servicedesigner
will consider service semantics and condition of service
provision, and identify dominant characteristics that should
influence pattern recommendation. For each characteristic that
is of concern, the service designer defines a dominance level.
Level 1 means the characteristic is the most dominant (i.e.,
ranked 1st), level 2 meanslessdominant (i.e., ranked 2nd), and
so on. Level 0 meansthe service does not have the characteristic
or the characteristic is of no concern.

For example, during the design of a CheckBalance service
of abank, the service designer considers Instance Specificity
as the most dominant characteristic (i.e., dominance level 1)
since bank customers would be tied to their bank accounts
that are associated with this particular service. From
experience, the designer seesthat the computing environment
of thebank providesareliable serviceandif thereisaproblem,
it is generaly transient, and hence a simple fault handling
strategy ispreferred (i.e., Transient Failure and Simplicity have
dominance level 2). Nevertheless, the designer is able to
afford exact replicas of the service if something more serious
happens (i.e., Replica Provision has dominance level 3).
Suppose the designer is not concerned with other
characteristics, then the otherswould have dominancelevel 0.
Table 2 showsthe dominancelevel of all characteristicsof this
CheckBalance service.

2) Convert Dominance Level to Dominance Weight:

a Convert Dominance Level to Raw Score: The
dominance level of each characteristic will be converted to a
raw score. The most dominant characteristic gets the highest
score which is equal to the dominance level of the least
dominant characteristic that is considered. Less dominant
characteristics get less scores accordingly. From the example

2sarsinaluladarsanina
Information Technology Journal

g

Research Paper :

of the CheckBalance service, Replica Provision has the least
dominance level of 3, so the raw score of the most dominant
characteristic — Instance Specificity —is 3. Then the scorefor
Transient Failure and Simplicity would be 2, and Replica
Provision gets 1. Table 3 shows the raw scores of the service
characteristics.

b) Compute Dominance Weight: First, divide 1 by the
summation of theraw scores. For example, for the CheckBalance
service, the summation of the raw scores in Table Il is 8
(2+3+1+0+0+0+2+0) and the quotient would be 1/8 (0.125).
Then, multiply this quotient with the raw score of each
characteristic. The result would be the dominance weights of
the characteristics (where the summation of the weightsis 1).
The weights will be used later in the recommendation model.
For the CheckBalance service, the dominance weights of all
characteristics are shown in Table 4.

5.3 Fault TolerancePatter nsRecommendation M odel

We propose amodel for fault tolerance patterns recommenda-
tionasin (1)

Table 2. Dominance levels of service characteristics.

Ser\ice Char acteristics
Trandent | Instance | Replica NVP Correct | Timeli | Simpli | Econo
Failure | Specificity [Provision | Provision ness ness city ny
Lewel 2 1 3 0 0 0 2 0
Table 3. Raw scores of service characteristics.
Service Char acteristics
Transient | Instance | Replica NVP Correct | Timeli |Simpli | Econo
Failure | Specificity | Provision | Provision ness ness city my
Score 2 3 1 0 0 0 2 0

Table 4. Dominance weights of service characteristics.

Service Char acteristics
Transient | Instance | Replica NVP Correct | Timeli |Simpli | Econo
Failure | Specificity | Provison | Provision ness ness city my
Score 025 0.375 0.125 0 0 0 0.25 0
P=DxR (o))

where P = A vector of fault tolerance pattern scores
D= A vector of dominance weights of service
characteristics as computed in Section V.B
R= A relationship matrix between service
characteristics and fault tolerance patterns as
proposed in Section V.A

Therefore, given R as

2sarsinaluladarsanina
Information Technology Journal

Recommendation and Application of Fault Tolerance Pattern to Services

RB

Replica

RB,

Activep,.

Retry Votinge,,.., Retry+Wait

5

Active

NVE Vo NGvp
0

7.5]

T
o

TF
IS
RP
NP
co
25Tl
8 |9
7.5 | EC

N O AN OO ®©® ®
W 0Ok, NO O o N
O N Ul w o N O
Ul oo O A O o OF
A U1 N OO U o
N WN N O oo
B N WO MO
N O O ®

W h~h 0O 0 O b

and, in the case of the CheckBalance service, D as

TF
D =[0.25

IS
0.375

RP
0.125

NP CO TI S
0 0 O 0.25

EC

The pattern recommendation P would be

RBeica Active,

Replica
Wait RB,» Active, \oting,,»

P=[700 675 538 375 412 250 362 200 6.88]

Retry Voting, ..., Retry+Wait

The recommendation says how well each pattern suits the
service according to the characteristic assessment. The
pattern with the highest score would be best suited for the
service. Since the designer of the CheckBalance service pays
most attention to Instance Specificity, Transient Failure, and
Simplicity, the designer inclinesto rely on reliable provision of
a single service. The patterns that respond well to these
characterigtics, i.e, Retry, Wait, and Retry+Wait, areamong the
first to be recommended. Here, Retry isthe best-suited pattern
with the highest score. Since the designer can provide replica
services as well but still has simplicity in mind,
RecoveryBlockReplicaisthe next to be recommended. Voting
patterns and those which require NVP services are more
complex strategies, so they get lower scores.

5.4 Generation of Fault Tolerant Service

A software tool has been developed to support fault
tolerance patterns recommendation and generation of fault
tolerant servicesasaBPEL service. The service designer will
first be prompted to select service characteristics that are of
interest, and then specify a dominance level for each chosen
characteristic. Thetool will calculate and rank the pattern scores
asshowninFigure 2 for the CheckBaance service. Thedesigner
can choose one of the recommended patterns and the tool will
prompt the designer to specify the WSDL of the service
together with any parameters necessary for the generation of
the BPEL version. For Retry, the parameter is the number of
retry times. For RecoveryBlock, Active, and Voting, the
parameter is a set of WSDLs of all service implementations
involved. For Wait, the parameter isthewait-until time. Inthis

{17 8 a1iufi 2 nangnaa - Suanaw 2555
Vol.8, No.2, July - December 2012

g

Research Paper :

example, Retry is chosen and the number of retry timesis 5.
Then, afault tolerant version of the service will be generated
asaBPEL servicefor GlassFish ESB v2.2 asshowninFigure3.
The BPEL version invokes the service in afault tolerant way,
implementing the pattern structure we adopt from[2], [7].

rB FTPatternTool E|@®ﬁ

Recommendation and Application of Fault Tolerance Pattern to Services

and generation of fault tolerant service versions as BPEL
services. Asmentioned earlier, it isalightweight approach which
helpsto identify fault tolerance patternsthat arelikely to match
service characteristics according to subjective assessment of
service designers. At present the recommendation isaimed for
asingleservice. Theapproach can be extended to accommodate
pattern recommendation and generation of fault tolerant

composite services. More combinations of patterns can also
SUAUISL FARL SOorANCe BACtIT (oK, SUriice be supported. In addition, we are in the process of trying the
frank AL tolararce petany , model with services in business organizations for further
1 Retry 7.00 | Choose evaluation.
2 Retry'Wait ~ 6.88 [chnoose
7. References
3 ot & [choose | [1] M. P. Papazoglou, Web Services: Principles and
4 RBReplica 5.38 Technology, Pearson Education, Prentice Hall, 2008.
! [2] A.Liu,Q.Li,L.Huang,andM. Xiao, “FACTS. A framework
’ fctve fieplea 412 E for fault-tolerant composition of transactional Web
& RB NVP .75 Choose services,” |IEEE Trans. on Services Computing, Vol.3,
7 Voting Replica 3.62 @ No.1, pp. 46-59, 2010.
[3] Z.Zhengand M. R. Lyu, “An adaptive QOS-aware fault
& ActveNVP - 250 | choose | tolerance strategy for Web services,” Empirical Software
9 VotingNVvP 2,00 | cnoose Engineering, Vol.15, Iss. 4, pp. 323-345, 2010.
[4 A.Avizienis, J. C. Laprie, B. Randell, and C. Landwehr,
Figure 2. Pattern recommendation by supporting tool. “Basic concepts and taxonomy of dependable and
secure computing,” |EEE Trans. on Dependable and
T Secure Computing, Vol.1, No.1, pp. 11-33, 2004.
$?;ss - folse [5] G Dobson,“UsingWS-BPEL toimplement softwarefault
e tolerance for Web services,” In Procs. of 32nd
e <repeatUntil> $Times == 5 or SPass ™ EUROMICRO Conf. on Software Engineering and
Advanced Applications (EUROMICRO-SEAA'06),
4 <scope> \ pp. 126-133, 2006.
aoke raT—— (6] J Lay, L C. Lung, J.D. S. Fragg and G S. Veronese,
partnerLink="PartnerLinkB" <catchAll> “Designing fault tolerant Web servicesusing BPEL,” In
D don="CheckBatence" Procs. of 7th IEEE/ACIS Int. Conf. on Computer and
g‘ﬂ:‘:’:ﬂ!i‘;ﬁ;ﬁiﬁ:ﬁ» . @ f Information Science (1C1S2008), pp. 618-623, 2008.
! alse [7 T. Thaisongsuwan and T. Senivongse, “Applying
Gremm@ <assign> software fault tolerance patterns to WS-BPEL processes,”
<5Times=$“m?sﬂ> In Procs. of Int. Joint Conf. on Computer Science and
_ \SPass-liwe Software Engineering (JCSSE2011), pp. 269-274, 2011.
<>‘—‘ [8 R. Hanmer, Patterns for Fault Tolerant Software,
- J Wiley Publishing, 2007.
v [9 Z.Zheng and M. R. Lyu, “A QoS-aware fault tolerant
. middleware for dependable service composition,”
Figure3. BPEL structurefor Retry. In Procs. of |IEEE Int. Conf. on Dependable Systems &
Networks (DSN 2009), pp. 239-249, 2009.
6.Conclusion [10] z. thqg andM. R. Lyu, Opti,!"nal fault tolerance strat.egy
In this paper, we propose a model to recommend fault selection for Web services,” Int. J. of Web Services
tolerance patterns to services. The recommendation considers Research, Vol 7, Iss. 4, pp. 21-40, 2010.
service characteristics and condition of service environment.
A supporting tool is devel oped to assist in the recommendation
L 4

{17 8 a1iufi 2 nangnaa - Suanaw 2555
Vol.8, No.2, July - December 2012

2sarsinaluladarsanina
Information Technology Journal

