
100 วารสารเทคโนโลยีสารสนเทศ
Information Technology Journal

ปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol.8, No.2, July - December 2012

Research Paper : Recommendation and Application of Fault Tolerance Pattern to Services

Recommendation and Application of Fault Tolerance
Patterns to Services

Tunyathorn Leelawatcharamas* and Twittie Senivongse*

Abstract
Service technology such as Web services has been one of

the mainstream technologies in today’s software development.
Distributed services may suffer from communication
problems or contain faults themselves, and hence service
consumers may experience service interruption. A solution is
to create services which can tolerate faults so that failures can
be made transparent to the consumers. Since there are many
patterns of software fault tolerance available, we end up with
a question of which pattern should be applied to a particular
service. This paper attempts to recommend to service
developers the patterns for fault tolerant services.
A recommendation model is proposed based on characteris-
tics of the service itself and of the service provision environ-
ment. Once a fault tolerance pattern is chosen, a fault tolerant
version of the service can be created as a WS-BPEL service.
A software tool is developed to assist in pattern recommendation
and generation of the fault tolerant service version.

Keyword: fault tolerance patterns, Web services, WS-BPEL

1. Introduction
Service technology has been one of the mainstream

technologies in today’s software development since it enables
rapid flexible development and integration of software systems.
The current Web services technology builds software upon basic
building blocks called Web services. They are software units
that provide certain functionalities over the Web and involve a
set of interface and protocol standards, e.g. Web Service
Definition Language (WSDL) for describing service interfaces,
SOAP as a messaging protocol, and Business Process Execution
Language (WS-BPEL) for describing business processes of
collaborating services [1]. Like other software, services may suffer
from communication problems or contain faults themselves, and
hence service consumers may experience service interruption.

Different types of faults have been classified for services [2],
[3], [4], and can be viewed roughly in three categories: (1) Logic
faults comprise calculation faults, data content faults, and other
logic-related faults thrown specifically by the service. Web service
consumers can detect logic faults by WSDL fault messages or
have a way to check correctness of service responses. (2) System
and network faults are those that can be identified, for example,
through HTTP status code and detected by execution
environment, e.g., communication timeout, server error, service

* Computer Science Program, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University.

unavailable. (3) SLA faults are raised when services violate SLAs,
e.g., response time requirements, even though functional
requirements are fulfilled. For service providers, one of the main
goals of service provision is service reliability. Services should
be provided in a reliable execution environment and prepared for
various faults so that failures can be made as transparent as
possible to service consumers. Service designers should therefore
design services with a fault tolerance mindset, expecting the
unexpected and preparing to prevent and handle potential failures.

There are many fault tolerance patterns or exception handling
strategies that can be applied to make software and systems
more reliable. Common patterns involve how to handle or recover
from failures, such as communication retry or the use of redundant
system nodes. In a distributed services context, we end up with a
question of which fault tolerance pattern should be applied to a
particular service. We argue that not all patterns are equally
appropriate for any services. This is due to the characteristics of
each service including service semantics and the environment of
service provision. In this paper, we propose a mathematical model
that can assist service designers in designing fault tolerant
versions of services. The model helps recommend which fault
tolerance patterns are suitable for particular services. With a
supporting tool, service designers can choose a recommended
pattern and have fault tolerant versions of the services generated
as WS-BPEL services.

Section 2 discusses related work in Web services fault
tolerance. Section 3 lists fault tolerance patterns that are
considered in our work. Characteristics of the services and
condition of service provision that we use as criteria for pattern
recommendation are given in Section 4. Section 5 presents
how service designers can be assisted by the pattern
recommendation model. The paper concludes in Section 6 with
future outlook.

2. Related Work
A number of researches in the area of fault tolerance

services address the application of fault tolerance patterns to
WS-BPEL processes even though they may have a different
use of fault tolerance terminology for similar patterns or
strategies. For example, Dobson’s work [5] is among the first in
this area which proposes how to use BPEL language constructs
to implement fault tolerant service invocation using four different
patterns, i.e., retry, retry on a backup, and parallel invocations
to different backups with voting on all responses or taking the

101วารสารเทคโนโลยีสารสนเทศ
Information Technology Journal

ปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol.8, No.2, July - December 2012

Research Paper : Recommendation and Application of Fault Tolerance Pattern to Services

first response. Lau et al. [6] use BPEL to specify passive and
active replication of services in a business process and also
support a backup of BPEL engine itself. Liu et al. [2] propose a
service framework which combines exception handling and
transaction techniques to improve reliability of composite
services. Service designers can specify exception handling logic
for a particular service invocation as an Event-Condition-
Action rule, and eight strategies are supported, i.e., ignore,
notify, skip, retry, retryUntil, alternate, replicate, and wait.
Thaisongsuwan and Senivongse [7] define the implementation
of fault tolerance patterns, as classified by Hanmer [8], on BPEL
processes. Nine of the architectural, detection, and recovery
patterns are addressed, i.e., Units of Mitigation, Quarantine,
Error Handler, Redundancy, Recovery Block, Limit Retries,
Escalation, Roll-Forward, and Voting. These researches
suggest that different patterns can be applied to different
service invocations as appropriate but are not specific on when
to apply which. Nevertheless we adopt their BPEL
implementations of the patterns for the generation of our fault
tolerant services.

Zheng and Lyu present interesting approaches to fault
tolerant Web services which support strategies including
retry, recovery block, N-version programming (i.e., parallel
service invocations with voting on all responses), and active
(i.e., parallel service invocations with taking the first response).
For composite services, they propose a QoS model for fault
tolerant service composition which helps determine which
combination of the fault tolerance strategies gives a composite
service the optimal quality [9]. In the context of individual Web
services, they propose a dynamic fault tolerance strategy
selection for a service [3]; the optimal strategy is one that
gives optimal service roundtrip time and failure rate. Both
user-defined service constraints and current QoS information
of the service are considered in the selection algorithm. In [10],
they view fault tolerance strategies as time-redundancy and
space-redundancy (i.e., passive and active replication) as well
as combination of those strategies. Although their approaches
and ours share the same motivation, their fault tolerance
strategy selection requires an architecture that supports
service QoS monitoring and provision of replica services. This
could be too much to afford for strategy selection, for example,
if it turns out that expensive strategies involving replica nodes
are not appropriate. This paper can be complementary to their
approach but it is more lightweight by merely recommending
which fault tolerance strategies are likely to match service
characteristics that are of concern to service designers.

3. Fault Tolerance Patterns
In our approach, the following fault tolerance patterns are

supported (Figure 1). They are addressed in Section II and can
be expressed using BPEL which is the target implementation of
our fault tolerant services. Here the term “service” to which a
pattern will be applied refers to the smallest unit of service
provision, e.g., an operation of a Web service implementation.

Figure 1. Fault tolerance patterns.

1) Retry: When service invocation is not successful,
invocation to the same service is repeated until it succeeds or
a condition is evaluated to true. A common condition is the
allowed retry times.

2) Wait: Service invocation is delayed until a specified
time. If the service is expected to be busy or unavailable at a
particular time, delaying invocation until a later time could help
decrease failure probability.

3) RecoveryBlockReplica: When service invocation is not
successful, invocation is made sequentially to a number of
functionally equivalent alternatives (i.e., recovery blocks)
until the invocation succeeds or all alternatives are used. Here

102 วารสารเทคโนโลยีสารสนเทศ
Information Technology Journal

ปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol.8, No.2, July - December 2012

Research Paper : Recommendation and Application of Fault Tolerance Pattern to Services

the alternatives are replicas of the original service; they can be
different copies of the orignal service but are provided in
different execution environments.

4) RecoveryBlockNVP: This pattern is similar to 3) but
adopts N-version programming (NVP). Here the original
service and its alternatives are developed by different
development teams or with different technologies, algorithms,
or programming languages, and they may be provided in the
same or different execution environment. This would be more
reliable than having replicas of the original services as
alternatives since it can decrease the failure probability caused
by faults in the original service.

5) ActiveReplica: To increase the probability that service
invocation will return in a timely manner, invocation is made to
a group of functionally equivalent services in parallel. The first
successful response from any service is taken as the
invocation result. Here the group are replicas of each other;
they can be different copies of the same service but are
provided in different execution environments.

6) ActiveNVP: This pattern is similar to 5) but adopts NVP.
Here the services in the group are developed by different
development teams or with different technologies, algorithms,
or programming languages, and they may be provided in the
same or different execution environment. This would be more
reliable than having the group as replicas of each other since it
can decrease the failure probability caused by faults in the
replicas.

7) VotingReplica: To increase the probability that service
invocation will return a correct result despite service faults,
invocation is made to a group of functionally equivalent
services in parallel. Given that there will be several responses
from the group, one of the voting algorithms can be used to
determine the final result of the invocation, e.g. majority
voting. Here the group are replicas of each other; they can be
different copies of the same service but are provided in
different execution environments.

8) VotingNVP: This pattern is similar to 7) but adopts NVP.
Here the services in the group are developed by different
development teams or with different technologies, algorithms,
or programming languages, but they may be provided in the
same or different execution environment.

9) Retry + Wait: This pattern is an example of a possible
combination of different patterns. When service invocation is
not successful, invocation is retried for a number of times and,
if still unsuccessful, waits until a specified time before another
invocation is made.

All patterns except Wait employ redundancy. Retry is a
form of time redundancy taking extra communication time to
tolerate faults whereas RecoveryBlock, Active, and Voting
employ space redundancy using extra resources to mask faults
[10]. RecoveryBlock uses the passive replication technique;
invocation is made to the original (primary) service first and
alternatives (backup services) will be invoked only if the
original service or other alternatives fail. Active and Voting
both use the active replication technique; all services in a group
execute a service request simultaneously, but they determine
the final result differently. Retry, Wait, and RecoveryBlock can
help tolerate system and network faults. Voting can be used to

mask logic faults, e.g., when majority voting is used and the
majority of service responses are correct. It can even detect
logic faults if a correct response is known. Active can help with
SLA faults that relate to late service responses.

4. Service Characteristics
The following are the criteria regarding service characteristics

and condition of service execution environment which the
service designer/provider will consider for a particular service.
These characteristics will influence the recommendation of fault
tolerance patterns for the service.

1) Transient Failure: The service environment is generally
reliable and potential failure would only be transient. For
example, the service may be inaccessible at times due to
network problems, but a retry or invocation after a wait should
be successful.

2) Instance Specificity: The service is specific and
consumers are tied to use this particular service. It can be that
there are no equivalent services provided by other providers,
or the service maintains specific data of the consumers. For
example, a CheckBalance service of a bank is specific because
a customer can only check an account balance through the
service of this bank with which he/she has an account, and not
through the services of other banks.

3) Replica Provision: This relates to the ability of the
service designer/provider to accommodate different replicas
of the service. The replicas should be provided in different
execution environments, e.g., on different machines or
processing different copies of data. This ability helps improve
reliability since service provision does not rely on a single
service.

4) NVP Provision: This relates to the ability of the service
designer/provider to accommodate different versions of the
service. The service versions may be developed by different
development teams or with different technologies, algorithms,
or programming languages, and they may be provided in the
same or different execution environment. This ability helps
improve reliability since service provision does not rely on any
single version of the service.

5) Correctness: The service designer expects that the
service and execution environment should be managed to
provide correct results. This relates to the quality of service
environment to provide reliable communication, including the
mechanisms to check for correctness of messages even in the
presence of logic faults.

6) Timeliness: The service designer expects that the
service and execution environment should be managed to
react quickly to requests and give timely results.

7) Simplicity: The service designer/provider may be
concerned with simplicity of the service. Provision for fault
tolerance can complicate service logic, add more interactions
to the service, and increase latency of service access. When
service provision is more complex, more faults can be
introduced.

8) Economy: The service designer/provider may be
concerned with the economy of making the service fault
tolerant. Fault tolerance patterns consume extra time, costs,
and computing resources. For example, sequential invocation

103วารสารเทคโนโลยีสารสนเทศ
Information Technology Journal

ปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol.8, No.2, July - December 2012

Research Paper : Recommendation and Application of Fault Tolerance Pattern to Services

is cheaper than parallel invocation to the group of services,
and providing relplicas of the service is cheaper than NVP.

5. Fault Tolerance Patterns Recommendation
The recommendation of fault tolerance patterns to a

service is based on what characteristics the service possesses
and which patterns suit such characteristics.

5.1 Service Characteristics-Fault Tolerance Patterns
Relationship

We first define a relationship between service characteris-
tics and fault tolerance patterns as in Table 1. Each cell of the
table represents the relationship level, i.e., how well the pattern
can respond to the service characteristic. The relationship level
ranges from 0 to 8 since there are eight basic patterns. Level 8
means the pattern responds very well to the characteristic,
level 7 responds well, and so on. Level 0 means there is no
relationship between the pattern and service characteristic.

For example, for Economy, Retry and Wait are cheaper than
other patterns that employ space redundancy since both of
them require only one service implementation. But Wait
responds best to economy (i.e., level 8) since there is only a
single call to the service whereas Retry involves multiple
invocations (i.e., level 7). Sequential invocation in
RecoveryBlock is cheaper than parallel invocation in Active
and Voting because not all service implementations will have
to be invoked; a particular alternative of the service will be
invoked only if the original service and other alternatives fail,
whereas parallel invocation requires that different service
implementations be invoked simultaneously. Recovery Block
Replica (level 6) is cheaper than RecoveryBlockNVP (level 5)
because providing replicas of the service should cost less than
development of NVP. Similarly ActiveReplica (level 4) is cheaper
than ActiveNVP (level 3) and VotingReplica (level 2) is cheaper
than VotingNVP (level 1). Note that Voting is more expensive
than Active due to development of a voting algorithm to
determine the final result. For a combination of patterns such
as Retry+Wait, the relationship level is an average of the levels
of the combining patterns.

Table 1. Relationship between Service Characteristics and
 Fault Tolerance Patterns

Transient
Failure (TF)

8 7 0 0 0 0 0 0 7.5

Instance
Specificity (IS)

8 8 7 6 5 4 5 4 8

Replica
Provision (RP)

0 0 8 0 8 0 8 0 0

NVP Provision
(NP)

0 0 0 8 0 8 0 8 0

Correctness
(CO)

2 2 3 4 5 6 7 8 2

Timeliness (TI) 4 1 5 6 7 8 2 3 2.5

Simplicity (SI) 8 8 7 6 5 4 3 2 8

Economy (EC) 7 8 6 5 4 3 2 1 7.5

Retry+
Wait

Voting
Replica

Service
Characteristics

Fault Tolerance Patterns

Retry Wait
RB

Replica

RB
NVP

Active
Replica

Active
NVP

Voting
NVP

For the relationship between other characteristics and the
patterns, we reason in a similar manner. Retry and Wait suit the
environment with Transient Failure. The patterns that rely on
the execution of a single service at a time respond better to
Instance Specificity than those that employ multiple service
implementations. Replica Provision and NVP Provision are
relevant to the patterns that employ space redundancy. For
Correctness, Voting is the best since it is the only pattern that
can mask/detect byzantine failure (i.e., the case that the
services give incorrect results). Active is better than
RecoveryBlock with regard to byzantine failure because the
chance of getting the result that is incorrect should be lower
than the case of RecoveryBlock due to the fact that the result
of Active can come from any one of the redundant services
that are invoked in parallel. Retry and Wait do not suit
Correctness since they rely on the execution of a single
service. For Timeliness, the comparison of the patterns on time
performance given in [2], [3] (ranked in descending order) is as
follows: Active, RecoveryBlock, Retry, Voting, Wait. For
Simplicity, the logic of Retry and Wait which involves a single
service is the simplest.

5.2 Assessment of Service Characteristics
The next step is to have the service designer assess what

characteristics the service possesses; the characteristics would
influence pattern recommendation.

1) Identify Dominant Characteristics: The service designer
will consider service semantics and condition of service
provision, and identify dominant characteristics that should
influence pattern recommendation. For each characteristic that
is of concern, the service designer defines a dominance level.
Level 1 means the characteristic is the most dominant (i.e.,
ranked 1st), level 2 means less dominant (i.e., ranked 2nd), and
so on. Level 0 means the service does not have the characteristic
or the characteristic is of no concern.

For example, during the design of a CheckBalance service
of a bank, the service designer considers Instance Specificity
as the most dominant characteristic (i.e., dominance level 1)
since bank customers would be tied to their bank accounts
that are associated with this particular service. From
experience, the designer sees that the computing environment
of the bank provides a reliable service and if there is a problem,
it is generally transient, and hence a simple fault handling
strategy is preferred (i.e., Transient Failure and Simplicity have
dominance level 2). Nevertheless, the designer is able to
afford exact replicas of the service if something more serious
happens (i.e., Replica Provision has dominance level 3).
Suppose the designer is not concerned with other
characteristics, then the others would have dominance level 0.
Table 2 shows the dominance level of all characteristics of this
CheckBalance service.

2) Convert Dominance Level to Dominance Weight:
a) Convert Dominance Level to Raw Score: The

dominance level of each characteristic will be converted to a
raw score. The most dominant characteristic gets the highest
score which is equal to the dominance level of the least
dominant characteristic that is considered. Less dominant
characteristics get less scores accordingly. From the example

104 วารสารเทคโนโลยีสารสนเทศ
Information Technology Journal

ปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol.8, No.2, July - December 2012

Research Paper : Recommendation and Application of Fault Tolerance Pattern to Services

of the CheckBalance service, Replica Provision has the least
dominance level of 3, so the raw score of the most dominant
characteristic – Instance Specificity – is 3. Then the score for
Transient Failure and Simplicity would be 2, and Replica
Provision gets 1. Table 3 shows the raw scores of the service
characteristics.

b) Compute Dominance Weight: First, divide 1 by the
summation of the raw scores. For example, for the CheckBalance
service, the summation of the raw scores in Table III is 8
(2+3+1+0+0+0+2+0) and the quotient would be 1/8 (0.125).
Then, multiply this quotient with the raw score of each
characteristic. The result would be the dominance weights of
the characteristics (where the summation of the weights is 1).
The weights will be used later in the recommendation model.
For the CheckBalance service, the dominance weights of all
characteristics are shown in Table 4.

5.3 Fault Tolerance Patterns Recommendation Model
We propose a model for fault tolerance patterns recommenda-
tion as in (1)

Table 2. Dominance levels of service characteristics.

Table 3. Raw scores of service characteristics.

Level 2 1 3 0 0 0 2 0

Service Characteristics

Transient
Failure

Instance
Specificity

Replica
Provision

NVP
Provision

Simpli
city

Econo
my

Correct
ness

Timeli
ness

Score 2 3 1 0 0 0 2 0

Service Characteristics

Transient
Failure

Instance
Specificity

Replica
Provision

NVP
Provision

Simpli
city

Econo
my

Correct
ness

Timeli
ness

Table 4. Dominance weights of service characteristics.

Score 0.25 0.375 0.125 0 0 0 0.25 0

Service Characteristics

Transient
Failure

Instance
Specificity

Replica
Provision

NVP
Provision

Simpli
city

Econo
my

Correct
ness

Timeli
ness

P = D x R (1)

where P = A vector of fault tolerance pattern scores
D = A vector of dominance weights of service

characteristics as computed in Section V.B
R = A relationship matrix between service

characteristics and fault tolerance patterns as
proposed in Section V.A

Therefore, given R as

EC
SI
TI
CO
NP
RP
IS

TF

R



































5.712345687
823456788

5.232876514
287654322
080808000
008080800
845456788

5.700000078

Retry RBReplica ActiveReplica VotingReplica Retry+Wait

Wait RBNVP ActiveNVP VotingNVP

and, in the case of the CheckBalance service, D as

The pattern recommendation P would be

 88.600.262.350.212.475.338.575.600.7P

Retry RBReplica ActiveReplica VotingReplica Retry+Wait

Wait RBNVP ActiveNVP VotingNVP

The recommendation says how well each pattern suits the
service according to the characteristic assessment. The
pattern with the highest score would be best suited for the
service. Since the designer of the CheckBalance service pays
most attention to Instance Specificity, Transient Failure, and
Simplicity, the designer inclines to rely on reliable provision of
a single service. The patterns that respond well to these
characteristics, i.e, Retry, Wait, and Retry+Wait, are among the
first to be recommended. Here, Retry is the best-suited pattern
with the highest score. Since the designer can provide replica
services as well but still has simplicity in mind,
RecoveryBlockReplica is the next to be recommended. Voting
patterns and those which require NVP services are more
complex strategies, so they get lower scores.

5.4 Generation of Fault Tolerant Service
A software tool has been developed to support fault

tolerance patterns recommendation and generation of fault
tolerant services as a BPEL service. The service designer will
first be prompted to select service characteristics that are of
interest, and then specify a dominance level for each chosen
characteristic. The tool will calculate and rank the pattern scores
as shown in Figure 2 for the CheckBalance service. The designer
can choose one of the recommended patterns and the tool will
prompt the designer to specify the WSDL of the service
together with any parameters necessary for the generation of
the BPEL version. For Retry, the parameter is the number of
retry times. For RecoveryBlock, Active, and Voting, the
parameter is a set of WSDLs of all service implementations
involved. For Wait, the parameter is the wait-until time. In this

 025.0000125.0375.025.0D
 TF IS RP NP CO TI SI EC

105วารสารเทคโนโลยีสารสนเทศ
Information Technology Journal

ปีท่ี 8 ฉบับท่ี 2 กรกฎาคม - ธันวาคม 2555
Vol.8, No.2, July - December 2012

Research Paper : Recommendation and Application of Fault Tolerance Pattern to Services

example, Retry is chosen and the number of retry times is 5.
Then, a fault tolerant version of the service will be generated
as a BPEL service for GlassFish ESB v2.2 as shown in Figure 3.
The BPEL version invokes the service in a fault tolerant way,
implementing the pattern structure we adopt from [2], [7].

Figure 2. Pattern recommendation by supporting tool.

Figure 3. BPEL structure for Retry.

6. Conclusion
In this paper, we propose a model to recommend fault

tolerance patterns to services. The recommendation considers
service characteristics and condition of service environment.
A supporting tool is developed to assist in the recommendation

and generation of fault tolerant service versions as BPEL
services. As mentioned earlier, it is a lightweight approach which
helps to identify fault tolerance patterns that are likely to match
service characteristics according to subjective assessment of
service designers. At present the recommendation is aimed for
a single service. The approach can be extended to accommodate
pattern recommendation and generation of fault tolerant
composite services. More combinations of patterns can also
be supported. In addition, we are in the process of trying the
model with services in business organizations for further
evaluation.

7. References
[1] M. P. Papazoglou, Web Services: Principles and

Technology, Pearson Education, Prentice Hall, 2008.
[2] A. Liu, Q. Li, L. Huang, and M. Xiao, “FACTS: A framework

for fault–tolerant composition of transactional Web
services,” IEEE Trans. on Services Computing, Vol.3,
No.1, pp. 46-59, 2010.

[3] Z. Zheng and M. R. Lyu, “An adaptive QOS-aware fault
tolerance strategy for Web services,” Empirical Software
Engineering, Vol.15, Iss. 4, pp. 323-345, 2010.

[4] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and
secure computing,” IEEE Trans. on Dependable and
Secure Computing, Vol.1, No.1, pp. 11-33, 2004.

[5] G. Dobson, “Using WS-BPEL to implement software fault
tolerance for Web services,” In Procs. of 32nd
EUROMICRO Conf. on Software Engineering and
Advanced Applications (EUROMICRO-SEAA’06),
pp. 126-133, 2006.

[6] J. Lau, L. C. Lung, J. D. S. Fraga, and G. S. Veronese,
“Designing fault tolerant Web services using BPEL,” In
Procs. of 7th IEEE/ACIS Int. Conf. on Computer and
Information Science (ICIS 2008), pp. 618-623, 2008.

[7] T. Thaisongsuwan and T. Senivongse, “Applying
software fault tolerance patterns to WS-BPEL processes,”
In Procs. of Int. Joint Conf. on Computer Science and
Software Engineering (JCSSE2011), pp. 269-274, 2011.

[8] R. Hanmer, Patterns for Fault Tolerant Software,
Wiley Publishing, 2007.

[9] Z. Zheng and M. R. Lyu, “A QoS-aware fault tolerant
middleware for dependable service composition,”
In Procs. of IEEE Int. Conf. on Dependable Systems &
Networks (DSN 2009), pp. 239-249, 2009.

[10] Z. Zheng and M. R. Lyu, “Optimal fault tolerance strategy
selection for Web services,” Int. J. of Web Services
Research, Vol.7, Iss. 4, pp. 21-40, 2010.

