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A Comparative Efficiency of Clustering Using Dynamic Feature
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Abstract

This research presented the result of the comparative
efficiency between the Clustering Using Dynamic Feature
Selection (DFS) for increasing efficiency of Subspace
Clustering Algorithms and the existing Clustering techniques.
The result showed that the comparative efficiency in
accuracy of the Subspace Clustering Algorithms worked with
the Hierarchical Clustering had the overall accuracy highest
rate at the level of 94%. It was classified the 1,503 accurate
data from 1,605. The best group is classified as a 100%
accuracy was the grade A group. Next, the Subspace Clustering
Algorithms that works with K-Means Clustering had the
overall accuracy level of 83%. It was classified the 1,331
accurate data from 1,605. The best group is classified as a
100% accuracy was the grade A group. However, both of
algorithms through the Feature Set with the Dynamic Feature
Selection (DFS).

Keyword: Dynamic Feature Selection, Subspace Clustering

Algorithms, Hierarchical Clustering, K-Means Clustering.
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