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Abstract

The road surface anomaly detection is an important task

in road maintenance and road transportation to safety assurance
for all road users. This research study the road surface
anomalies detection using deep convolutional neural networks
with transfer learning technique. The primary objective was
to compare the performance of 5 deep convolutional neural
networks architectures that are the pre-trained models, such as
1) Faster R-CNN_NAS, 2) Faster R-CNN Inception
ResNetV2 Atrous, 3) SSD ResNet50 FPN, 4 ) SSD Mobile-
NetV1 FPN, and 5) Faster R-CNN ResNet101. The images
dataset of road surface anomalies in the natural environment
for training and testing have 6 categories, such as 1) pothole
2) longitudinal cracks, 3) transverse cracks, 4) alligator cracks,
5) patch, and 6) speed bumps. The results show that the SSD
ResNet50 FPN model provides the highest mean average
precision of 87.38% and least test times. The study provides
practical methodology and models that could be applied to
automatically detect road surface anomalies in other regions
to support road informatics, improve quality, efficiency and

driving safety.

Keyword: Road surface detection, Pre-trained model,

Deep convolutional neural networks, Transfer learning.
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TagglFnunuazfidsmaymenun

TATNA RSAD fanua 6,584 nwdsznavaag
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Fuan 70% (7,168) lHiduratayaiTous (Training
dataset) LaZ 30% (3,072) I%Lﬂu"qm]"agamaau (Testing
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MUY —— =— —— = AL | mAP
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FRN Faster R-CNN NAS 1.833 43
Inception
FRIR Faster R-CNN 0.620 37
ResNetV2 Atrous
SRF SSD ResNet50 FPN 0.076 35
SMF SSD MobileNetV1 FPN | 0.056 32
FRR Faster R-CNN ResNet101 0.1086 32
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mAP
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FRIR | 84.34 | 80.90 | 79.35|82.02 | 87.47 | 77.33 | 98.97
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SMF
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FRIR ~ 15 ~0.27 ~0.5273
SRF ~ 28 ~0.03 ~ 0.0585
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