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Abstract

With the advances in data collection and storage
capabilities, massive multidimensional data are being
generated. These massive multidimensional data are usually
very high-dimensional, with a large amount of redundancy,
and only occupying a subspace of the input space. A tensor,
a generalization of vectors and matrices, is a potential tool to
govern these high dimension data. Normally, linear subspace
learning (LSL) algorithms are traditional dimensionality
reduction techniques. Unfortunately, they often become
inadequate when dealing with tensor data. Recently, interests
have grown in multilinear subspace learning (MSL), a novel
approach to dimensionality reduction of multidimensional
tensor data. This article provides an overview of methodological

and theoretical developments of the multilinear PCA (MPCA).

Keywords: Linear Subspace Learning, Principal Component
Analysis, Tensor Data, Tensor Decomposition, Multilinear
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1. Introduction

With the advances in sensor, storage, and networking
technologies, immense data are being generated. These huge
data have multidimensional representations [31]. The complexity
ofthese big data often makes dimension reduction techniques
necessary before conducting statistical inference. Principal
component analysis - PCA, has become an essential tool for
multivariate data analysis and unsupervised dimension reduction.

The goal is to find a lower dimensional subspace that captures
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most of the variation in the dataset. This article provides an

overview of methodological and theoretical developments of
the multilinear PCA (MPCA), the extended version of PCA.
We focus on its applications to tensor data analytics inculding
modern machine learning problems, community detection,
ranking, mixture model and manifold learning.

We first review the mathematical formulation of PCAvand
its theoretical development from the view point of perturbation
analysis. We then briefly discuss the relationship between
PCA and SVD. Next, definitions and operations on tensor
data are reported. Tensor decomposition has been scaned and
then extened to multilinear principle component analysis
concept. Finally, some of the opened source Python-based

tensor routines has been surveyed.

II. Linear Subspace Learning - LSL

The goal of subspace learning is to map the data set in
the high dimensional space to the lower dimensional space
such that certain properties are preserved [37]. Given a
multi-dimensional datasetx , x,,...,x, € R", find a transform
matrix ¥ that maps these m pointstoy, y,, ...,y, € R'(1<<n),
such that y, represent x, where y, = W" x .

A fundamental category of the LSL algorithms is
unsupervised. The well known LSL algorithma are Pricipal
Component Analysis (PCA), Independent Component
Analysis (ICA), Locally Preserving Projection (LPP),
Non-negative Matrix Factorization (NMF). Another LSL
category is the supervised learning algorithm. The most
popular supervised LSA is Linear Discriminant Analysis
(LDA). We will review here only the PCA.

A. Principal Component Analysis

PCA is a well-known and widely used technique applicable
to a wide variety of applications such as dimensionality
reduction, data compression, feature extraction, and
visualization [13]. The goals of PCA are to

1) extract the most important information from the data
table;

2) compress the size of the data set by keeping only this

important information;
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3) simplify the description of the data set; and
4) analyze the structure of the observations and the variables.

Let X be the (n, p) matrix of observations:

(1

where x/ is the value of individual i for variable j which
is identified with a vector of n components (x/,....x’ )" . In a
similar way, an individual i is identified to a vector x, of p
components with x, = (x/,...,x?). For simplicity, we assume X
has been centered so that it has zero column means, i.e.,

Yrx=10,...0]
n

€ R™ . PCA seeks an orthogonal
transformation I'€ K™’ to convert X € R™ possibly
correlated column variables into U = XI"€ R™ linearly
uncorrelated column variables. Conventionally, U are
arranged column-wise in descending order by their
within-column variance. Often, I" = [¥ 1,...,7//)] is solved by
eigenvalue decomposition of the sample covariance matrix,
%XT X=TAI'T, where A is a diagonal matrix with entries
A, 2,2 /1/7 2 0and I'" I' = 7. The matrix of principal
component loadings I" can also be obtained by singular

value decomposition (SVD) of the data matrix,

X=ZAN"TT, 2

where Z € R™ has uncorrelated and standardized

columns, i.e., lZT Z=1.PCA is probably the most popular

and widely userél for dimension reduction tool [5]. Based on

Eq.(1), X is approximated by leading eigen-components as
X ~ZANTT, where Z e R, A e R77 T e R"7.

B. Summarizing the Computational Steps of PCA

Suppose thatx , x,, ..., Xp are px1 vectors collected from
n subjects. The computational steps that need to be accomplished
in order to obtain the results of PCA are the following:

Step 1. Compute mean: Let X be the vector of arithmetic
means of each of the p variables, defining the centroid:
X =(x', .., Xx")T, where X/ = ! 127:1 x/

Step 2. Standardize the data’? (I’:j =x-x,i=1,2,3,..,n
andj=1,2,3,..,p0
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Step 3. Form the matrix 4 = [® , @, ...,(Dp],thencompute

% [Z ﬁ:l,l:l CDZ(DI]

Step 4. Compute the eigenvalues of C: 4, >.., > lp >0

covariance matrix: C =

Step 5. Compute the eigenvectors of C: u,, u,, ..., u,
Step 6. Proceed to the linear tranformation: R =R, that
performs the dimensionality reduction.

ExampleII.1. Find PCA of the (10, 2) matrix of observations;

xlj=1 x{'=2
X/, 25 24
X/, 0.5 0.7
X/, 22 2.9
X/, 1.9 22
X/ 3.1 3.0
X/, 2.3 2.7
X/, 2.0 1.6
X/ 1.0 1.1
X/, 1.5 1.6
x|t 0.9

At the first step, we have x/ = 1.81 and x? = 1.91.
In the next step, we then standardize the data, to get the mean

transformed values,

xl-x!| x2-x?
1 0.69 0.49
2 -131 | -1.21
3 0.39 0.99
4 0.09 0.29
5 1.29 1.09
6 0.49 0.79
7 0.19 -0.31
8 -0.81 -0.81
9 -0.31 -0.31
10 -0.71 -1.01

In the 3" step, we compute the covariance matrix:

C:Pr@l <I>1T<D2}
D0, OO,

0.6165 0.6154
0.6154 0.7165

Step 4., the eigenvalues of C are 7, = 1:28402 and
7, = 0:04908. Step 5., the eigenvectors of C have been

0.6779 -0.7352
u, = andu, =
0.7352 0.6778

To get the principal components, we have to multiply

computed,

eigenvectors to mean transformed values,
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[ 0.8279702 [-0.1751153]
—1.77758 0.1428572
0.9921975 0.384375
0.2742104 0.1304172
1.675801 —0.2094985
pe, = and pc, =
0.9129491 0.1752824
—0.09910944 —0.3498247
—1.144572 0.04641726
—0.4380461 0.01776463
| -1.223821 | | -0.1626753 |

Although, principal component analysis is usually
explained via an eigen-decomposition of the covariance
matrix. However, it can also be performed via singular value
decomposition (SVD) of the data matrix X.

C. Find PCA using Singular Value Decomposition (SVD)

SVD is another useful method in matrix dimensionality
reduction as PCA. However, different from PCA, it decomposes
the original matrix (X) into 3 sub-matrices: U, 2, V such that
(as shown in Figure 1):

X=UZX V" 3)

where U: n x r matrix, left singular vectors, eigenvectors

of X X" ,2: r x r matrix, diagonal matrix with singular values

along diagonal (square root of X” X), V' : r x p matrix, right

singular vectors, eigenvectors of X. r is the rank of matric X,
number of lineary independent columns/rows [8].

As in case of PCA, the singular values are arranged in
descending order of magnitude. The principal components is
defined as: XV = UZ, which is equivalent to left singular

columns multiplied/weighted by singular values.

)) T
rxp

rxr

nxp Xy

Figure 1. SVD of matrix X.

II1. Tensor or Multilinear Data
A. Definition
More and more, real data obtained from experiments,

databases, or samples is multi-dimensional in nature, which
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is called “Big Data”. It consists of multidimensional,
multimodal datasets that are so huge and complex that they
cannot be ecasily stored or processed by using standard
computers. Also, big data analytics require novel technologies
to efficiently process huge datasets within tolerable elapsed
times. Tensors (i.e., multilinear, multi-way arrays, hyperspaces)
provide often a natural and compact representation for such
massive multidimensional data [6], [15].

Definition II1.1 (Tensors, multilinear, multi-way arrays,
hyperspaces): [5], [14] Higher-order tensors are
higherdimensional arrays of numerical values and are natural
generalizations of vectors (first order) and matrices (second
order).

Definition IIL.2 [31] The number of dimensions (ways)
of a tensor is its order, denoted by N. Each dimension (way)
is called a mode.

In this paper, vectors are denoted by lowercase boldface
letters, e.g., a, matrices by uppercase boldface, e.g., 4, and
tensors by calligraphic letters, e.g., A.

Definition ITL.3 [3], [31] An N"-order tensor has N
indices {i }, n = 1, ..., N, with each index i (= 1, ..., i,
addressing mode-n of A. Thus, we denote an N"*-order tensor
explicitly as 4 € RV

Tensor is a general name of multi-way array data.
For example, 0-order tensor is a scalar (N =0), 1-order tensor
is a vector (N = 1), 2-order tensor is a matrix (N = 2) and
3-order tensor is a cube (N = 3). We can image 4-order tensor

as a vector of cubes (N = 4). In similar way, 5-order tensor is

0 0o 0o/o0o 0 o0
= e oflafo|ofa
6 6 6 6 6 6 o bl el
12 2 n|lpin|n AN e O ]ie.

i 2|12|n|n|n
20 0 20 20 20 20 L L=

20 20|20 20 20 |

8 g8|8|8 2|8

g|8|8 8|8

2d-tensor -
3d-tensor

1d-tensor

| | |
|
|}
[ ]

i
(S

 —

4d-tensor

5d-tensor 6d-tensor

Figure 2. Types of Tensor data.
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a matrix of cubes (N = 5), and 6-order tensor is a cube of
cubes (N = 6), shown in Figure 2.

In our everyday life, there are a lot of activities which
concerns with a huge amount of data that can be represented
by using tensor data. For instance, color video is a example
of 4-order tensor, width, height, colorplanes (red, green and

blue), and time or temporal displaying, as shown in Figure 3.

Figure 3. The 3-order tensor data can be used to replesent
color video.

Another fourth-order tensor example is network traffic
data with four modes: source IP, destination IP, port number,
and time, as illustrated in Figure4. Network traffic data
organized in source IP X destinationlP x portnumber X time

[31] tensor.

Mode 3 [port #)
S——

Mode 3 (port #)
R

Mode 3 (port #)

Mode 1 (source IP)
Mode 1 (source IP)
Mc_;de 1 (source IP)

Mode 2 (destination IP) ~ Mode 2 (destination IP) = Mode 2 (destination IP)

Mode 4 (time)

Figure 4. Network traffic data is the example of the 4-tensor [12].

Definition I11.4 The mode-n vectors (or fibers) of 4 are
defined as the / -dimensional vectors obtained from A4 by
varying the index /. while keeping all the other indices fixed.

Definition IIL.5 The i th mode-n slice of 4 is defined as
an (N - 1)th-order tensor obtained by fixing the mode-# index
of dtobei:AC, ..., 51, ..y 0).

Definition II1.6 (Rank-1 tensor) An Nth-order tensor
A has rank 1 when it equals the outer product of N vector

urv,ue, .U,

A= U(l) o U(2) o, ..o U(N)‘
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Figure 5 shows all vectors (fibers) of the 3-order tensor

(A em8x6x4)‘

/1'521,“.,1'1

o1

i=1,..

(c) (d)

Figure 5. All vectors (fibers) of a) the 3-order tensor
(4 ER™™Y ie., b)the mode-1 vectors (fibers),
¢) the mode-2 vectors (fibers), and d) the mode-3
vectors (fibers) [31].

Figure 6 shows all slides of the 3-order tensor (4 € R*™*),

% /e
(v) )

(¢ (d)

Figure 6. All slices of a) the 3-order tensor (A € R*™*), ie., b)
the mode-1 slices (horizontal slices-A(l, :, :)), ¢)
the mode-2 slices (lateral slices-A(:, 1, :)), and d)
the mode-3 slices (frontal slices-A(-, :, 1)) [4], [31].

8x6x4

(a)

Definition III.7 (Rank) The rank of an arbitrary
Nth-order tensor A, denoted by R = rank(A4), is the minimal
number of rank-1 tensor that yield 4 in a linear combination.

The rank (or order) of a tensor is defined by the number
of directions (and hence the dimensionality of the array)
required to describe it. For example, properties that require
one direction (1 rank) can be fully described by a 3 x 1
column vector, and properties that require two directions
(2" rank tensors), can be described by 9 numbers, as a 3 x 3
matrix. As such, in general an nth rank tensor can be described
by 3" coefficients.

B. Tensor Operations

1) Tensorization: Normally, vectors and matrices
algebraic structures were respectively introduced as natural
representations for segments of scalar measurements and
measurements on a grid. However, tensors seemed natural to
stack together vectors and/or matrices into a third-order

tensor. The procedure of creating a data tensor from
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lower-dimensional original data is referred to as tensorization.
The following taxonomy has been proposed for tensor
generation [4]:

1) rearrangement of lower dimensional data structures;

2) mathematical construction;

3) experiment design; and

4) naturally tensor data, (some data sources are readily
generated as tensors, ¢.g., RGB color images, videos, 3D light
field displays). In this paper, we concentrate on just only the
first method of this taxonomy.

Figure 7 shows two particular ways to construct a tensor [4].

=

I/

+o m—

N

174

| > o =

2x2x2x2x2x2)
(8% 8)

[54 x 1) (a}

Figure 7. Construction of tensors. (a) The tensorization of
a vector or matrix into the so-called quantized
format; (b) The tensor is formed through the
discretization of a trivariate function f(x, y, z) [4].

2) Tensor Decomposition: Dimensionality reduction is
an attempt to transform a high-dimensional dataset into a
lowdimensional representation while retaining most of the
information regarding the underlying structure or the actual
physical phenomenon, rewrite a tensor as a sum of rank-1
tensors [16].

Definition I11.8 (Outer product) [4], [10], [31] The outer

IixIyx.0,

product 4 o B of a tensordeR and a tensor

Beinjlszx“-fQ’ is defined by (4 o B)iliZ"'i;7-/1jZ"'iQE

for all values of the indices.

a. .
hizeipbjip..ip
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Definition IIL1.9 (Tensor Unfolding): [10], [31] A tensor
can be unfolded (matricization) into a matrix by rearranging
its mode-n vectors. The mode-n unfolding of 4 is denoted by
4, € R (oexludexdy) - where the column vectors of 4 "

are the mode-n vectors of 4.

Figure 8 shows matricization operations of the 3-order

tensors [3].

Mode-1 matr t foldi
Matricization/unfolding S .ma -"c'za.m.(un R
of a3 ordrtemsor HEEEEEEEE = »
2 4 6 B 1012 14 16 18 20 22 24
Matlab code:
ﬁ" >>M=reshape(¥,2,();
...i' Mode-3 matricization (unfolding)
i ' Mode-2 matricization (unfolding) '
- - H:H:H-
A2-by-3-by-4 tensor H:B:B+E .g.m.n’
Matlab code: BB oE sk BB 15.13’
>>Y=reshape(1:24,[2,3,4]) . . . . i
o [l 12 87 1= (23] 2 58] 20 3] 22 [ 2« |
Matlab code: Matlab code:
>>M=permute(Y,[2,1,3]); >>M=permute(Y,[3,1,2]);
>>Ms=reshape(M,3,[1); >>M=reshape(M,4,[]);

Figure 8. lllustration of matricization operations of the 3-order
tensors [3].

Definition II1.10 (Vectorization): [31] Similar to the
vectorization of a matrix, the vectorization of a tensor is a
linear transformation that converts the tensor
4,€ 1D dxdexly) ingo 2 column vector a € RN
denoted as a = vec(A4).

Definition I11.11 (Multilinear projection): [31] The n- mode
product of a tensor 4 by a matrix U €R’™" denote as

A xn U, is a tensor with entries:

(A Xn U)(i/s ey in_pjny i,,+19 (] iN = (4)
Zi Ay s i)UG 5 s i)

Visual illustration of this operation is shown in Figure 9.

vectors i

S projection

Figure 9. Example of multilinear projection [3].
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There is a lot of variety of tensor decompositions in the
literature. The most widely used decomposition techniques
in data analysis, from a practitioner’s point of view, are in the
following listed [7];

1) PARAFAC-based Decomposition

2) TUCKER-based Decomposition

3) DEDICOM-based and related models

4) Hierarchical Tucker Decomposition (H-Tucker)

5) Tensor-Train Decomposition (TT)

6) Data Fusion & Coupled Matrix Tensor Models

7) PARAFAC2 and Decomposition of Multiset Data.

For more detail, the audience may consult [4], [5], [7],

[10], [12], [14], [15], [19], [21], [22], [24], [26], [34], [38]

IV. Multilinear PCA - MPCA

MPCA is an unsupervised multilinear subspace learning
(MSL) algorithm for general tensors targeting variation
maximization as in PCA. In this section, we will first give

some details about the MSL, then MPCA will be present next.

A. Multilinear Subspace Learning (MSL) algorithm

Multilinear Subspace Learning (MSL) is the multilinear
extension of LSL. It solves for a multilinear projection with
some optimality criteria, given a set of training samples.
MSL can be applied for dimensionality reduction of
multidimensional data directly from their tensorial
representations. Two key components for MSL are the
multilinear projection employed and the objective criterion
to be optimized.

A multilinear subspace is defined through a multilinear
projection that maps the input tensor data from one space to
another (lower-dimensional) space. There are three basic

multilinear projections based on the input and output of a
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projection: the traditional vector-to-vector projection (VVP),
tensor-to-tensor projection (TTP), and tensor-to-vector
projection (TVP). However, the LSL can be viewed as a
special case of MSL where the projection to be solved is a
VVP. Therefore, MSL solves for a TTP that allows projected
tensors to capture most of the variation present in the original
tensors [22].

B. MPCA

The MPCA solution can be found out by using the
alternating least square (ALS) approach. It is iterative in
nature. As in PCA, MPCA works on centered data. Centering
is a little more complicated for tensors, and it is problem
dependent. The problem of multilinear subspace learning
based on the tensor-to-tensor projection can be mathematically
defined as follows:

A set of MNth-order tensor samples is available for training,
{4, A4, ..., A} where each sample A4 isan/ x /[, x.x1,
tensor in a tensor space R

Based on the previous definitions, a tensor can be
projected to another tensor by N projection matrices

urv.u?, ..., UV as:

y= AX] U(l)‘/ %, U<2)1...><N U(N),. (5)

The MPCA algorithm maximizes the following tensorbased

scatter measure:

(6)

M
etV m

¥, =3, -7,
Named as the total tensor scatter, where 7 = I
is the mean sample. There is no known optimal solution which
allows for the simultaneous optimization of the N projection
matrices. Therefore, the NV optimization subproblems can be
solved by finding the subsolutions that maximizes the scatter

in the n-mode vector subspace. Here is the pseudocode

implementation of the MPCA [22], [23];
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Algorithm: MPCA [22], [23]

variation captured.

Input: A set of tensor samples {4, € R m=12.. M}

Output: Low-dimensional representations {,, € R m=1,2..,M} of the input tensor samples with maximum

is the sample mean.

Step 3 (Local optimization):

eFork=1:K
-Fork=1:K

- Caleulate {7, ,m=1,...,M}and'¥,
-If ‘Pyk - \Pnfl < n, break and go to Step 4.

{r.,=4,%, oo’ X, (7(2)T...><N (7(N)T,m =L..,M}.

Step 1 (Preprocessing): Center the input samples as {Zm =4, - A,m=12... M} where where 4 = %Z

Step 2 (Initialization): Calculate the eigen-decomposition of ‘(D(")* = Zi; Zm (n) Z,Z (n) and set U to consist of

the eigenvectors corresponding to the most significant P eigenvalues, forn =1, ...,N.

« Calculate {7, = Zm X, v’ x, ﬁ(zyme ﬁ(N)r’m 1

M 1~ |2 ~ . . ~ .
* Calculate ¥, = Zm:1||l//mu » (the mean 7 is all zero since 4 is centered).

— M3},

* Set the matrix /") to consist of the P eigenvectors of the matrix ®™), corresponding to the largest
) M — ~ N, ~
eigenvalues, where @)= Zmz1(Am(n) —A.)-Usy - (Ayiy = A4y) ", and U =

et e. 00" el 0i?®..00"")

Step 4 (Local optimization): The features tensor after projection is obtained as

M

m=1""M

V. Softwares for Tensor Implementation

In this section some opened-source Python-based tensor
libraries for data science were introduced.

* TensorFlow: (https://www.tensorflow.org/)

TensorFlow is a framework to define and run computations
involving tensors. Tensors are the basic data structures in
TensorFlow. TensorFlow also prepares a lot of functions for
a Machine Learning system, based on Neural Networks.

¢ PyTorch: (https://pytorch.org/)

PyTorch is an optimized tensor library for deep learning
using GPUs and CPUs.

* TensorLy: (http://tensorly.org/stable/index.html)

TensorLy is a high-level API for tensor methods and deep
tensorized neural networks in Python.

* Theano: (http://deeplearning.net/software/theano/index.
html)

Theano is a powerful Python library that allows for
numerical operations involving multi-dimensional arrays with

a high level of efficiency. The library’s transparent use of a

Information Technology Journal
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GPU for carrying out dataintensive computations instead of
a CPU results in high efficiency in its operations.

* scikit-tensor: (https://pypi.org/project/scikit-tensor)
scikit-tensor is a Python module for multilinear algebra and

tensor factorizations.

VI. Conclusion

A tensor is a multidimensional array. When data come in
the form of a tensor, special methods and modelsare required
to capture the dependencies represented by the indexing
structure. For such data, it is often reasonable to reduce
dimensionality before performing data analysis, e.g., MPCA.
MPCA determines a multilinear projection onto a tensor
subspace of lower dimensionality that captures most of the
signal variation present in the original tensorial representation.
In this review paper, we first introduced PCA to make clear
how PCA works on vector data. PCA is mostly used as a tool
in exploratory data analysis and for making predictive models.

Then definitions, properties, and operations on tensor data
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were presented. The MPCA concept based on Lu. et.al ’s
papers and other authors was reviewed [22], [23]. Finally,
some tensor libraries for data science were made known to

the audiences. In the future work, we will present the

numerical MPCA calculation on simulated and real data.
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