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Abstract

	 With the advances in data collection and storage  

capabilities, massive multidimensional data are being  

generated. These massive multidimensional data are usually 

very high-dimensional, with a large amount of redundancy, 

and only occupying a subspace of the input space. A tensor, 

a generalization of vectors and matrices, is a potential tool to

govern these high dimension data. Normally, linear subspace

learning (LSL) algorithms are traditional dimensionality  

reduction techniques. Unfortunately, they often become  

inadequate when dealing with tensor data. Recently, interests 

have grown in multilinear subspace learning (MSL), a novel 

approach to dimensionality reduction of multidimensional 

tensor data. This article provides an overview of methodological 

and theoretical developments of the multilinear PCA (MPCA).

Keywords: Linear Subspace Learning, Principal Component

Analysis, Tensor Data, Tensor Decomposition, Multilinear 

Subspace Learning, Multilinear Principal Component Analysis.

1.  Introduction

	 With the advances in sensor, storage, and networking 

technologies, immense data are being generated. These huge 

data have multidimensional representations [31]. The complexity 

of these big data often makes dimension reduction techniques 

necessary before conducting statistical inference. Principal 

component analysis - PCA, has become an essential tool for 

multivariate data analysis and unsupervised dimension reduction. 

The goal is to find a lower dimensional subspace that captures 
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most of the variation in the dataset. This article provides an

overview of methodological and theoretical developments of 

the multilinear PCA (MPCA), the extended version of PCA. 

We focus on its applications to tensor data analytics inculding 

modern machine learning problems, community detection, 

ranking, mixture model and manifold learning.

	 We first review the mathematical formulation of PCAvand 

its theoretical development from the view point of perturbation

analysis. We then briefly discuss the relationship between 

PCA and SVD. Next, definitions and operations on tensor 

data are reported. Tensor decomposition has been scaned and 

then extened to multilinear principle component analysis 

concept. Finally, some of the opened source Python-based 

tensor routines has been surveyed.

II.  Linear Subspace Learning - LSL

	 The goal of subspace learning is to map the data set in  

the high dimensional space to the lower dimensional space 

such that certain properties are preserved [37]. Given a  

multi-dimensional data set x1, x2, ..., xm ∈ℜn , find a transform 

matrix W that maps these m points to y1, y2, ..., ym ∈ℜn (l << n), 

such that yi represent xi where yi = WT xi.

	 A fundamental category of the LSL algorithms is  

unsupervised. The well known LSL algorithma are Pricipal 

Component Analysis (PCA), Independent Component 

Analysis (ICA), Locally Preserving Projection (LPP),  

Non-negative Matrix Factorization (NMF). Another LSL 

category is the supervised learning algorithm. The most 

popular supervised LSA is Linear Discriminant Analysis 

(LDA). We will review here only the PCA.

	 A. Principal Component Analysis

	 PCA is a well-known and widely used technique applicable

to a wide variety of applications such as dimensionality  

reduction, data compression, feature extraction, and  

visualization [13]. The goals of PCA are to

	 1) extract the most important information from the data 

table;

	 2) compress the size of the data set by keeping only this 

important information;
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	 3) simplify the description of the data set; and

	 4) analyze the structure of the observations and the variables.

Let X be the (n, p) matrix of observations:

	 where xi
j  is the value of individual i for variable j which 

is identified with a vector of n components (x1
j ,...,xn

j )T . In a 

similar way, an individual i is identified to a vector xi of p 

components with xi = (x1
1,...,xi

p). For simplicity, we assume X 

has been centered so that it has zero column means, i.e.,  

X
n

T
n11 = [0,...,0] ∈ ℜ1x p . PCA seeks an orthogonal  

transformation Γ∈ ℜpx p to convert X ∈ ℜnx p  possibly  

correlated column variables into U = XΓ∈ ℜnx p  linearly 

uncorrelated column variables. Conventionally, U are  

arranged column-wise in descending order by their  

within-column variance. Often, Γ  = [γ 1,...,γ p] is solved by 

eigenvalue decomposition of the sample covariance matrix, 

X
n

T
n11 XT X = Γ �ΛΓT , where Λ is a diagonal matrix with entries 

λ
1 ≥.., ≥ λ p ≥ 0 and ΓT Γ  = Ip. The matrix of principal 

component loadings Γ  can also be obtained by singular 

value decomposition (SVD) of the data matrix,

	 where Z ∈ ℜnx p  has uncorrelated and standardized  

columns, i.e., X
n

T
n11 ZT Z = Ip. PCA is probably the most popular 

and widely used for dimension reduction tool [5]. Based on

Eq.(1), X is approximated by leading eigen-components as  
TZX ΓΛ≈ ~~~ 2/1 , where .~,~,~ ~~~~ pppppnZ ××× ℜ∈Γℜ∈Λℜ∈

	 B. Summarizing the Computational Steps of PCA

	 Suppose that x1, x2, ..., xp are px1 vectors collected from 

n subjects. The computational steps that need to be accomplished 

in order to obtain the results of PCA are the following:

	 Step 1. Compute mean: Let x  be the vector of arithmetic 

means of each of the p variables, defining the centroid:  

x  = (x 1, ..., x p)T , where x j = X
n

T
n11  j

i
n
i x

n∑ =1
1

	 Step 2. Standardize the data: Φ j = xi - x j , i = 1, 2, 3, ..., n 

and j = 1, 2, 3, ..., p () 

	 Step 3. Form the matrix A = [Φ1, Φ2, ...,�Φp], then compute

covariance matrix: [ ]∑ ΦΦ
−

= == l
T
k

p
lkn

C 1,11
1

	 Step 4. Compute the eigenvalues of C: λ 1 ≥.., ≥ λ p ≥ 0

	 Step 5. Compute the eigenvectors of C: u1, u2, ..., up

	 Step 6. Proceed to the linear tranformation: Rp ⇒ Rq that

performs the dimensionality reduction.

	 Example II.1. Find PCA of the (10, 2) matrix of observations;

	 At the first step, we have x 1 = 1.81 and x 2 = 1.91.  

In the next step, we then standardize the data, to get the mean 

transformed values,

	 In the 3rd step, we compute the covariance matrix:

	 Step 4., the eigenvalues of C are γ 1 = 1:28402 and  

γ
2 = 0:04908. Step 5., the eigenvectors of C have been  

computed,

	 To get the principal components, we have to multiply 

eigenvectors to mean transformed values,

(2)X = ZΛ1/2 ΓT,

      -x 1      -x 2

1 0.69 0.49

2 -1.31 -1.21

3 0.39 0.99

4 0.09 0.29

5 1.29 1.09

6 0.49 0.79

7 0.19 -0.31

8 -0.81 -0.81

9 -0.31 -0.31

10 -0.71 -1.01
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	 Although, principal component analysis is usually  

explained via an eigen-decomposition of the covariance 

matrix. However, it can also be performed via singular value 

decomposition (SVD) of the data matrix X.

	 C. Find PCA using Singular Value Decomposition (SVD)

	 SVD is another useful method in matrix dimensionality 

reduction as PCA. However, different from PCA, it decomposes 

the original matrix (X) into 3 sub-matrices: U, ∑, V such that 

(as shown in Figure 1):

	 where U: n x  r matrix, left singular vectors, eigenvectors 

of X XT ,∑: r x  r matrix, diagonal matrix with singular values

along diagonal (square root of XT X), V : r x  p matrix, right 

singular vectors, eigenvectors of X. r is the rank of matric X,

number of lineary independent columns/rows [8].

	 As in case of PCA, the singular values are arranged in 

descending order of magnitude. The principal components is

defined as: XV = U∑, which is equivalent to left singular 

columns multiplied/weighted by singular values.

III. Tensor or Multilinear Data

	 A. Definition

	 More and more, real data obtained from experiments, 

databases, or samples is multi-dimensional in nature, which

is called “Big Data”. It consists of multidimensional,  

multimodal datasets that are so huge and complex that they 

cannot be easily stored or processed by using standard  

computers.  Also, big data analytics require novel technologies 

to efficiently process huge datasets within tolerable elapsed 

times. Tensors (i.e., multilinear, multi-way arrays, hyperspaces) 

provide often a natural and compact representation for such

massive multidimensional data [6], [15].

	 Definition III.1 (Tensors, multilinear, multi-way arrays,

hyperspaces): [5],  [14] Higher-order tensors are  

higherdimensional arrays of numerical values and are natural 

generalizations of vectors (first order) and matrices (second 

order).

	 Definition III.2 [31] The number of dimensions (ways) 

of a tensor is its order, denoted by N. Each dimension (way) 

is called a mode.

	 In this paper, vectors are denoted by lowercase boldface

letters, e.g., a, matrices by uppercase boldface, e.g., A, and

tensors by calligraphic letters, e.g., A.

	 Definition III.3 [3], [31] An Nth-order tensor has N  

indices {in}, n = 1, ..., N, with each index in(= 1, ..., iN)  

addressing mode-n of A. Thus, we denote an Nth-order tensor 

explicitly as A ∈ NIII ×××ℜ ...21 .

	 Tensor is a general name of multi-way array data.  

For example, 0-order tensor is a scalar (N = 0), 1-order tensor 

is a vector (N = 1), 2-order tensor is a matrix (N = 2) and  

3-order tensor is a cube (N = 3). We can image 4-order tensor 

as a vector of cubes (N = 4). In similar way, 5-order tensor is 

X = U, ∑, VT (3)

Figure 1. SVD of matrix X.

Figure 2. Types of Tensor data.
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a matrix of cubes (N = 5), and 6-order tensor is a cube of 

cubes (N = 6), shown in Figure 2.

	 In our everyday life, there are a lot of activities which 

concerns with a huge amount of data that can be represented

by using tensor data. For instance, color video is a example 

of 4-order tensor, width, height, colorplanes (red, green and

blue), and time or temporal displaying, as shown in Figure 3.

	 Another fourth-order tensor example is network traffic 

data with four modes: source IP, destination IP, port number, 

and time, as illustrated in Figure4. Network traffic data  

organized in source IP x  destinationIP x  portnumber x  time 

[31] tensor.

	 Definition III.4 The mode-n vectors (or fibers) of A are 

defined as the In-dimensional vectors obtained from A by 

varying the index In while keeping all the other indices fixed.

	 Definition III.5 The inth mode-n slice of A is defined as 

an (N - 1)th-order tensor obtained by fixing the mode-n index 

of A to be in: A(:, ..., :, in, :, ..., :).

	 Definition III.6 (Rank-1 tensor) An Nth-order tensor  

A has rank 1 when it equals the outer product of N vector  

	 U(1);U(2), ...,U(N).

	 A = U(1) ◦ U(2) ◦ ... ◦ U(N).

	 Definition III.7 (Rank) The rank of an arbitrary  

Nth-order tensor A, denoted by R = rank(A), is the minimal  

number of rank-1 tensor that yield A in a linear combination.

	 The rank (or order) of a tensor is defined by the number 

of directions (and hence the dimensionality of the array)  

required to describe it. For example, properties that require 

one direction (1st rank) can be fully described by a 3 x  1  

column vector, and properties that require two directions  

(2nd rank tensors), can be described by 9 numbers, as a 3 x  3 

matrix. As such, in general an nth rank tensor can be described 

by 3n coefficients.

	 B. Tensor Operations

	 1) Tensorization: Normally, vectors and matrices  

algebraic structures were respectively introduced as natural 

representations for segments of scalar measurements and 

measurements on a grid. However, tensors seemed natural to 

stack together vectors and/or matrices into a third-order  

tensor. The procedure of creating a data tensor from  

Figure 3. The 3-order tensor data can be used to replesent  
                 color video.

Figure 4. Network traffic data is the example of the 4-tensor [12].

Figure 5. All vectors (fibers) of  a) the 3-order tensor  
                (A ∈ℜ8x 6x 4 ), i.e.,  b) the mode-1 vectors (fibers),  
                c) the mode-2 vectors (fibers), and d) the mode-3  
                vectors (fibers) [31].

Figure 6. All slices of a) the 3-order tensor (A ∈ℜ8x 6x 4 ), i.e., b)  
               the mode-1 slices (horizontal slices-A(1, :, :)), c)   
               the mode-2 slices (lateral slices-A(: , 1, :)), and d)  
               the mode-3 slices (frontal slices-A(:, :, 1)) [4], [31].

	 Figure 5 shows all vectors (fibers) of the 3-order tensor  

(A ∈ℜ8x 6x 4 ).

	 Figure 6 shows all slides of the 3-order tensor (A ∈ℜ8x 6x 4 ). 
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lower-dimensional original data is referred to as tensorization. 

The following taxonomy has been proposed for tensor  

generation [4]:

		  1) rearrangement of lower dimensional data structures;

		  2) mathematical construction;

		  3) experiment design; and

		  4) naturally tensor data, (some data sources are readily

generated as tensors, e.g., RGB color images, videos, 3D light 

field displays). In this paper, we concentrate on just only the 

first method of this taxonomy. 

	 Figure 7 shows two particular ways to construct a tensor [4].

	 2) Tensor Decomposition: Dimensionality reduction is  

an attempt to transform a high-dimensional dataset into a 

lowdimensional representation while retaining most of the 

information regarding the underlying structure or the actual 

physical phenomenon, rewrite a tensor as a sum of rank-1 

tensors [16].

	 Definition III.8 (Outer product) [4], [10], [31] The outer

product A o B of a tensor pIIIA ...21 ××ℜ∈ and a tensor 
QjjjB ...21 ××ℜ∈ ,  is defined by (A o  B)i1 i2 ... ip  j1 j2 ... iQ

≅   

Qjjjpbiiia
...2121 ... for all values of the indices.

	 Definition III.9 (Tensor Unfolding): [10], [31] A tensor 

can be unfolded (matricization) into a matrix by rearranging 

its mode-n vectors. The mode-n unfolding of A is denoted by

A(n) ∈
( )Nnnn IIIII ×××××× +−ℜ ...... 111 , where the column vectors of A(n) 

are the mode-n vectors of A.

	 Definition III.10 (Vectorization): [31] Similar to the  

vectorization of a matrix, the vectorization of a tensor is a 

l inear  t ransformat ion  tha t  conver ts  the  tensor  

A(n)∈
( )Nnnn IIIII ×××××× +−ℜ ...... 111  into a column vector a ∈ N

N
n I1=Πℜ , 

denoted as a = vec(A).

	 Definition III.11 (Multilinear projection): [31] The n- mode 

product of a tensor A by a matrix U ∈ nn IJ ×ℜ  denote as  

A xn U, is a tensor with entries:

Figure 7. Construction of tensors. (a) The tensorization of  
                 a vector or matrix into the so-called quantized  
                 format; (b) The tensor is formed through the
                 discretization of a trivariate function f(x, y, z) [4].

Figure 8. Illustration of matricization operations of the 3-order  
               tensors [3].

	 Figure 8 shows matricization operations of the 3-order 

tensors [3].

(4)(A xn U)(i1, ..., in-1, jn, in+1, ..., iN) =
					      ∑in A(i1, ..., iN)U(jn, ..., in)

	 Visual illustration of this operation is shown in Figure 9.

Figure 9. Example of multilinear projection [3].
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	 There is a lot of variety of tensor decompositions in the 

literature. The most widely used decomposition techniques 

in data analysis, from a practitioner’s point of view, are in the 

following listed [7];

	 1) PARAFAC-based Decomposition

	 2) TUCKER-based Decomposition

	 3) DEDICOM-based and related models

	 4) Hierarchical Tucker Decomposition (H-Tucker)

	 5) Tensor-Train Decomposition (TT)

	 6) Data Fusion & Coupled Matrix Tensor Models

	 7) PARAFAC2 and Decomposition of Multiset Data.

	 For more detail, the audience may consult [4], [5], [7],

[10], [12], [14], [15], [19], [21], [22], [24], [26], [34], [38]

IV.  Multilinear PCA - MPCA

	 MPCA is an unsupervised multilinear subspace learning

(MSL) algorithm for general tensors targeting variation 

maximization as in PCA. In this section, we will first give 

some details about the MSL, then MPCA will be present next.

	 A. Multilinear Subspace Learning (MSL) algorithm

	 Multilinear Subspace Learning (MSL) is the multilinear

extension of LSL. It solves for a multilinear projection with 

some optimality criteria, given a set of training samples.  

MSL can be applied for dimensionality reduction of  

multidimensional data directly from their tensorial  

representations. Two key components for MSL are the  

multilinear projection employed and the objective criterion 

to be optimized.

	 A multilinear subspace is defined through a multilinear 

projection that maps the input tensor data from one space to 

another (lower-dimensional) space. There are three basic 

multilinear projections based on the input and output of a 

projection: the traditional vector-to-vector projection (VVP), 

tensor-to-tensor projection (TTP), and tensor-to-vector  

projection (TVP). However, the LSL can be viewed as a 

special case of MSL where the projection to be solved is a 

VVP. Therefore, MSL solves for a TTP that allows projected 

tensors to capture most of the variation present in the original 

tensors [22].

	 B. MPCA

	 The MPCA solution can be found out by using the  

alternating least square (ALS) approach. It is iterative in 

nature. As in PCA, MPCA works on centered data. Centering 

is a little more complicated for tensors, and it is problem 

dependent. The problem of multilinear subspace learning 

based on the tensor-to-tensor projection can be mathematically 

defined as follows: 

	 A set of MNth-order tensor samples is available for training, 

{A1, A2, ..., AM} where each sample Am is an I1 x I2 x ...x IN 

tensor in a tensor space nIII ×××ℜ ...21 .

	 Based on the previous definitions, a tensor can be  

projected to another tensor by N projection matrices  

U(1),U(2), ...,U(N) as:

	 The MPCA algorithm maximizes the following tensorbased 

scatter measure:

	 Named as the total tensor scatter, where ∑ =
=

M

m mM 1

1 γγ

is the mean sample. There is no known optimal solution which 

allows for the simultaneous optimization of the N projection 

matrices. Therefore, the N optimization subproblems can be 

solved by finding the subsolutions that maximizes the scatter 

in the n-mode vector subspace. Here is the pseudocode  

implementation of the MPCA [22], [23];

TTT N
NA )()2(

2
)1(

1 ...×××=γ UU U (5)

(6)2

1 F

M

m m γγγ −=Ψ ∑ =
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V.  Softwares for Tensor Implementation

	 In this section some opened-source Python-based tensor

libraries for data science were introduced.

	 • TensorFlow: (https://www.tensorflow.org/)

	 TensorFlow is a framework to define and run computations

involving tensors. Tensors are the basic data structures in 

TensorFlow. TensorFlow also prepares a lot of functions for 

a Machine Learning system, based on Neural Networks.

	 • PyTorch: (https://pytorch.org/)

	 PyTorch is an optimized tensor library for deep learning 

using GPUs and CPUs.

	 • TensorLy: (http://tensorly.org/stable/index.html)

	 TensorLy is a high-level API for tensor methods and deep 

tensorized neural networks in Python.

	 • Theano: (http://deeplearning.net/software/theano/index.

html)

	 Theano is a powerful Python library that allows for  

numerical operations involving multi-dimensional arrays with 

a high level of efficiency. The library’s transparent use of a 

GPU for carrying out dataintensive computations instead of 

a CPU results in high efficiency in its operations.

	 • scikit-tensor: (https://pypi.org/project/scikit-tensor) 

scikit-tensor is a Python module for multilinear algebra and 

tensor factorizations.

VI.  Conclusion

	 A tensor is a multidimensional array. When data come in 

the form of a tensor, special methods and modelsare required 

to capture the dependencies represented by the indexing 

structure. For such data, it is often reasonable to reduce  

dimensionality before performing data analysis, e.g., MPCA. 

MPCA determines a multilinear projection onto a tensor 

subspace of lower dimensionality that captures most of the 

signal variation present in the original tensorial representation. 

In this review paper, we first introduced PCA to make clear 

how PCA works on vector data. PCA is mostly used as a tool 

in exploratory data analysis and for making predictive models. 

Then definitions, properties, and operations on tensor data 

Algorithm: MPCA [22], [23]
Input: A set of tensor samples }...,2,1,{ ...21 MmA NIII

m =ℜ∈ ×××

Output: Low-dimensional representations }...,2,1,{ ...21 MmNPPP
m =ℜ∈ ×××γ  of the input tensor samples with maximum 

variation captured.

Step 1 (Preprocessing): Center the input samples as }...,2,1,~{ MmAAA mm =−= , where where ∑ =
=

M

m mA
M

A
1

1

is the sample mean.
Step 2 (Initialization): Calculate the eigen-decomposition of )(~.)(~

1
*)( nAnA T

m
M

m m
n ∑ =

=Φ  and set U(n)A~  to consist of
the eigenvectors corresponding to the most significant Pn eigenvalues, for n = 1, ...,N.
Step 3 (Local optimization):
	 • Calculate },...,1,~...~~~~{ )()2(

2
)1(

1 MmUUUA
TTT N

Nmm =×××=γ .
	 • Calculate 2

1
~

0 F
M

m m∑ =
= ψψγ  (the mean γ~ is all zero since mA~  is centered).

	 • For k = 1 : K
		  - For k = 1 : K
		  * Set the matrix )(~ NU  to consist of the Pn eigenvectors of the matrix )( NΦ , corresponding to the largest  
		  eigenvalues, where )( NΦ = 

T
nnmn

M

m nnm AAUAA )(.~.)( )()()(1 )()( −− Φ=∑ , and )(
~

nUΦ  = 
		  ( ))1()2()1()()2()1( ~...~~~...~~ −++ ⊗⊗⊗⊗⊗⊗⊗ nNnn UUUUUU .
		  - Calculate 

k
Mmm γγ Ψ= },...,1,~{ and

		  - If n
kk
<Ψ−Ψ

−1γγ , break and go to Step 4.
Step 4 (Local optimization): The features tensor after projection is obtained as

},...,1,~...~~{ )()2(
2

)1(
1 MmUUUA

TTT N
Nmm =×××=γ .
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were presented. The MPCA concept based on Lu. et.al ’s 

papers and other authors was reviewed [22], [23]. Finally, 

some tensor libraries for data science were made known to

the audiences. In the future work, we will present the  

numerical MPCA calculation on simulated and real data.
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