Technology Acceptance Model: Cloud HD Video Meetings in the Context of Medical Education
Keywords:
Technology Acceptance Model, Cloud Technology, Medical EducationAbstract
The main aim of this paper is to shed light on the role of the cloud HD video meeting technology acceptance model in the context of medical education and to assess its benefits for academics, teachers, and students. The importance of the cloud deployment service model technology as an application model was tested in the context of five popular medical areas: 1) treatment, 2) medical education, 3) rehabilitation, 4) training, and 5) surgery. A concluding theory about the Technology Acceptance and its benefits to assist improving the values, applications, and methods to make such technology better tolerated in the context of medical education is also discussed.
References
A., Banbury, L., P., S., N., J., D., L.C., G., & J., B. (2016). Delivering patient education by group videoconferencing into the home: Lessons learnt from the Telehealth Literacy Project. Journal of Telemedicine and Telecare, 22(8), 483–488. https://doi.org/10.1177/1357633X16674359
A., Bawa, A., M., & A., S. N. (2013). Smartphones in surgery: An emerging trend. Surgical Endoscopy and Other Interventional Techniques, 27, S354. https://doi.org/10.1007/s00464- 013-2881-z
A., G., S., S., M., G., V., T., & P., J. (2019). A detailed study of various challenges in cloud computing. IIOAB Journal, 10(2), 18–26. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L2002066 161
A., M. (2016). Asian Medicines: Encounters, Translations and Transformations. ICTAM IX, August 6-12, 2017 in Kiel. Chinesische Medizin, 31(4), 242. https://doi.org/10.1007/s00052- 016-0129-4
A., S., V.L., N., D., G., & A.K., S. (2019). Designing the GI cloud. American Journal of Gastroenterology, 114, S1583–S1584. https://doi.org/10.14309/01.ajg.0000601096.67279.5e
A., Z., N., R., M.M., A., V.P.K., S., & L.M., A. (2019). Can Bahraini patients accept e-health systems? International Journal of Health Care Quality Assurance, 32(4), 720–730. https://doi.org/10.1108/IJHCQA-05-2018-0106
A.S., C., J.A., E., N.A., R., M., T., & D.J., D. (2019). Beyond crisis intervention team (CIT) classroom training: Videoconference continuing education for law enforcement. International Journal of Law and Psychiatry, 62, 104–110. https://doi.org/10.1016/j.ijlp.2018.12.003
Aanestad, M., Driveklepp, A., Sørli, H., & Hertzum, M. (2017). Participatory Continuing Design: “Living with” Videoconferencing in Rehabilitation. Participatory Design & Health Information Technology, 233, 45–59. https://doi.org/10.3233/978-1-61499-740-5-45
Abdekhoda, M., Ahmadi, M., Dehnad, A., & Hosseini, A. F. (2014). Information Technology Acceptance in Health Information Management. Methods Inf Med, 53(01), 14–20. https://doi.org/10.3414/ME13-01-0079
Aggelidis, V. P., & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. International Journal of Medical Informatics, 78(2), 115–126. https://doi.org/10.1016/j.ijmedinf.2008.06.006
Ajzen, I, & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Retrieved from https://books.google.co.th/books?id=AnNqAAAAMAAJ
Ajzen, Icek. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749- 5978(91)90020-T
Ajzen, Icek. (2012). The theory of planned behavior. Handbook of Theories of Social Psychology: Volume 1, 211, 438–459. https://doi.org/10.4135/9781446249215.n22
Al-Jumaili, A. A., Al-Rekabi, M. D., Alsawad, O. S., Allela, O. Q. B., Carnahan, R., Saaed, H., … Sorofman, B. (2017). Exploring electronic communication modes between Iraqi faculty and students of pharmacy schools using the technology acceptance model. American Journal of Pharmaceutical Education, 81(5). https://doi.org/10.5688/ajpe81589
Allsop, S., Hollifield, M., Huppler, L., Baumgardt, D., Ryan, D., van Eker, M., … Fuller, C. (2020). Using videoconferencing to deliver anatomy teaching to medical students on clinical placements. Translational Research in Anatomy, 19, 100059. https://doi.org/10.1016/j.tria.2019.100059
An, J. Y. (2006). Theory development in health care informatics: Information and communication technology acceptance model (ICTAM) improves the explanatory and predictive power of technology acceptance models. Studies in Health Technology and Informatics, 122, 63–67.
B., M., D., H., B., S., C., D.-M., & A., M. (2019). Enabling blinded independent central review of medical images for the RAMPART trial, with a bespoke, cloud-based, picture archiving and communication system. Trials, 20. https://doi.org/10.1186/s13063-019-3688-6
B.E., W., J.J., C., M.M., F., H.C., V. A., A.J., D., & B.D., G. (2019). A data-driven model of the economic burden of healthcare-associated infec-tions as impacted by use of comprehensive genomic analysis of bacteria. Open Forum Infectious Diseases, 6, S847. https://doi.org/10.1093/ofid/ofz360.2128
Bagot, K., Moloczij, N., Arthurson, L., Hair, C., Hancock, S., Bladin, C. F., & Cadilhac, D. A. (2020). Nurses’ Role in Implementing and Sustaining Acute Telemedicine: A MixedMethods, Pre-Post Design Using an Extended Technology Acceptance Model. Journal of Nursing Scholarship, 52(1), 34–46. https://doi.org/10.1111/jnu.12509
Bandung, Y., Tanjung, Di., & Subekti, L. B. (2018). Design of mLeaming application with videoconference system for higher education. Proceedings of the 2017 6th International Conference on Electrical Engineering and Informatics: Sustainable Society Through Digital Innovation, ICEEI 2017, 2017-Novem, 1–6. https://doi.org/10.1109/ICEEI.2017.8312339
Barteit, S., Neuhann, F., Bärnighausen, T., Bowa, A., Wolter, S., Siabwanta, H., & Jahn, A. (2019). Technology Acceptance and Information System Success of a Mobile Electronic Platform for Nonphysician Clinical Students in Zambia: Prospective, Nonrandomized Intervention Study. Journal of Medical Internet Research, 21(10), e14748. https://doi.org/10.2196/14748
Bernard, M.-M., Janson, F., Flora, P., Faulkner, G., Meunier-Norman, L., & Fruhwirth, M. (2009). Videoconference-Based Physiotherapy and Tele-Assessment for Homebound Older Adults: A Pilot Study. Activities, Adaptation, 39–48. https://doi.org/10.1080/01924780902718608
Bradley, J. (2009). The technology acceptance model and other user acceptance theories. Handbook of Research on Contemporary Theoretical Models in Information Systems, 277– 294. https://doi.org/10.4018/978-1-60566-659-4.
ch015 Briz-Ponce, L., & García-Peñalvo, F. J. (2015). An Empirical Assessment of a Technology Acceptance Model for Apps in Medical Education. Journal of Medical Systems, 39(11). https://doi.org/10.1007/s10916-015-0352-x
Camilleri, M. A., & Camilleri, A. C. (2019). The acceptance and use of mobile learning applications in higher education. ACM International Conference Proceeding Series, 25–29. https://doi.org/10.1145/3371647.3372205
Chen, I. J., Yang, K. F., Tang, F. I., Huang, C. H., & Yu, S. (2008). Applying the technology acceptance model to explore public health nurses’ intentions towards web-based learning: A cross-sectional questionnaire survey. International Journal of Nursing Studies, 45(6), 869– 878. https://doi.org/10.1016/j.ijnurstu.2006.11.011
Chen, L., Day, T. W., Tang, W., & John, N. W. (2017). Recent Developments and Future Challenges in Medical Mixed Reality. 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 123–135. https://doi.org/10.1109/ISMAR.2017.29
Chipps, J., Kerr, J., Brysiewicz, P., & Walters, F. (2015). A survey of university students’ perceptions of learning management systems in a low-resource setting using a technology acceptance model. CIN - Computers Informatics Nursing, 33(2), 71–77. https://doi.org/10.1097/CIN.0000000000000123
Cimperman, M., Makovec Brenčič, M., & Trkman, P. (2016). Analyzing older users’ home telehealth services acceptance behavior-applying an Extended UTAUT model. International Journal of Medical Informatics, 90, 22–31. https://doi.org/10.1016/j.ijmedinf.2016.03.002
D., P., M., P., F., M., & G., V. (2011). A cloud-based semantic wiki for user training in healthcare process management. Studies in Health Technology and Informatics, 169, 93–97. https://doi.org/10.3233/978-1-60750-806-9-93
D., V., P., C., L., C., & L.F., M. (2013). The road to Telemedicine: Mobile solutions for Nuclear Medicine. European Journal of Nuclear Medicine and Molecular Imaging, 40, S516. https://doi.org/10.1007/s00259-013-2535-3
Davis, F. D., Bogozzi, R., P., & Warshaw, P., R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982–1003.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982– 1003. https://doi.org/10.1287/mnsc.35.8.982
Davis, F. D., & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. International Journal of HumanComputer Studies, 45(1), 19–45. https://doi.org/https://doi.org/10.1006/ijhc.1996.0040
Depešová, J., & Tureková, I. (2015). Implementation model of teaching practice with the application of a videoconference system. ICETA 2014 - 12th IEEE International Conference on Emerging ELearning Technologies and Applications, Proceedings, 91–96. https://doi.org/10.1109/ICETA.2014.7107554
Doering, N., Legido-Quigley, H., Glinos, I. A., McKee, M., & Maarse, H. (2013). A successstory in cross-border telemedicine in Europe: The use of intra-operative teleneuromonitoring during aorta surgery. Health Policy and Technology, 2(1), 4–9. https://doi.org/10.1016/j.hlpt.2012.12.004
Duyck, P., Pynoo, B., Devolder, P., Voet, T., Adang, L., & Vercruysse, J. (2008). User acceptance of a picture archiving and communication system: Applying the unified theory of acceptance and use of technology in a radiological setting. Methods of Information in Medicine, 47(2), 149–156. https://doi.org/10.3414/ME0477
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y
G.C., K. (2014). Developing international communication via the web. Physica Medica, 30, e12– e13. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L7191892 2
Gainsbury, S. M., Philander, K. S., & Grattan, G. (2019). Predicting Intention to Play Random and Skill-based Electronic Gambling Machines Using the Theory of Reasoned Action. Journal of Gambling Studies, (0123456789). https://doi.org/10.1007/s10899-019-09915-3
Gance-Cleveland, B., Leiferman, J., Aldrich, H., Nodine, P., Anderson, J., Nacht, A., … Ozkaynak, M. (2019). Using the Technology Acceptance Model to Develop StartSmart: mHealth for Screening, Brief Intervention, and Referral for Risk and Protective Factors in Pregnancy. Journal of Midwifery and Women’s Health, 64(5), 630–640. https://doi.org/10.1111/jmwh.13009
Germain, V., Marchand, A., Bouchard, S., Guay, S., & Drouin, M.-S. (2010). Assessment of the Therapeutic Alliance in Face-to-Face or Videoconference Treatment for Posttraumatic Stress Disorder. Cyberpsychology, Behavior and Social Networking, 13, 29–35. https://doi.org/10.1089/cpb.2009.0139
Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572–2593. https://doi.org/10.1111/bjet.12864
Greiner, A., Mess, W. H., Schmidli, J., Dick, F., Grommes, J., & Jacobs, M. (2010). Possibilities for telemonitoring across national boundaries for open surgical repair of aneurysms of the thoracoabdominal aorta . Gefasschirurgie, 15(5), 311–316. https://doi.org/10.1007/s00772- 010-0785-y
Heuckmann, B., Hammann, M., & Asshoff, R. (2018). Using the theory of planned behaviour to develop a questionnaire on teachers’ beliefs about teaching cancer education. Teaching and Teacher Education, 75, 128–140. https://doi.org/https://doi.org/10.1016/j.tate.2018.06.006
Holden, R. J., & Karsh, B.-T. (2010). The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159–172. https://doi.org/10.1016/j.jbi.2009.07.002
Huang, J.-C. (2010). Remote health monitoring adoption model based on artificial neural networks. Expert Systems with Applications, 37(1), 307–314. https://doi.org/https://doi.org/10.1016/j.eswa.2009.05.063
J.-Y., A., L.L., H., T., P., & B., C. (2007). Theory development in nursing and healthcare informatics: A model explaining and predicting information and communication technology acceptance by healthcare consumers. Advances in Nursing Science, 30(3), E37–E49. https://doi.org/10.1097/01.ANS.0000286628.92386.40
J.I., K., J.-Y., Y., H., P., S.-Y., P., Y., A., H., L., … J.-H., K. (2018). A Mobile VideoconferenceBased Intervention on Stress Reduction and Resilience Enhancement in Employees: Randomized Controlled Trial. Journal of Medical Internet Research, 20(10), e10760. https://doi.org/10.2196/10760
J.P., N., R.A., B., L.W., A., F., B., P.S., C., M.W., D., … M., W. (2019). Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: A Consensus Report From a Task Force of the International Liaison Committee on Resuscitation (American . Resuscitation, 144, 166–177. https://doi.org/10.1016/j.resuscitation.2019.08.021
Jansen-Kosterink, S., Dekker-van Weering, M., & van Velsen, L. (2019). Patient acceptance of a telemedicine service for rehabilitation care: A focus group study. International Journal of Medical Informatics, 125, 22–29. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2019.01.011
Jeihooni, A. K., Khiyali, Z., Faghih, F., Harsini, P. A., & Rahbar, M. (2020). The Effect of Educational Program Based on the Extended Theory of Reasoned Action on Self ‑ Care Behaviors in Women with Type 2 Diabetes. (January). https://doi.org/10.4103/ijem.IJEM
K., A., A., W., D., D., B., B., I., K., G., V. G., … G., S. (2016). Improving ms care with an international videoconference-based provider education and case consultation program. Neurology, 86(16). Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72252654
K., R., Z., U., & D., M. (2015). Telemedicine: One way to reduce clostridium difficile infection in hospitals and long-term care facilities. American Journal of Clinical Pathology, 144, A183. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L7216715 0
K.N., A., A., W., D.W., D., B., B., I., K., K.S., A., … G.A., S. (2016). Accelerating international MS care through videoconference-based education and case consultation. Neurology, 87(1), e8–e10. https://doi.org/10.1212/WNL.0000000000002812
Kavamoto, C. A., Chao, L. W., Battistella, L. R., & Böhm, G. M. (2005). A Brazilian model of distance education in physical medicine and rehabilitation based on videoconferencing and Internet learning. Journal of Telemedicine and Telecare, 11(SUPPL. 1), 80–82. https://doi.org/10.1258/1357633054461949
Ketikidis, P., Dimitrovski, T., Lazuras, L., & Bath, P. A. (2012). Acceptance of health information technology in health professionals: An application of the revised technology acceptance model. Health Informatics Journal, 18(2), 124–134. https://doi.org/10.1177/1460458211435425
Kijsanayotin, B., Pannarunothai, S., & Speedie, S. M. (2009). Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model. International Journal of Medical Informatics, 78(6), 404–416. https://doi.org/10.1016/j.ijmedinf.2008.12.005
Kohnke, A., Cole, M. L., & Bush, R. (2014). Incorporating UTAUT predictors for understanding home care patients’ and clinician’s acceptance of healthcare telemedicine equipment. Journal of Technology Management and Innovation, 9(2), 29–41. https://doi.org/10.4067/S0718-27242014000200003
L., K., S.A., C., B., J., & D., M. (2017). Exploratory applications of augmented reality for patient education in emergency medicine. Academic Emergency Medicine, 24, S289. https://doi.org/10.1111/acem.13204
L., Q., & C., W. (2017). National incident reporting data analysis for 3 years, Oman: Telemedicine improves the health quality in China. International Journal for Quality in Health Care, 29, 65. https://doi.org/10.1093/intqhc/mzx125.107
L., X. (2019). Internet plus is an innovative model for the healthy development of the elderly. Indian Journal of Pharmaceutical Sciences, 81(1), 73. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L627305551
L.E., C., F.J., R., B., C., D., D., M., K., E., M., … C.T., Q. (2019). An immersive virtual reality curriculum for pediatric providers on shared decision making for hydroxyurea. Blood, 134. https://doi.org/10.1182/blood-2019-128661
L.K., S., & G.P., P. (2007). ICT and OTs: A model of information and communication technology acceptance and utilisation by occupational therapists. International Journal of Medical Informatics, 76(SUPPL. 1), 212–221. https://doi.org/10.1016/j.ijmedinf.2006.05.028
L.S., E., A.G., S., & T.L., S. (2018). Providing an Academic APPE Elective via Videoconference Between Off-campus Faculty and Students. American Journal of Pharmaceutical Education, 82(8), 6645. https://doi.org/10.5688/ajpe6645
M., G., & T., P. (2011). Utilization of cloud computing to aid experiential precepting at a tertiary academic medical center. Pharmacotherapy, 31(10), 397e-398e. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L70648194
M., R., J.B., G., R., C., E.D., W., A., T., H.H., H., … A.R., W. (2016). A virtual case management program for a new era of healthcare: the inflammatory bowel disease live interinstitutional and interdisciplinary videoconference education (IBD live) series improves quality of care. Gastroenterology, 150(4), S798. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72271776
M.A., T., S., M., R., B., F., F., J., C., M., P., … J., M. (2019). LATIN telemedicine - Expanded umbrella of cost-effective ami coverage for 100 million people. European Heart Journal, 40, 3754. https://doi.org/10.1093/eurheartj/ehz746.0748
M.H., M. (2017). Residency building from your home office: Effectiveness of videoconference based tele-education for emergency medicine residents and providers in vietnam. Annals of Global Health, 83(1), 118. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L620061259
M.P., B., S., O., J., H., & R., S. (2018). An equivalence study of interview platform: Does videoconference technology impact medical school acceptance rates of different groups? Advances in Health Sciences Education : Theory and Practice, 23(3), 601–610. https://doi.org/10.1007/s10459-018-9817-2
MacLeod, A., Cameron, P., Kits, O., & Tummons, J. (2019). Technologies of Exposure. Academic Medicine, 94(3), 412–418. https://doi.org/10.1097/ACM.0000000000002536
Marconi, C., Brovetto, C., Mendez, I., & Perera, M. (2018). Learning through videoconference. research on teaching quality. Proceedings - 13th Latin American Conference on Learning Technologies, LACLO 2018, 37–40. https://doi.org/10.1109/LACLO.2018.00018
Melas, C. D., Zampetakis, L. A., Dimopoulou, A., & Moustakis, V. (2011). Modeling the acceptance of clinical information systems among hospital medical staff: An extended TAM model. Journal of Biomedical Informatics, 44(4), 553–564. https://doi.org/https://doi.org/10.1016/j.jbi.2011.01.009
Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Retrieved from https://www.nist.gov/
Mitzner, T. L., Boron, J. B., Fausset, C. B., Adams, A. E., Charness, N., Czaja, S. J., … Sharit, J. (2010). Older adults talk technology: Technology usage and attitudes. Computers in Human Behavior, 26(6), 1710–1721. https://doi.org/10.1016/j.chb.2010.06.020
Muiruri, C., Kapanda, G., Tibyampansha, D., Ibrahim, G., Kulanga, A., Lisasi, E., & Bartlett, J. (2014). eLearning at a Medical School in sub-Saharan Africa: Use of the Technology Acceptance Model to evaluate implementation effectiveness. Annals of Global Health, 80(3), 171. https://doi.org/10.1016/j.aogh.2014.08.043
Mussa, C. C., Al-Raimi, A., & Becker, E. A. (2019). Predicting respiratory therapists’ intentions to use the modified early warning score by using an enhanced technology acceptance model. Respiratory Care, 64(4), 416–424. https://doi.org/10.4187/respcare.06428
N., S., J., A., A., K., C., B., D.H., C., J.L., B.-D., … H.S., T. (2020). eHealth Activity among African American and White Cancer Survivors: A New Application of Theory. Health Communication, 35(3), 350–355. https://doi.org/10.1080/10410236.2018.1563031
N.U., K., B.S., K., & S.J., J. (2019). Automated dataset generation pipeline for 3D Web visualization and cloud processing. IBRO Reports, 6, S286. https://doi.org/10.1016/j.ibror.2019.07.885
Nurjanah, S., Santoso, H. B., & Hasibuan, Z. A. (2018). The user acceptance test of an “iCT adoption for education” framework. ACM International Conference Proceeding Series, 129– 133. https://doi.org/10.1145/3177457.3177481
P., G., S., S., M., F., M., K., & D., R. (2019). Neurology International Residents Videoconference and Exchange (NIRVE): A model for peer-led neurology resident education using telemedicine. Journal of the Neurological Sciences, 405, 113. https://doi.org/10.1016/j.jns.2019.10.1784
Pai, F.-Y., & Huang, K.-I. (2011). Applying the Technology Acceptance Model to the introduction of healthcare information systems. Technological Forecasting and Social Change, 78(4), 650–660. https://doi.org/10.1016/j.techfore.2010.11.007
Pap, S. A., Lach, E., & Upton, J. (2002). Telemedicine in plastic surgery: E-consult the attending surgeon. Plastic and Reconstructive Surgery, 110(2), 452–456. https://doi.org/10.1097/00006534-200208000-00012
Parikh, S. V, Bostwick, J. R., & Taubman, D. S. (2019). Videoconferencing Technology to Facilitate a Pilot Training Course in Advanced Psychopharmacology for Psychiatrists. Academic Psychiatry, 43(4), 411–416. https://doi.org/10.1007/s40596-019-01050-w
Perikos, I., Gkamas, V., Zarouchas, T., & Paraskevas, M. (2016). Educational capabilities of a novel teleconference service integrated into the Greek school community. ACM International Conference Proceeding Series. https://doi.org/10.1145/3003733.3003771
Portz, J. D., Bayliss, E. A., Bull, S., Boxer, R. S., Bekelman, D. B., Gleason, K., & Czaja, S. (2019). Using the technology acceptance model to explore user experience, intent to use, and use behavior of a patient portal among older adults with multiple chronic conditions: Descriptive qualitative study. Journal of Medical Internet Research, 21(4). https://doi.org/10.2196/11604
Prieto, J. C. S., Migueláñez, S. O., & García-Peñalvo, F. J. (2014). ICTs integration in education: Mobile learning and the technology acceptance model (TAM). ACM International Conference Proceeding Series, 683–687. https://doi.org/10.1145/2669711.2669974
Procter, L., Angus, D. J., Blaszczynski, A., & Gainsbury, S. M. (2019). Understanding use of consumer protection tools among Internet gambling customers: Utility of the Theory of Planned Behavior and Theory of Reasoned Action. Addictive Behaviors, 99(June), 106050. https://doi.org/10.1016/j.addbeh.2019.106050
R., C. (2019). Monitoring of Joint Angle and Muscle Activity Using Wearable Sensors in a Home Environment. Archives of Physical Medicine and Rehabilitation, 100(10), e99. https://doi.org/10.1016/j.apmr.2019.08.285
Rafique, H., Omran, A., Shamim, A., & Anwar, F. (2020). Computers & Education Investigating the Acceptance of Mobile Library Applications with an Extended Technology Acceptance Model ( TAM ). Computers & Education, 145(May 2019), 103732. https://doi.org/10.1016/j.compedu.2019.103732
Rahimi, B., Nadri, H., Lotfnezhad Afshar, H., & Timpka, T. (2018). A Systematic Review of the Technology Acceptance Model in Health Informatics. Appl Clin Inform, 09(03), 604–634. https://doi.org/10.1055/s-0038-1668091
Rasmussen, B. S. B., Jensen, L. K., Froekjaer, J., Kidholm, K., Kensing, F., & Yderstraede, K. B. (2015). A qualitative study of the key factors in implementing telemedical monitoring of diabetic foot ulcer patients. International Journal of Medical Informatics, 84(10), 799–807. https://doi.org/10.1016/j.ijmedinf.2015.05.012
Redlick, F., Roston, B., Gomez, M., & Fish, J. S. (2002). An initial experience with telemedicine in follow-up burn care. Journal of Burn Care and Rehabilitation, 23(2), 110–115. https://doi.org/10.1097/00004630-200203000-00007
Rho, M. J., Kim, H. S., Chung, K., & Choi, I. Y. (2015). Factors influencing the acceptance of telemedicine for diabetes management. Cluster Computing, 18(1), 321–331. https://doi.org/10.1007/s10586-014-0356-1
Ruangvanich, S. (2019). Key Success of Technology Acceptance to Develop Mobile Application. S., M., R., B., F., F., F., F., A., A., J., C., … C., L. (2019). Balancing limited resources, infrastructure deficits and cultural differences in sustaining the growth of LATIN telemedicine program. European Heart Journal, 40, 3142. https://doi.org/10.1093/eurheartj/ehz746.0214
S., M., R., B., F., F., F., F., A., A., J., C., … S., Q. (2019). Telemedicine transcends national boundaries in quest of creating a behemoth ami program. European Heart Journal, 40, 1974. https://doi.org/10.1093/eurheartj/ehz745.0228
S., M., R., B., J., C., M., P., M., P., R., C., … J., L. (2019). TCT-508 Telemedicine Without Borders! Journal of the American College of Cardiology, 74(13), B503. https://doi.org/10.1016/j.jacc.2019.08.607
S., M., R., B., J., C., M., P., M., P., R., C., … M., L. (2019). TCT-506 LATIN - STEMI Prototype for Developing Countries. Journal of the American College of Cardiology, 74(13), B501. https://doi.org/10.1016/j.jacc.2019.08.604
S., Z., T., M., A.J., D., T., T., W., S., & J., B. (2018). Randomized evaluation of videoconference meetings for third-year medical students’ mid-clerkship feedback sessions. Academic Emergency Medicine, 25, S122. https://doi.org/10.1111/acem.13424
Schaper, L. K., & Pervan, G. P. (2007). ICT and OTs: A model of information and communication technology acceptance and utilisation by occupational therapists. International Journal of Medical Informatics, 76(SUPPL. 1), S212–S221. https://doi.org/10.1016/j.ijmedinf.2006.05.028
Segato, F., & Masella, C. (2017). Telemedicine services: How to make them last over time. Health Policy and Technology, 6(3), 268–278. https://doi.org/10.1016/j.hlpt.2017.07.003
Soegner, P., Rettenbacher, T., Smekal, A., & Zur Nedden, D. (2003). Guidelines for teleradiology practice: results of the Tyrolean teleradiology pilot project. Journal of Telemedicine and Telecare, 9 Suppl 1, S48-50. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0642373611&partnerID=40&md5=ddec9d0a385670d7d87cb10005211e91
Srikong, M., & Wannapiroon, P. (2020). Immersive technology for medical education: Technology enhance immersive learning experiences. Siriraj Medical Journal, 72(3), 265– 271. https://doi.org/10.33192/SMJ.2020.36
T., K., M., O., Y., K., K., M., T., Y., & N., S. (2017). Developing HIGH-TECH bladder and bowel diary in innovative clinical informatics. European Urology, Supplements, 16(3), e1425–e1427. https://doi.org/10.1016/S1569-9056(17)30871-0
Tsai, C.-H. (2014). Integrating social capital theory, social cognitive theory, and the technology acceptance model to explore a behavioral model of telehealth systems. International Journal of Environmental Research and Public Health, 11(5), 4905–4925. https://doi.org/10.3390/ijerph110504905
Vaughan, E., Naik, A., Lewis, C., Foreyt, J., Samson, S., & Hyman, D. (2019). Telemedicine Training and Support for Community Health Workers: Improving Knowledge of Diabetes. Telemedicine and E-Health, 26. https://doi.org/10.1089/tmj.2018.0313
Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Q, 27, 425–478.
Venkatesh, V., Morris, M., Davis, G., & Davis, F. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27, 425–478. https://doi.org/10.2307/30036540
Wallace, D. L., Hussain, A., Khan, N., & Wilson, Y. T. (2012). A systematic review of the evidence for telemedicine in burn care: With a UK perspective. Burns, 38(4), 465–480. https://doi.org/10.1016/j.burns.2011.09.024
Wang, L., & Alexander, C. A. (2013). Medical Applications and Healthcare Based on Cloud Computing. International Journal of Cloud Computing and Services Science (IJ-CLOSER), 2(4). https://doi.org/10.11591/closer.v2i4.3452
Wannapiroon, P., Nilsook, P., Jitsupa, J., & Chaiyarak, S. (2021). World Journal on Educational Technology : Current Issues Technology acceptance of online instruction for vocational instructors in new normal education. 13(4), 635–650.
Wirthlin, D. J., Buradagunta, S., Edwards, R. A., Brewster, D. C., Cambria, R. P., Gertler, J. P., … Berman, J. A. (1998). Telemedicine in vascular surgery: Feasibility of digital imaging for remote management of wounds. Journal of Vascular Surgery, 27(6), 1089–1100. https://doi.org/10.1016/S0741-5214(98)70011-4
Wongdee, P., Suwannawong, N., & Boonlue, S. (2017). The Development of Creative Problem Solving learning management in “Instructional Model and Lesson Plans” by using a Virtual Classroom on Cloud computing. In Graduate School Ramkhamhaeng University Journal (Vol. 1, pp. 17–32). Retrieved from http://www.edtechjournal.ru.ac.th/journals/1505368648_add files-resize.pdf
www.itu.int. (n.d.). ICT STATISTICS. Retrieved March 24, 2020, from https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
X., T., & S., C. (2019). Cross-section survey on medical staff use of mobile devices for clinical images. EMA - Emergency Medicine Australasia, 31, 56–57. https://doi.org/10.1111/1742- 6723.13240
X., Z., X., G., K.-H., L., F., G., & C., L. (2014). Understanding gender differences in m-health adoption: a modified theory of reasoned action model. Journal and E-Health : The Official Journal of the American Association, 20(1), 39–46. https://doi.org/10.1089/tmj.2013.0092
Y., B., S., C., R., J., Y., L., L., C., F., L., & J., T. (2020). The physical activity of colorectal cancer survivors during chemotherapy: Based on the theory of planned behavior. Supportive Care in Cancer, 28(2), 819–826. https://doi.org/10.1007/s00520-019-04873-3
Y., X., & R., Z. (2019). Analysis of the personalized bodybuilding teaching and effect based on the cloud computing platform. Basic and Clinical Pharmacology and Toxicology, 124, 93– 94. https://doi.org/10.1111/bcpt.13217
Yu, Z. (2020). Visualizing co-citations of technology acceptance models in education. Journal of Information Technology Research, 13(1), 77–95. https://doi.org/10.4018/JITR.2020010106
Yuan, Y. H., Tsai, S. B., Dai, C. Y., Chen, H. M., Chen, W. F., Wu, C. H., … Wang, J. (2017). An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer. PLoS ONE, 12(9), 1–22. https://doi.org/10.1371/journal.pone.0183994
Z., Z., T., M., A., D., T., T., W., S., & J., B. (2019). Randomized evaluation of videoconference meetings for medical students’ mid-clerkship feedback sessions. Western Journal of Emergency Medicine, 20(1), 163–169. https://doi.org/10.5811/westjem.2018.10.39641
Zarafshani, K., Solaymani, A., D’Itri, M., Helms, M. M., & Sanjabi, S. (2020). Evaluating technology acceptance in agricultural education in Iran: A study of vocational agriculture teachers. Social Sciences & Humanities Open, 2(1), 100041. https://doi.org/10.1016/j.ssaho.2020.100041
Zolait, A. (2014). Innovation Acceptance Research: A Review of Theories, Contexts and Approaches. Journal of Internet Banking and Commerce, 19, 1–18
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 International Journal of Educational Communications and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.