Wind Power Forecasting Using A Heterogeneous Ensemble of Decomposition-based NNRW Techniques

Pakarat Musikawan¹, Khamron Sunat², and Yanika Kongsorot³,

ABSTRACT

Accurate and reliable wind power forecasting plays a vital role in the operation and management of power systems. Hence, it has become necessary to research and develop a high-accuracy wind power forecasting model. However, owing to highly nonlinear and nonstationary patterns of wind power time-series, creating a wind forecasting model capable of predicting such series accurately is both complicated and challenging. Aiming at this challenge, this paper introduces a new decomposition-based hybrid model based on multiple decomposition techniques, neural network with random weights (NNRW), and a linear combiner. In our approach, the original timeseries is decomposed into a collection of sub-series by different decomposition techniques. Each sub-series is modeled and predicted separately using NNRW. The predicted signals of each decomposition model are then reconstructed independently. Finally, all of the reconstructed results are integrated by the combiner using a linear combination method. The predictive performance of the proposed method was compared with other state-of-the-art techniques in over 12 wind power time-series. The experimental results show that the predictive performance of the proposed method remarkably outperforms the other competitors, proving the developed model to be effective, efficient, and practical.

Keywords: Wind power forecasting, Time-series, Neural network with random weights, Decomposition technique, Hybrid model, Ensemble system

1. INTRODUCTION

Wind energy is becoming more and more important as a worldwide energy supply. According to the report of the Global Wind Energy Council (GWEC), the global cumulative installed electricity generation capacity from wind power in 2018 was 51.3 gigawatts (GW) and the GWEC forecasts that the capacity of

DOI: 10.37936/ecti-cit.2020142.239860

wind power generation will reach higher than 840 GW by the end of 2022 [1]. Moreover, the report released by the GWEC shows that the cumulative installed wind power capacity could reach 2000 GW by 2030. This illustrates that wind energy has gained greater distinction and has attracted global attention. Wind power is the conversion of energy from the wind into electricity, which is generated by the passing of airflow through wind turbines. The power generated is therefore dependent upon the wind speed. Accurate wind power forecasting is necessary for power system operations, such as planning, dispatching, and maintenance schedules. However, as wind speed is intermittent and fluctuating, it is not easy to model and predict accurately [2, 3].

In applications of wind power forecasting, decomposition-based hybrid approaches have been proposed based on the combination of decomposition techniques and forecasting models. Different decomposition techniques have been widely applied in the hybrid methods for preprocessing because they can effectively reduce the non-stationary characteristics of the wind power time series [4], including empirical mode decomposition (EMD) [5], variational mode decomposition (VMD) [6], discrete wavelet transform (DWT) [7], wavelet packet decomposition (WPD) [8], and singular spectrum analysis (SSA) [9]. These decomposition methods are used in the data preprocessing stage to decompose the time-series of wind power into several components. Then, a forecasting model is built for each decomposed component. Generally, conventional machine learning algorithms are usually utilized to perform as forecasting models [10]. They have been become the most dominant techniques in decomposition-based hybrid approaches, due to their forecasting ability. However, these algorithms require a lot of training time to iteratively find their optimal parameters. Hence, it is necessary to balance forecasting accuracy with the required computational time.

Non-iterative learning approaches have also been proposed to avoid some of the difficulties faced by iterative learning algorithms [11]. A neural network with random weights (NNRW) is a class of noniterative learning algorithm for training NN with a fixed hidden layer size [12, 13, 14]. The weights and biases within the hidden layer of NNRW are randomly assigned, while the output layer parameters are de-

Manuscript received on February 20, 2020 ; revised on April 10, 2020.

Final manuscript received on April 14, 2020.

^{1,2,3}The authors are with the Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand, E-mail: ¹pakarat_mus@kkumail.com, ²skhamron@kku.ac.th, and ³yanika_k@kkumail.com

termined by finding the least square solution. Due to their ability to generate a forecasting model with extremely fast learning speed and satisfactory performance, they have attracted the attention of numerous research studies [15, 16, 17], especially in the area of wind energy [18, 19, 20]. According to previous literature [21], it is clear that NNRW can dramatically accelerate the computational speed of the decomposition-based hybrid approach.

Based on the aforementioned research, there have been a lot of successful applications of the individual decomposition technique integrated with NNRW in time-series forecasting. However, the single decomposition-based hybrid approaches often cannot accurately capture the complex relationships existing in the highly nonlinear and non-stationary timeseries. By borrowing the idea of ensemble learning that incorporates the advantages of different individual algorithms, this paper proposes a new decomposition-based hybrid approach, named Heterogeneous Ensemble of Decomposition-based NNRW (EDNNRW). In our approach, the original timeseries is decomposed into a finite number of components through different decomposition techniques. Five prominent decomposition techniques (EMD, VMD, SSA, DWT, and WPD) have been applied in the decomposition process in the preprocessing of our system because they are extensively applied signal decomposition techniques that have been proven to be effective, rapid, and practicable data preprocessing tools in time-series forecasting [22, 23, 24, 25, 26]. To inherit the merits of fast learning, computational simplicity, and good generalization capabilities, four types of NNRW models are utilized to perform as predictors for each decomposed component in the forecasting process. The final forecasting results of each decomposition technique can be reconstructed by adding up all the predicted results. Finally, all of the reconstructed signals are integrated as the ultimate result via a linear combiner, due to its architectural simplicity, fast modeling, and functional approximation capabilities. Simulations on wind power forecasting have demonstrated that the developed model significantly outperforms all comparative algorithms for single and multiple step forecasting.

The three main scientific contributions and novelties of this research are given in the following list:

- 1. We propose a new decomposition-based hybrid framework integrating multiple decomposition techniques, NNRW, and a linear combiner. This method has not been found in previous studies to the best knowledge of the authors.
- 2. EMD, VMD, SSA, DWT, and WPD were integrated into the developed framework to decompose the original signals to reduce the non-stationary characteristics as much as possible. This technique has also not been previously published.
- 3. Four types of NNRW methods were utilized as

predictors of the developed decomposition-based hybrid approach. The impacts of various NNRW methods in the developed model were investigated and documented.

The remainder of this paper is organized as follows: the literature review is presented in Section 2; our proposed method is described in Section 3; our experimental results and performance evaluations are presented in Section 4; and lastly, the conclusions are illuminated in Section 5.

2. LITERATURE REVIEW

Many previously published studies have proposed different methods for wind power forecasting. These can be divided into four broad categories [27]: (a) physical methods, (b) statistical methods, (c) intelligent methods, and (d) hybrid methods. Each method, however, is not without its limitations. Physical methods build forecasting methods through physical or meteorological information, such as temperature, pressure, altitude, and so on. Their drawback is that they are very time-consuming [28]. Statistical methods model the predictors through the use of historical data including autoregression (AR), moving average (MA), the combination of AR and MA (ARMA), and AR integrated MA (ARIMA) [29]. Since these models are linear approaches, they are incapable of accurately predicting highly nonlinear or non-stationary time series. Intelligent methods primarily employ machine learning techniques to find the relationship between the input variables and the corresponding output data. Some of these approaches are support vector machine (SVM) [30], artificial neural network (ANN) [31], and ensemble systems [32]. Hybrid methods aggregate various methodologies together. Generally, hybrid approaches combine decomposition-based methods and predictors. They generally have better prediction performance than the previously mentioned approaches. The hybrid approaches provide effective forecasting performance as they combine the advantages of different methodologies, and have thus received increasing attention [33].

The decomposition technique is a powerful tool for reducing the forecast difficulty by converting the original non-stationary time series into several relatively more stationary sub-series. EMD is a selfadaptive analysis technique for the time-domain processing of a nonlinear and non-stationary signal [22]. The EMD decomposes a signal $\mathbf{x} = [x(1), \dots, x(T)]$ into a finite collection of K-1 intrinsic mode functions (IMFs) and one residue [22]. The group of IMFs $\{\mathbf{u}_1, \ldots, \mathbf{u}_{K-1}\}$ and the residue \mathbf{r} can be mathematically expressed as $\mathbf{x} = \mathbf{r} + \sum_{k=1}^{K-1} \mathbf{u}_k$. VMD [23] is an adaptive and non-recursive signal decomposition algorithm which is appropriate for analyzing non-stationary signals. The VMD decomposes a signal into K components with limited bandwidth in the spectral domain. Both the bandwidth and center frequency of each component are determined by iteratively searching for the optimal solution of a variational problem. DWT [25] is a mathematical technique and powerful tool for analyzing the timefrequency domain. It is well suited for non-stationary signals. The DWT decomposes the signal into a set of approximation and detail coefficients. The approximation and detail coefficients represent the low and high frequency components, respectively. DWT decomposes only the approximation coefficient at each level. The WPD [26] is a generalized version of DWT which decomposes both the approximation and detail coefficients at each level. SSA [24] is a non-parametric technique which is widely employed in time series analysis. The core purpose of this approach is decomposing an original time-series of data into a sum of sub-series in which each sub-series can be identified as either a trend, quasi-periodic component, or noise.

Jiang et al., 2012 [5] proposed a combination of the EMD, the largest Lyapunov exponent (LLE) prediction method, and the grey forecasting model. The EMD was employed as the data preprocessing approach to decompose the time-series of wind power into various IMF components and one residual component. Then, the LLE method was performed to predict each IMF. Finally, the grey forecasting model was employed to predict the residual component. Zhang et al., 2018 [6] proposed a hybrid prediction model with the VMD and a long short-term memory network (LSTM), called VMD-LSTM. In the first step, the wind power time-series is decomposed into various sub-series using the VMD. In the VMD-LSTM, the LSTM network is exploited to find each sub-series of wind power. Wang et al., 2020 [9] presented a hybrid of SSA and the Laguerre neural network (LNN) optimized by the opposition transition state transition algorithm (OTSTA). The time-series of wind power was decomposed into various sub-series using SSA in the first step. An optimized LNN was built for each sub-series. Catalão et al., 2011 [7] proposed a combination of the DWT and multilayer perceptron (MLP) trained by the Levenberge-Marquardt (LM) algorithm for wind power forecasting in Portugal. In the first stage, the DWT was used to decompose the wind power series into a set of subseries. Then, the future values of these sub-series were predicted using the LM network. Laouafi et al., 2017 [8] presented a hybrid of the WPD and adaptive neuro-fuzzy inference system (ANFIS) for the prediction of wind power generation in France. As mentioned before, the literature shows that EMD, VMD, SSA, DWT, and WPD can improve the predictive performance of the hybrid approaches in applications of wind power forecasting. The iterative intelligent methods were adopted to perform as predictors in the hybrid methods. These algorithms are very time-consuming because they employ iterative learning methods for tuning their parameters.

NNRW was originally described by Schmidt et al. [12], and they called it a Schmidt neural network (SNN). It is a fast learning approach for training a single hidden layer feedforward network (SLFN) with a fixed hidden layer size. The hidden layer parameters of an SLFN trained by NNRW are randomly generated, whereas the output weights and output biases are analytically determined by finding a least-square solution. Pao et al. [13] proposed a variant version of NNRW named random vector function-link network (RVFL). The RVFL was developed for training a functional-link network (FLN) [34]. In the RVFL, direct connections from the input nodes to the output nodes were allowed. Another version of the RVFL [35] considered the output bias term, which herein we name RVFL^{*}. Huang et al. [14] proposed a learning algorithm, referred to as extreme learning machine (ELM), for training SLFN. Unlike the original SNN, the bias term within the output layer of the ELM is not considered [11].

In the area of wind energy forecasting, several hybrids of decomposition techniques and NNRW have been proposed by researchers [18, 19, 20]. Abdoos [36] proposed a combination of the Gram-Schmidt orthogonalization (GSO), VMD, and ELM, called VMD-GSO-ELM. The VMD was utilized to decompose the wind power signal into several sub-series, and each decomposed sub-series was utilized to create the training patterns. Then, the GSO was employed as a feature selection method to eliminate irrelevant input features from each training dataset for ELM. Finally, the ELM was used as a forecasting model for each dataset with selected features. The experimental results showed that the VMD-GSO-ELM had faster learning speed than other iterative learning algorithms. Naik et al., 2018 [37] proposed a hybrid EMD and non-iterative learning approach for both wind speed and wind power predictions. Several noniterative learning methods were selected and compared in this work, including kernel ridge regression (KRR), RVFL, and ELM. The experimental results showed that both a hybrid EMD and KRR (EMD-KRR), as well as a combination of EMD and RVFL (EMD-RVFL), could achieve promising results in applications of both wind speed and wind power forecasting. Their experimental results have also shown that although the predictive performance of EMD-RVFL was slightly lower than that of EMD-KRR, the training speed of EMD-RVFL was much faster than EMD-KRR. Moreover, there are a large number of parameters which must be set in the EMD-KRR algorithm and the EMD-KRR was very sensitive to the values of those parameters. This illustrates that these aforementioned hybrid techniques inherit the advantages of fast learning speed, and good generalization performance from NNRW. Moreover, they have shown excellent results working with time-series for wind power forecasting.

3. PROPOSED METHOD

Let $\{\mathbf{f}_1, \ldots, \mathbf{f}_M\}$ denote a set of M base models, where the mth base model \mathbf{f}_m is separately trained on $\{\mathbf{X}, \mathbf{Y}\} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$. Here, $\mathbf{x}_i = [x(1), \ldots, x(n)] \in \mathbb{R}^n$ is the *i*th input sample and $\mathbf{y}_i \in \mathbb{R}$ is the corresponding desired output. Suppose that the $(\mathbf{x}_i, \mathbf{y}_i)$ for the base model \mathbf{f}_m can be decomposed into Kcomponents using the mth decomposition technique \mathcal{D}_m , that is $\{(\hat{\mathbf{x}}_{i,1}^m, \hat{\mathbf{y}}_{i,1}^m), \ldots, (\hat{\mathbf{x}}_{i,K}^m, \hat{\mathbf{y}}_{i,K}^m)\}$. $\hat{\mathbf{x}}_{i,k}^m$ and $\hat{\mathbf{y}}_{i,k}^m$ denote the kth decomposed components of \mathbf{x}_i and \mathbf{y}_i using the m decomposition technique, respectively, where $\hat{\mathbf{x}}_{i,k}^m = [\hat{x}_{i,k}^m(1), \ldots, \hat{x}_{i,k}^m(n)] \in \mathbb{R}^n$, $\hat{\mathbf{y}}_{i,k}^m \in \mathbb{R}, \ \mathbf{x}_i = \sum_{k=1}^K \hat{\mathbf{x}}_{i,k}^m$, and $\mathbf{y}_i = \sum_{k=1}^K \hat{\mathbf{y}}_{i,k}^m$. Here, $\mathcal{D}_m \in \{\text{EMD}, \text{VMD}, \text{SSA}, \text{WPD}, \text{DWT}\}$, and $m = 1, \ldots, M$. Therefore, the base model \mathbf{f}_m for a sample \mathbf{x}_j with K components can be expressed as shown in Eq. (1).

$$\mathbf{f}_m(\mathbf{x}_j) = \sum_{k=1}^K f_k^m(\hat{\mathbf{x}}_{j,k}^m) \tag{1}$$

 f_k^m is the *k*th predictor within \mathbf{f}_m . In considering the influence of the type of network structure, f_k^m is given by Eq. (2).

$$f_k^m(\hat{\mathbf{x}}_{j,k}^m) = \sum_{i=1}^L \beta_{i,k}^m \sigma(\hat{\mathbf{x}}_{j,k}^m; \mathbf{w}_{i,k}^m, b_{i,k}^m) + \varphi(\hat{\mathbf{x}}_{j,k}^m, \mu)$$
(2)

 $\hat{\mathbf{x}}_{j,k}^m$ represents the *k*th component decomposed from \mathbf{x}_j using the *m*th decomposition technique. Here, $\mathbf{w}_{i,k}^m \in \mathbb{R}^n$ denotes the input weighs that connect the input layer and the *i*th hidden node, and $b_{i,k}^m$ is the bias of the *i*th hidden node. Both the weights and biases within the hidden layer are randomly generated based on a uniform distribution. $\beta_{i,k}^m$ is the weight connecting the *i*th hidden node and the output layer of f_k^m within \mathbf{f}_m . φ denotes the structural function, which is adopted to define the type of network structure. The φ for an input $\hat{\mathbf{x}}_{j,k}^m$ is formulated as shown in Eq. (3).

$$\begin{split} \varphi(\hat{\mathbf{x}}_{j,k}^{m}, \mu) &= \\ \begin{cases} 0, & \text{if } \mu = 0 \text{ (ELM)} \\ \beta_{0,k}^{m}, & \text{if } \mu = 1 \text{ (SNN)} \\ \sum_{l=L+1}^{L+n} \hat{x}_{j,k}^{m} (l-L) \beta_{l,k}^{m}, & \text{if } \mu = 2 \text{ (RVFL)} \\ \beta_{0,k}^{m} + \sum_{l=L+1}^{L+n} \hat{x}_{j,k}^{m} (l-L) \beta_{l,k}^{m}, & \text{if } \mu = 3 \text{ (RVFL*)} \end{cases} \end{split}$$

 $\beta_{0,k}^{m}$ and $\beta_{l,k}^{m}$ represent the output bias and the weight, respectively, that connect the *l*th input node and the output layer of the \mathbf{f}_{m} for the *k*th component. Here, the SLFN structure is adopted if $\mu \in \{0, 1\}$, while the FLN structure is employed if $\mu \in \{2, 3\}$. The output weights within the *m*th base model for estimating the *k*th component are determined by the minimization in Eq. (4).

$$\operatorname{argmin}_{\left\{\beta_{i,k}^{m}\right\}} \left\{ \sum_{j=1}^{N} \left[\hat{\mathbf{y}}_{j,k}^{m} - f_{k}^{m}(\hat{\mathbf{x}}_{j,k}^{m}) \right]^{2} \right\}$$
(4)

To combine the predicted results of all the base models, all the predicted results of the M base model are integrated through a linear combination method. Therefore, the ensemble output function can be written as shown in Eq. (5).

$$F(\mathbf{x}_j) = \omega_0 + \sum_{m=1}^M \omega_m \mathbf{f}_m(\mathbf{x}_j)$$
(5)

 ω_m denotes the coefficient connecting the *m*th base model and the combination layer.

To obtain the optimal $\{\omega_0, \ldots, \omega_M\}$, the objective function for minimizing the training error can be formulated as shown in Eq. (6).

$$\underset{\{\omega_m\}}{\operatorname{argmin}} \left\{ \sum_{j=1}^{N} \left[\mathbf{y}_j - \left(\omega_0 + \sum_{m=1}^{M} \omega_m \mathbf{f}_m(\mathbf{x}_j) \right) \right]^2 \right\}$$
(6)

By using Eq. (6), the objective function can be rewritten in the matrix form as shown in Eqs. (7)to (9).

$$\mathcal{L} = (\mathbf{\Phi}\boldsymbol{\omega} - \mathbf{Y})^{\top} (\mathbf{\Phi}\boldsymbol{\omega} - \mathbf{Y})$$

= $\mathbf{Y}^{\top}\mathbf{Y} + \boldsymbol{\omega}^{\top}\mathbf{\Phi}^{\top}\mathbf{\Phi}\boldsymbol{\omega} - \mathbf{Y}^{\top}\mathbf{\Phi}\boldsymbol{\omega} - \boldsymbol{\omega}^{\top}\mathbf{\Phi}^{\top}\mathbf{Y}$ (7)
= $\mathbf{Y}^{\top}\mathbf{Y} + \boldsymbol{\omega}^{\top}\mathbf{\Phi}^{\top}\mathbf{\Phi}\boldsymbol{\omega} - 2\boldsymbol{\omega}^{\top}\mathbf{\Phi}^{\top}\mathbf{Y}$
$$\mathbf{\Phi} = \begin{bmatrix} 1 & \mathbf{f}_{1}(\mathbf{x}_{1}) & \dots & \mathbf{f}_{M}(\mathbf{x}_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \mathbf{f}_{1}(\mathbf{x}_{N}) & \dots & \mathbf{f}_{M}(\mathbf{x}_{N}) \end{bmatrix}$$
 (8)
$$\begin{bmatrix} \omega_{0} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{y}_{1} \end{bmatrix}$$

$$\boldsymbol{\omega} = \begin{bmatrix} \omega_0 \\ \vdots \\ \omega_M \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_N \end{bmatrix} \qquad (9)$$

 $\mathbf{\Phi} \in \mathbb{R}^{N \times (M+1)}$ is the output matrix of the base models. $\boldsymbol{\omega} \in \mathbb{R}^{(M+1) \times 1}$ and $\mathbf{Y} \in \mathbb{R}^{N \times 1}$ denote the ensemble weight and the desired output vectors, respectively.

Taking the derivative of \mathcal{L} with respect to $\boldsymbol{\omega}$ and setting the derivative equal to zero, we obtain Eq. (10).

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}} = 0 \to 2 \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \boldsymbol{\omega} - 2 \boldsymbol{\Phi}^{\top} \mathbf{Y} = 0 \qquad (10)$$
$$\to \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \boldsymbol{\omega} = \boldsymbol{\Phi}^{\top} \mathbf{Y}$$

Assuming that $\mathbf{\Phi}^{\top}\mathbf{\Phi}$ is an invertible matrix, the optimal least square solution of Eq. (7) is given by Eq. (11).

$$\boldsymbol{\omega} = \boldsymbol{\Phi}^{\dagger} \mathbf{Y} \tag{11}$$

 $\Phi^{\dagger} = (\Phi^{\top}\Phi)^{-1} \Phi^{\top}$ is the generalized pseudoinverse of Φ . However, $\Phi^{\top}\Phi$ can be a non-invertible matrix. To avoid the non-invertible problem, the SVD is commonly employed to compute the generalized pseudoinverse in all cases [14]. Therefore, the SVD was adopted to compute Φ^{\dagger} in this study.

Theorem 1 ([38, 39]) Given $\mathbf{P} \in \mathbb{R}^{n \times m}$ such that **Pb** is the minimum norm least-square solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, and $\mathbf{b} \in \mathbb{R}^m$. It is necessary and sufficient that $\mathbf{P} = \mathbf{A}^{\dagger}$, which is the generalized inverse of \mathbf{A} .

Remarks 1: According to Theorem 1, the proposed ensemble model has following important properties:

• $\mathbf{x}^* = \mathbf{A}^{\dagger} \mathbf{b}$ is the least-square solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\|\mathbf{A}\mathbf{x}^* - \mathbf{b}\| = \|\mathbf{A}\mathbf{A}^{\dagger}\mathbf{b} - \mathbf{b}\| = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$$
(12)

• $\mathbf{x}^* = \mathbf{A}^{\dagger} \mathbf{b}$ has the minimum norm among all the other solutions of $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\|\mathbf{x}^*\| = \|\mathbf{A}^{\dagger}\mathbf{b}\| \le \|\mathbf{x}\|,$$

$$\forall \mathbf{x} \in \{\mathbf{x} : \|\mathbf{A}\mathbf{x} - \mathbf{y}\| \le \|\mathbf{A}\mathbf{z} - \mathbf{y}\|, \forall \mathbf{z} \in \mathbb{R}^n\}$$
(13)

• $\mathbf{x}^* = \mathbf{A}^{\dagger} \mathbf{b}$ is the minimum norm least-squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$, which is always unique.

The learning process of the proposed decompositionbased hybrid approach is summarized as follows:

- 1. Each decomposition technique is used to decompose the wind power series data. The time-series data of each decomposition method is decomposed into K decomposed components. In this step, five single decomposition techniques are adopted separately: EMD, VMD, SSA, DWT, and WPD.
- 2. The NNRW predictor is built to complete the forecasting computation for each decomposed component of each decomposition technique. In this step, four types of NNRW models are presented: ELM, SNN, RVFL, and RVFL*.
- 3. The predicted signals of each decomposition technique are directly summed to built the reconstructed time-series of wind power through Eq. (1).
- 4. All of the reconstructed results are integrated by a linear combination method using Eq. (5). The weighted coefficients of this combiner can be obtained via Eq. (11).

4. CASE STUDY AND RESULTS DISCUS-SION

4.1 Datasets specification and preparation

Twelve actual wind power datasets were retrieved from the 50Hertz Transmission GmbH website. They are available at https://www.50hertz.com/. These datasets were collected over 12 months from January 1, 2018, to December 31, 2018, in Germany. These data series were recorded at an interval of 15 minutes. The series of the wind power datasets were continuously recorded with the exception of March 25, 2018, from 2:00 to 2:45, and November 26, 2018, at 12:00 and 12:15, when data was not collected. The specification and statistical information including mean, maximum (Max.), minimum (Min.), standard deviation (SD), skewness (Skew.), and kurtosis (Kurt.) values of each dataset are detailed in Table 1.

Table 1: Statistical information for the wind power datasets.

Dataset	#Sample	Mean	Max.	Min.	SD	Skew.	Kurt.
Jan	2976	6092.09	14354.70	90.48	4266.99	0.30	1.78
Feb	2688	2771.60	10329.50	11.67	2283.86	0.91	3.02
Mar	2972	4458.47	13775.59	85.37	3522.37	0.81	2.75
Apr	2880	3886.14	12935.60	25.05	2865.42	0.49	2.28
May	2976	2988.28	11406.52	89.84	2097.93	1.05	4.22
Jun	2880	2545.68	12204.81	59.69	2071.62	1.79	6.50
Jul	2976	1911.56	6085.28	15.07	1440.31	0.90	2.94
Aug	2976	2567.85	9687.07	90.10	1963.07	1.11	3.90
Sept	2880	3307.30	13037.33	127.15	2844.73	1.24	3.97
Oct	2976	4884.26	15382.38	11.03	4060.25	0.78	2.61
Nov	2878	3837.43	12527.33	90.10	2943.53	0.83	2.79
Dec	2976	6388.35	15672.40	275.67	4022.16	0.47	2.26

All of the experiments were performed using 30 independent runs. In each run, the dataset was divided into training and test sets, in which the first 80% was designated for training, and the last 20% was assigned for testing. In our experiment, the min-max normalization method was adopted to scale the time-series data to values in the range of 0 to 1.

4.2 Evaluation metrics

To evaluate the predictive performance of different comparative algorithms, three well-known error measurement indices were considered. These metrics include the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The details of these error measurements are given in Table 2.

Table 2: Evaluation metrics for measuring predictive accuracy.

Criteria	Formula
Root mean square error (RMSE)	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right)^{2}}$
Mean absolute error (MAE)	$\frac{1}{N}\sum_{i=1}^{N} \hat{y}_{i}-y_{i} $
Mean absolute percentage error (MAPE)	$\frac{1}{N}\sum_{i=1}^{N}\left \frac{\hat{y}_{i}-y_{i}}{y_{i}}\right \times 100$
(MALE)	31

To further evaluate the enhancement of model A over model B, the improvement percentage of each criterion was exploited to illustrate the promotion degree, which can be expressed as shown in Eq. (14).

$$\mathcal{I}_{\nu} = \left| \frac{E_A - E_B}{E_B} \right| \times 100 \tag{14}$$

 ν is the RMSE, MAE, or MAPE. Here, E_A and E_B are the evaluated values of model A and B, respectively, using measure ν .

4.3 Comparative algorithms and parameter settings

To verify the effectiveness of the proposed EDNNRW, ten comparative algorithms were selected for comparison with the proposed method. The selected algorithms were ELM [14], SNN [12], RVFL [13], RVFL* [35], VMD-WRELM [18], EMD-RVFL [37], CVAELM [19], WPD-EMD-ELM [40], CEEMDAN-ANN [41], and VMD-GSO-ELM [36].

Following previous studies [42, 28, 43], three-level decomposition of WPD was applied in this study. Since the three-level WPD provides eight frequency bands, the maximum number of decomposed components for each decomposition method was eight. For all algorithms, an additive sigmoid function was applied as the nonlinear mapping activation function for the hidden layer. The 15-minute historical data values of the wind power series in the past day (24 hours) were considered as the input for prediction of the desired value. The maximum number of lag orders (features) was empirically set to $24 \times 4 = 96$. The other parameters of each competing algorithm were set to the same as those used in the corresponding published research.

4.4 Comparison of statistical error measures

The predictive performance comparisons of the different algorithms in one, three, and five step ahead forecasting for the wind power predictions are tabulated in Tables 3 to 8. As shown in these tables, we find that the proposed EDNNRW_{RVFL} and EDNNRW_{RVFL*} produce a relatively better forecasting accuracy than the other comparative algorithms in most cases. The average RMSE, MAE, and MAPE of the proposed EDNNRW_{ELM} and EDNNRW_{SNN} are generally lower than those of the ELM, SNN, VMD-WRELM, CVAELM, WPD-EMD-ELM, VMD-GSO-ELM, EMD-RVFL, and CEEMDAN-ANN. From these tables, it can be observed that RVFL, RVFL* and the decompositionbased RVFL methods (EMD-RVFL, EDNNRW_{RVFL}, and EDNNRW_{RVFL}*) have good forecasting abilities. This indicates that the direct connections between the input layer and the output layer can significantly improve the predictive performance of these models. Interestingly, we observed that the proposed EDNNRW_{RVFL} and EDNNRW_{RVFL}* approaches do not need a large number of hidden nodes to attain good predictive performance. In Tables 6 to 8, we observed that the predictive performance of all the competitors decreases as the number of n-step ahead increases. This indicates that it gets harder to accurately capture the complex relationships existing in the multi-step ahead forecasting as n increases.

For multiple-comparison tests, the Friedman statistical test was employed to perform multiplecomparison tests for multiple-problem analysis, as suggested in [44]. Under the null hypothesis, the performance of all k competitors are equivalent, so their average ranks \mathcal{R}_j over all \mathcal{N} benchmarks should be equal. The Friedman statistic (χ_F^2) can be calculated as shown in Eq. (15).

$$\chi_F^2 = \frac{12\mathcal{N}}{k(k+1)} \left[\sum_{j=1}^k \mathcal{R}_j^2 - \frac{k(k-1)^2}{4} \right]$$
(15)

 $\mathcal{R}_j = \frac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} r_{i,j}$, and $r_{i,j}$ represents the rank of the *j*th of *k* algorithms on the *i*th of \mathcal{N} benchmarks. The χ_F^2 is distributed according to the chi-square or χ^2 -distribution with k-1 degree of freedom whenever the values of \mathcal{N} and *k* are sufficiently large. As a rule of a thumb, $\mathcal{N} > 10$, and k > 5 [44].

Iman and Davenport [45] showed that the χ_F^2 is undesirably conservative, and presented an improved version of the χ_F^2 , called the Iman-Davenport test (F_F) which is computed with Eq. (16).

$$F_F = \frac{(\mathcal{N} - 1)\chi_F^2}{\mathcal{N}(k - 1) - \chi_F^2}$$
(16)

The F_F is distributed according to the *F*-distribution with k-1 and $(k-1)(\mathcal{N}-1)$ degrees of freedom.

If the null-hypothesis is rejected, which means that the differences among the competitors are statistically significant, the Nemenyi post-hoc test can be applied to compare all the competitors with each other as previously suggested in [46, 47]. The performance of two among k competitors are considered to be significantly different if the difference of their corresponding average ranks is greater than the critical difference (C_D) . The value of the C_D for the Nemenyi post-hoc test is computed with Eq. (17).

$$C_D = q_\alpha \sqrt{\frac{k(k+1)}{6\mathcal{N}}} \tag{17}$$

 q_{α} is the critical value that is based on the studentized range statistic divided by $\sqrt{2}$. α is the significance level and was set to be 0.05 in this study.

In this experiment, the number of competitors is 13. There are twelve time-series datasets for this experiment. For each dataset, one, three, and five step ahead forecasting were considered. Three different sizes of hidden layers with 25, 50, and 100 nodes were tested. Three evaluation metrics were utilized. Therefore, $\mathcal{N} = 12 \times 3^3 = 324$, and k = 14.

In our case, the χ_F^2 value for this experiment is equal to 3213.41, and thus the F_F value is 1039.40. The critical value for the *F*-distribution with 14-1 =13 and (14-1)(324-1) = 4199 degrees of freedom at a 0.05 significance level is 1.72. Because the value of F_F is greater than the critical value of the *F*-distribution,

Algorithm	#Node	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
ELM	25	1077.8899	508.1707	527.9063	799.7369	350.5450	399.1899	472.0114	571.3072	638.9294	865.6619	669.4292	634.2632
	50	640.8990	354.2666	339.6481	533.5646	238.8330	241.0928	336.8541	381.3924	438.9887	595.6127	419.7418	451.4413
	100	454.1925	246.6544	217.2271	399.1912	160.9137	159.7372	252.7164	270.6281	317.4356	435.8968	323.5809	297.5217
SNN	25	1065.3440	492.8111	524.0015	776.6720	345.3606	382.4041	469.6051	548.7256	624.3776	858.9303	659.9267	625.1785
	50	633.9775	352.7503	337.9543	530.1204	236.5219	236.4948	333.0792	375.4767	430.1154	587.4965	414.6198	451.7378
	100	446.3632	246.3696	216.0351	399.2304	160.4021	157.8549	250.3847	270.2166	314.8736	431.3529	322.0117	297.0513
RVFL	25	125.6721	107.3927	83.8238	128.3062	87.1840	77.8762	82.0211	91.0204	95.0954	130.8247	90.8343	85.9773
	50	127.5425	108.9456	84.8563	133.5205	87.2764	80.1918	83.5758	93.0134	98.8170	135.5087	98.9546	88.0795
	100	134.3287	117.7148	88.2966	150.4055	88.5737	85.7771	89.5043	101.3499	113.0885	152.1445	120.6946	94.2397
RVFL*	25	125.8285	107.4328	83.8803	128.5537	87.1982	77.8577	82.0705	91.0582	95.1461	131.0043	91.0161	86.0730
	50	127.5367	108.9495	84.8750	133.9194	87.3500	80.2569	83.6643	93.0815	99.0298	135.7172	99.2281	88.2107
	100	134.3888	117.6728	88.2968	150.4742	88.6466	85.8525	89.6685	101.4722	114.0421	152.4270	120.8202	94.3402
VMD-WRELM	25	813.6324	625.3517	660.2039	1239.6683	404.7806	480.5825	561.3909	709.6684	673.3550	821.5793	563.0511	700.0600
	50	685.8568	653.7556	538.0673	1233.5268	336.3726	432.7172	655.0061	669.0840	646.9663	830.3886	536.6075	609.1592
	100	691.3892	717.4448	611.0715	1396.3089	318.2711	423.6853	711.3816	776.9645	660.1612	886.2147	514.1605	632.5330
EMD-RVFL	25	344.5322	233.1965	89.1176	328.8172	154.3878	143.9844	566.5544	196.6954	62.6973	163.336	217.9763	1529.3758
	50	376.6307	230.4858	89.1513	336.6596	157.7874	142.4879	569.9852	200.121	63.1513	205.1379	227.4321	1926.329
	100	374.5026	385.8259	87.5015	349.8421	160.3974	283.7791	723.8319	203.7918	64.8406	415.6875	290.8698	2001.6393
CVAELM	25	889.6870	560.7026	693.9573	1787.8637	366.4071	425.0032	462.9788	681.3635	1350.4911	1178.0192	501.7303	708.9714
	50	1108.0442	573.0517	813.2144	2965.5171	382.5068	453.0623	653.9089	838.4289	2391.7360	2785.2966	1223.6144	764.7904
	100	1525.5777	1172.7979	1349.8339	7406.1711	436.6313	479.0533	1951.2137	3094.4727	13309.0908	7244.2236	3756.7232	1268.4420
WPD-EMD-ELM	25	907.3720	307.7888	1272.7869	800.6908	359.6207	244.3873	304.3849	707.8707	1114.4254	1075.6277	155.6857	517.0279
	50	913.7809	165.8250	1027.8840	572.7348	211.2338	139.6895	214.8595	280.2406	973.1849	617.3614	109.8208	356.9260
	100	607.2151	110.5022	941.8276	501.1405	157.1439	84.8838	150.7874	176.0198	1015.8936	426.0218	70.8776	432.6715
CEEMDAN-ANN	25	1905.8862	1075.3154	1272.1952	1513.8517	659.0357	746.7405	823.1969	986.3195	1295.0372	1694.6829	1086.0782	1333.3237
	50	1764.5858	1110.7394	1154.1826	1504.8091	651.8736	742.9948	798.8099	955.1060	1262.1357	1984.9719	1029.1094	1312.6860
	100	1896.8751	1257.1964	1127.0232	1638.7462	689.8876	742.8222	891.4711	1106.2863	1341.9202	1863.1557	1174.8174	1314.3089
VMD-GSO-ELM	25	881.2108	345.5984	278.9920	510.9522	226.6726	260.9036	245.2514	353.3819	397.4226	566.3508	533.7089	432.2714
	50	666.3918	232.9827	187.5592	399.7784	139.2565	172.6345	162.2051	244.7778	310.0748	400.7444	409.9243	315.5440
	100	539.3314	171.8538	138.8488	330.9926	105.3167	113.3443	125.9376	182.4463	234.0031	304.4986	326.5897	275.8758
$EDNNRW_{ELM}$	25	505.0901	232.2337	275.9698	508.7423	165.0745	169.9321	222.9359	274.8745	321.3706	413.5750	233.9303	993.4474
	50	373.3667	145.0110	174.2149	381.1074	89.8081	96.8357	184.2217	174.3016	165.9073	243.5601	177.2189	1461.4089
	100	241.0919	118.7535	102.7784	280.3973	49.4380	61.4337	136.0190	130.0768	119.5172	160.1496	150.1401	956.7388
EDNNRW _{SNN}	25	500.0111	233.0730	267.8660	485.8635	158.7690	166.3369	220.5385	274.1589	316.3518	404.8543	234.2711	1042.1312
	50	372.5830	147.1491	168.7073	380.1015	88.1280	96.7649	183.0695	174.5345	162.5399	242.3527	171.8997	2646.3118
	100	238.8608	121.5439	103.0565	284.0253	49.0589	61.2850	134.4357	133.1456	119.3373	160.0442	149.9189	1158.5729
EDNNRW _{RVFL}	25	7.8874	4.6234	4.1081	5.4890	3.2465	4.9058	5.0988	3.6484	4.1831	4.8844	3.0902	5.0826
	50	7.8479	4.9563	4.1367	5.5655	3.2560	4.9385	5.2417	3.7373	4.3464	4.9898	3.2849	6.3320
	100	7.9060	5.7693	4.2774	6.2961	3.2945	5.1106	5.6658	4.1276	4.7403	5.4126	3.9753	26.2878
EDNNRW _{RVFL*}	25	7.6434	4.5755	4.0416	5.4695	3.2286	4.8631	4.9818	3.7185	4.2110	4.8694	3.1984	5.0437
	50	7.6572	4.8798	4.0999	5.5545	3.2530	4.8929	5.1580	3.8004	4.3726	4.9759	3.4146	8.3492
	100	7.7463	5.6926	4.2486	6.2588	3.3120	5.0712	5.5942	4.2098	4.7692	5.3775	4.0908	34.2599

Table 3: Comparison of the RMSE for single-step ahead forecasting on the wind power datasets.

Table 4: Comparison of the MAE for single-step ahead forecasting on the wind power datasets.

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Algorithm	#Node	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ELM	25	815.8571	386.9769	379.2840	597.7381	275.4511	299.3291	365.1250	430.5173	503.4171	685.3628	437.8410	475.5373
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	476.1355	265.3042	238.5636	389.2144	186.9524	178.9438	258.8831	282.6584	338.7535	471.2694	273.5344	336.7140
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100	318.6395	182.0499	150.4487	281.1206	124.6839	116.9624	190.2233	194.2716	239.7398	338.6025	206.3221	223.7423
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SNN	25	805.9921	376.1213	374.4639	575.4442	270.8105	287.2023	362.9652	413.8325	490.1372	678.1006	432.5123	468.1485
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	471.6339	263.3988	235.8666	385.3006	185.2271	175.6564	256.0916	278.4988	330.9019	464.3356	269.4299	336.2978
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100	314.9176	181.1263	149.9874	279.8402	124.2716	115.6614	188.7571	193.6917	237.4048	335.4531	204.6273	222.9956
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RVFL	25	90.4460	68.5560	58.3082	90.3931	63.4333	57.4272	56.9510	66.4128	71.7640	99.5213	64.4714	64.8439
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	91.8332	70.8246	59.0609	94.6415	63.6101	59.3000	58.7233	68.2711	74.4287	103.4544	70.0130	66.8110
RVFL* 25 90.5517 68.5904 58.3620 90.5826 63.4583 57.4146 57.0295 66.4555 71.8004 99.6885 64.5660 64.9213 50 91.8301 70.8405 59.1242 94.8865 63.7009 59.3602 58.8425 68.3238 74.5785 103.5803 70.1905 66.9383 100 97.0713 80.3327 61.7846 108.0634 64.9111 63.3118 65.0848 74.1730 85.7452 116.8851 83.9385 71.5928		100	96.9845	80.3043	61.7505	107.8839	64.8475	63.2891	64.9440	74.1059	85.0861	116.6331	83.8304	71.5084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RVFL*	25	90.5517	68.5904	58.3620	90.5826	63.4583	57.4146	57.0295	66.4555	71.8004	99.6885	64.5660	64.9213
$100 \hspace{0.2cm} 97.0713 \hspace{0.2cm} 80.3327 \hspace{0.2cm} 61.7846 \hspace{0.2cm} 108.0634 \hspace{0.2cm} 64.9111 \hspace{0.2cm} 63.3118 \hspace{0.2cm} 65.0848 \hspace{0.2cm} 74.1730 \hspace{0.2cm} 85.7452 \hspace{0.2cm} 116.8851 \hspace{0.2cm} 83.9385 \hspace{0.2cm} 71.5928 \hspace{0.2cm} 71.592$		50	91.8301	70.8405	59.1242	94.8865	63.7009	59.3602	58.8425	68.3238	74.5785	103.5803	70.1905	66.9383
		100	97.0713	80.3327	61.7846	108.0634	64.9111	63.3118	65.0848	74.1730	85.7452	116.8851	83.9385	71.5928
VMD-WRELM 25 645.3862 488.3664 419.9084 898.3230 321.3213 368.1130 423.4135 551.6838 540.1781 665.3102 442.6742 505.8623	VMD-WRELM	25	645.3862	488.3664	419.9084	898.3230	321.3213	368.1130	423.4135	551.6838	540.1781	665.3102	442.6742	505.8623
50 542.0940 490.4546 357.1310 831.2453 263.3951 330.7619 468.1280 515.8237 513.7614 644.2939 419.1064 437.4046		50	542.0940	490.4546	357.1310	831.2453	263.3951	330.7619	468.1280	515.8237	513.7614	644.2939	419.1064	437.4046
100 540.3123 515.3404 385.3128 933.6569 247.9951 330.2487 513.4009 585.0001 523.6549 675.0130 397.5713 441.9259 675.0130 575		100	540.3123	515.3404	385.3128	933.6569	247.9951	330.2487	513.4009	585.0001	523.6549	675.0130	397.5713	441.9259
EMD-RVFL 25 75.3936 50.3246 34.1455 68.4339 46.9466 48.0777 112.1531 52.8543 36.7794 70.8037 52.5839 261.5778	EMD-RVFL	25	75.3936	50.3246	34.1455	68.4339	46.9466	48.0777	112.1531	52.8543	36.7794	70.8037	52.5839	261.5778
50 77.7332 57.9072 34.3903 70.767 47.4587 50.2838 117.7685 53.9788 38.2965 84.4715 55.2208 306.808		50	77.7332	57.9072	34.3903	70.767	47.4587	50.2838	117.7685	53.9788	38.2965	84.4715	55.2208	306.808
100 78.5829 161.5351 34.9845 83.9616 48.4928 157.541 139.2714 57.4025 41.94 205.9874 77.6723 318.7244		100	78.5829	161.5351	34.9845	83.9616	48.4928	157.541	139.2714	57.4025	41.94	205.9874	77.6723	318.7244
CVAELM 25 695.6507 450.1853 515.8671 1138.3536 286.5855 335.8334 350.4484 515.9827 937.6208 806.1816 373.9924 536.6474	CVAELM	25	695.6507	450.1853	515.8671	1138.3536	286.5855	335.8334	350.4484	515.9827	937.6208	806.1816	373.9924	536.6474
$50 \qquad 827.2152 \qquad 449.3084 \qquad 569.3605 \qquad 1658.5690 \qquad 302.5415 \qquad 358.1443 \qquad 459.7391 \qquad 574.4164 \qquad 1482.9795 \qquad 1542.7116 \qquad 788.1099 \qquad 545.8501 \qquad 5$		50	827.2152	449.3084	569.3605	1658.5690	302.5415	358.1443	459.7391	574.4164	1482.9795	1542.7116	788.1099	545.8501
100 1056.4935 848.6936 836.1761 3536.0303 335.6564 354.2607 1045.3076 1658.8732 5639.0706 3610.6457 2076.0189 770.3259		100	1056.4935	848.6936	836.1761	3536.0303	335.6564	354.2607	1045.3076	1658.8732	5639.0706	3610.6457	2076.0189	770.3259
WPD-EMD-ELM 25 551.4060 238.8270 726.3307 541.2890 262.7741 191.2006 227.5170 477.9326 607.0901 558.8497 116.7970 307.1884	WPD-EMD-ELM	25	551.4060	238.8270	726.3307	541.2890	262,7741	191.2006	227.5170	477.9326	607.0901	558.8497	116,7970	307.1884
50 436.1511 124.7816 518.7147 383.5262 152.2198 105.4829 155.8090 209.6170 515.3919 333.7621 77.2940 175.0845		50	436.1511	124.7816	518,7147	383,5262	152.2198	105.4829	155.8090	209.6170	515.3919	333.7621	77.2940	175.0845
100 276.4080 80.1083 362.5024 315.3561 107.0952 63.7494 105.4998 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 435.2223 220.3437 47.0195 158.1389 127.7800 47.780		100	276.4080	80.1083	362.5024	315,3561	107.0952	63.7494	105,4998	127,7800	435.2223	220.3437	47.0195	158.1389
CEEMDAN-ANN 25 1496.3263 854.3280 1017.9726 1146.7017 523.0925 583.4575 651.1669 775.3121 1036.8420 1361.4095 809.0477 1041.6028	CEEMDAN-ANN	25	1496.3263	854.3280	1017.9726	1146.7017	523.0925	583.4575	651.1669	775.3121	1036.8420	1361.4095	809.0477	1041.6028
50 1388.7172 897.4433 923.3721 1138.2485 515.0391 586.4912 626.9452 734.5713 1008.1767 1595.6819 784.7846 1009.3777		50	1388.7172	897.4433	923.3721	1138.2485	515.0391	586.4912	626.9452	734,5713	1008.1767	1595.6819	784,7846	1009.3777
100 - 1465.5620 - 1021.2199 - 882.9250 - 1232.5768 - 547.2246 - 584.3813 - 685.8896 - 834.8523 - 1075.6768 - 1493.4406 - 865.8511 - 1021.0675 - 1021		100	1465.5620	1021.2199	882.9250	1232.5768	547.2246	584.3813	685.8896	834.8523	1075.6768	1493.4406	865.8511	1021.0675
VMD-GSO-FLM 25 649.1723 271.2430 199.0004 379.9538 174.8860 192.8345 186.5545 264.9409 315.0681 460.6094 322.9775 314.2355	VMD-GSO-ELM	25	649.1723	271.2430	199.0004	379.9538	174.8860	192.8345	186.5545	264.9409	315.0681	460.6094	322.9775	314.2355
50 488,8307 180,9148 132,6759 285,4889 106,2888 126,9460 122,5665 181,1018 247,3631 326,4358 244,7236 220,5259		50	488.8307	180.9148	132.6759	285.4889	106.2888	126.9460	122.5665	181.1018	247.3631	326.4358	244.7236	220.5259
100 388 2253 127 1839 95 5271 236 6562 81 1939 84 7179 93 3178 134 8169 187 1926 251 8681 195 1250 187 1156		100	388.2253	127.1839	95.5271	236.6562	81,1939	84,7179	93.3178	134.8169	187.1926	251.8681	195.1250	187.1156
EDNNRWEIM 25 371,5382 173,4993 191,8137 333,7307 127,6760 126,8459 164,7642 210,1783 245,1167 325,5672 151,8334 423,2275	EDNNRWEIM	25	371.5382	173,4993	191.8137	333.7307	127.6760	126.8459	164.7642	210.1783	245.1167	325.5672	151.8334	423.2275
50 254 0502 107 5098 110 3154 226 0334 69 2052 68 7867 118 3891 129 3360 125 5250 187 9327 104 8907 458 0442		50	254 0502	107 5098	110 3154	226 0334	69 2052	68 7867	118 3891	129 3360	125 5250	187 9327	104 8907	458 0442
		100	162 1875	80 3277	64 2684	159 7526	37 6289	41 6249	84 5161	92 9461	88 8080	118 7498	82 0769	274 1549
EDNNRW 25 370 4031 171 4071 185 1557 320 8384 122 6410 123 2375 161 1921 210 2877 240 5747 321 5252 150 2949 446 4118	EDNNBW	25	370 4031	171 4971	185 1557	320 8384	122 6410	123 2375	161 1921	210 2877	240 5747	321 5252	150 2949	446 4118
50 251 4375 108 4675 107 3038 224 532 67 9871 68 3786 118 4546 128 7430 122 6814 186 1820 1002 0856 718 8302	EDITITION SINN	50	251 4375	108 4675	107 3938	224 5323	67 9871	68 3786	118 4546	128 7430	122 6814	186 1820	102.0856	718 8392
100 160 8584 81 9750 64 9516 159 7800 37 3148 41 5595 84 4769 94 5145 88 3786 117 9375 81 9517 309 9661		100	160 8584	81 2750	64 2516	159 7800	37 3148	41 5595	84 4769	94 5145	88 3786	117 9325	81 9517	309.9661
EDNNRW www. 25 4 1822 3 2169 2 5530 3 7098 2 4473 2 4503 2 6049 2 7271 3 0151 3 7356 2 1183 2 7139	EDNNBW	25	4 1822	3 2169	2 5530	3 7098	2 4473	2 4503	2 6049	2 7271	3 0151	3 7356	2 1183	2 7130
50 4 2284 3 4135 2 576 3 7908 2 463 2 5009 2 7398 2 7047 3 1304 3 8229 2 2686 3 2011	LDIGGO RVFL	50	4 2284	3 4135	2 5767	3 7908	2 4630	2.5009	2 7398	2 7947	3 1304	3 8229	2 2686	3 2011
100 4 4484 3 8757 2 6701 4 3436 2 5008 2 7168 3 1260 2 3 4460 4 1818 2 7106 8 4174		100	4 4484	3 8757	2.6791	4 3436	2.4000	2.0003	3 1 2 6 3	3 0792	3 4460	4 1818	2.2000	8 4174
EDNNRW NUTL \$ 25 4 1166 3 1807 2 4046 3 6570 2 4182 2 4250 2 7742 2 0413 3 6017 2 1616 2 7547	EDNNBW DUPY *	25	4 1166	3 1897	2.0191	3 6570	2.0000	2.1100	2 5503	2 7742	2 9413	3 6917	2.1616	2 7547
$\frac{1}{1000} = \frac{1}{1000} = 1$	TTTTTTTTTTTT	50	4 1772	3 3697	2 5432	3 7594	2 4467	2 4887	2 7143	2.1142	3 0679	3 7010	2.1010	3 7514
100 4.4062 3.8394 2.6555 4.3036 2.4981 2.7249 3.0965 3.1236 3.4168 4.1311 2.7677 10.3436		100	4.4062	3.8394	2.6555	4.3036	2.4981	2.7249	3.0965	3.1236	3.4168	4.1311	2.7677	10.3436

1	2	9

Algorithm	#Node	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
ELM	25	19.0714	10.8339	22.5434	28.6360	18.9860	14.0783	31.0597	21.0864	17.5301	13.2591	12.3757	15.0837
	50	11.4012	7.7611	13.6877	18.1869	12.8655	8.4980	21.5434	13.5902	11.2088	8.7281	7.6228	12.7084
	100	7.3628	5.1955	8.1340	11.8284	8.5794	5.3886	15.2657	8.8876	7.8598	6.2778	5.3055	8.4465
SNN	25	18.7381	10.5954	21.6196	27.0012	18.5100	13.6347	30.6579	20.1414	17.0254	13.1517	12.2841	15.1862
	50	11.1968	7.7215	13.4755	17.8115	12.7293	8.3300	21.3890	13.3809	10.9761	8.6173	7.4367	12.7792
	100	7.2769	5.1600	8.1464	11.6038	8.5189	5.3385	15.2433	8.8558	7.7955	6.1855	5.1900	8.4155
RVFL	25	2.0527	1.8040	2.6274	3.4194	3.8771	2.6052	3.8113	2.7626	2.3726	1.6197	2.1295	1.3873
	50	2.0836	1.8728	2.6891	3.7222	3.7944	2.6917	3.9910	2.9054	2.4615	1.7270	2.2502	1.6064
	100	2.2106	2.1505	2.9182	4.4795	3.8627	2.8499	4.5932	3.2672	2.7752	2.0574	2.4832	1.9035
RVFL*	25	2.0568	1.8054	2.6350	3.4216	3.8698	2.6055	3.8193	2.7663	2.3736	1.6236	2.1309	1.3934
	50	2.0848	1.8736	2.6959	3.7350	3.8002	2.6955	3.9982	2.9096	2.4656	1.7309	2.2546	1.6244
	100	2.2128	2.1505	2.9260	4.4809	3.8658	2.8510	4.6113	3.2719	2.7926	2.0620	2.4872	1.9142
VMD-WRELM	25	22.8170	13.7216	24.1591	40.2863	25.0575	21.2942	41.7686	39.9625	21.6897	13.3948	17.8272	15.7598
	50	21.1606	14.2085	22.0551	32.2838	19.2460	17.6767	46.7381	33.3791	20.1960	12.5352	16.6224	15.1090
	100	21.6433	14.7236	22.9083	33.1818	16.8616	16.8434	49.8259	33.1635	20.4968	12.8901	15.4296	14.0311
EMD-RVFL	25	1.3975	1.0782	1.4728	2.0294	2.2979	1.8153	5.7781	2.9774	1.3509	1.6984	1.7889	4.5273
	50	1.4366	1.2361	1.5394	2.1337	2.3216	1.9205	6.3674	3.0474	1.4394	2.0549	1.8622	5.6718
	100	1.4518	3.5867	1.6182	2.5089	2.3753	8.191	7.7054	3.2238	1.6746	4.3943	2.4587	7.9021
CVAELM	25	25.7810	13.1272	35.3606	45.6340	18.0660	17.0745	31.7731	27.3987	32.0918	14.3997	14.6504	17.7185
	50	25.2309	13.0346	35.9238	57.6773	20.1139	17.8089	43.9052	30.1831	42.4472	26.9993	23.4337	21.1156
	100	26.4516	24.7665	47.2477	106.1666	22.7581	16.5511	95.9618	93.0120	114.1415	61.9417	44.1566	32.8827
WPD-EMD-ELM	25	30.2686	6.7387	42.5932	47.3757	15.9584	9.6716	19.2425	29.6637	20.4512	10.0715	4.8729	11.7394
	50	21.7418	3.5348	27.8078	32.4750	8.9213	5.3562	13.2426	12.1165	22.7088	6.3604	3.4004	8.3056
	100	14.1987	2.2665	18.5993	25.9765	5.7635	3.0920	9.2606	8.0996	13.7385	4.1275	2.1544	8.3349
CEEMDAN-ANN	25	49.0757	24.5001	91.8048	55.3903	37.5744	28.8084	58.3581	44.4531	39.8705	27.5509	33.0076	32.8728
	50	48.1933	26.1839	83.5642	57.8535	36.9776	29.7961	57.6330	42.3377	37.9342	31.7365	31.9632	32.4556
	100	53.5551	30.0813	75.3938	62.0737	40.0481	29.6424	60.8706	50.3714	39.5476	28.9557	35.1428	32.5400
VMD-GSO-ELM	25	11.1375	7.4982	13.0015	15.3906	11.2672	9.5049	14.9598	14.8694	10.7605	8.6001	7.4976	10.0999
	50	7.9357	4.8664	8.2622	11.8099	6.6775	6.1988	9.6686	10.8448	8.2195	5.8902	5.3546	8.7225
	100	6.1516	3.2854	5.8359	9.2806	5.0796	4.2643	7.3995	7.8700	6.3872	4.6048	4.1634	8.8351
$EDNNRW_{ELM}$	25	13.4722	4.9183	11.7116	12.8007	8.4419	5.8104	14.0766	12.4318	8.2873	6.3834	4.3132	23.6246
	50	9.9242	3.0448	6.1558	7.5497	4.9608	3.1859	9.7110	7.0780	4.2891	3.6854	2.6477	26.6362
	100	5.3058	2.2510	3.2762	5.1028	2.6780	1.8377	6.6828	4.6075	2.9293	2.4248	1.6971	16.9545
$EDNNRW_{SNN}$	25	13.3533	4.8803	10.9287	12.1103	8.1190	5.6027	13.8343	12.1533	8.0956	6.2799	4.1623	25.9442
	50	9.4506	3.0710	6.0146	7.3917	4.8923	3.1554	9.7471	7.0901	4.2053	3.6608	2.5630	40.8008
	100	5.1107	2.2849	3.2209	5.0950	2.6435	1.8230	6.6751	4.6705	2.9221	2.4248	1.6925	16.9076
$EDNNRW_{RVFL}$	25	0.0980	0.0889	0.1330	0.1501	0.1552	0.1068	0.2011	0.1290	0.1090	0.0661	0.0740	0.0615
	50	0.0985	0.0954	0.1357	0.1559	0.1573	0.1095	0.2168	0.1335	0.1135	0.0677	0.0774	0.1195
	100	0.1067	0.1089	0.1378	0.1814	0.1616	0.1201	0.2601	0.1508	0.1255	0.0756	0.0850	0.5204
$EDNNRW_{RVFL*}$	25	0.0965	0.0888	0.1292	0.1506	0.1539	0.1061	0.1931	0.1312	0.1071	0.0643	0.0720	0.0688
	50	0.0977	0.0942	0.1335	0.1568	0.1567	0.1098	0.2131	0.1347	0.1121	0.0667	0.0762	0.1452
	100	0.1065	0.1083	0.1373	0.1808	0.1613	0.1222	0.2549	0.1523	0.1272	0.0744	0.0846	0.6853

Table 5: Comparison of the MAPE for single-step ahead forecasting on the wind power datasets.

we reject the null hypothesis that the predictive performance of all competitors are statistically equivalent.

Based on this null hypothesis rejection, the Nemenyi post-hoc test was conducted to determine whether the predictive performances of two among k competitors are significantly different. The value of q_{α} for a 0.05 significance level is $q_{0.05} = 3.354$, which can be confirmed in standard statistical text-Thus, the value of the C_D is equal to books. $3.354\sqrt{\frac{14(14+1)}{1944}} \approx 1.102$. The statistical results of 1944 the post-hoc analyses for the wind forecasting are presented using a critical difference diagram, as shown in Figure 1. In this figure, the algorithms with higher ranks (lower numbers) are preferable to those with lower ranks (higher numbers). Statistically equivalent algorithms are grouped into a *clique*, represented by a red horizontal bar.

In Figure 1, the overall performance of RVFL, RVFL^{*}, EDNNRW_{ELM}, and EDNNRW_{SNN} were comparable. This figure shows that the overall predictive performance of the proposed EDNNRW_{RVFL}, and EDNNRW_{RVFL}^{*} were significantly superior to the other competitors. The overall predictive performance of VMD-GSO-ELM and EMD-RVFL were significantly better than those of VMD-WRELM, CVAELM, WPD-EMD-ELM, and CEEMDAN-ANN. Interestingly, we observed that the FLN family

approaches (RVFL and RVFL^{*}) have good average ranks when compared with ELM, SNN, VMD-WRELM, CVAELM, WPD-EMD-ELM, VMD-GSO-ELM, and CEEMDAN-ANN. It is noteworthy that the proposed EDNNRW_{RVFL}* and EDNNRW_{RVFL} had statistically significantly better average ranks than the other comparative algorithms, and their clique was located far from the other cliques with large gaps.

The forecasting results and the corresponding residual errors of the different competitors in five step ahead forecasting for the wind power forecasts are depicted in Figure 2. From this figure, it can be observed that the proposed EDNNRW_{RVFL} has good forecasting abilities and its residual errors are closer to zero than those of the other comparative algorithms in most cases.

4.5 Comparison of improvement percentages

To further exhibit the effectiveness of the proposed $EDNNRW_{RVFL}$, the improvement percentages in terms of RMSE, MAE, and MAPE indices were used for analysis. The improvement percentages of the proposed $EDNNRW_{RVFL}$ over ELM, SNN, RVFL, RVFL*, VMD-WRELM, EMD-RVFL, CVAELM, WPD-EMD-ELM, VMD-GSO-ELM, and CEEMDAN-ANN in terms of RMSE, MAE, and MAPE for the wind power forecast in one, three, and

	H	
	бĮ	
	Ö.	
	?	
	\bigcirc	
	ò^	
	B	
-	ರ್ಷ	
	Ę.	
	g.	
	2	
	-	
	ę,	
	÷	
	6	
	7	
	P	
	P	
	(L)	
	for	
	В	
	2	
	H	
•	Ξ.	
	¥	
	Ľ.	
	Ĕ.	
F	8	
	_ س	
	Б	
	œ.	
	Б.	
	÷	
	g.	
	ğ	
	ĕ	
	t s	
	Ħ٠	
¢	Б	
	0	
	Ē	
	÷	
	B	
	<	
	⊴.	
	n	
F		
	ğ	
	Ă	
	ĕ	
	-	
	ja	
	÷.	
	š	
	et	
	Ś	

$\rm EDNNRW_{RVFL}*$	EDNNRW _{RVFL}	EDNNRWSNN	EDNNRWELM	VMD-GSO-ELM	WPD-EMD-ELM	CVAELM	EMD-RVFL	VMD-WRELM	RVFL*	RVFL	SNN	ELM	Algorithm		EDNNRW _{EVEL} *	$EDNNRW_{RVFL}$	$EDNNRW_{SNN}$	$EDNNRW_{ELM}$	VMD-GSO-ELM	CEEMDAN-ANN	WPD-EMD-ELM	CVAELM	EMD-RVFL	VMD-WRELM	RVFL*	RVFL	SNN	ELLINI	Algorithm
50 0	100 100	25 50	50 100 50 50	20 100 25	100	195 25 19 19	50 50 100	100 50	50 50 50 50 50 50 50 50 50 50 50 50 50 5	2250	25 25	50	#Node -	100	25	25	100 25	$\frac{100}{50}$	50 ² 50	50 I 00	50 50	22 26 26 26 26 26 26 26 26 26 26 26 26 2	520	50 ²⁵⁰	50 50	50 50	50	100	#Node
42.0043	357.3889 42.2337 41.2410 41.2166	352.6440 607.2652 429.3295	749.9383 587.1853 617.1077 415.6525	1700.002 1975.297 1894.186 907.0701	1022.099 1081.238 1028.722	323.4791 861.6277 882.7860 9336.685	734.2919 314.8228 317.6434	339.8945 870.9149 745.8662	312.3290 338.8400 297.6520 313.0831	297.6241 212 220	597.6562 1152.028 811 51 55	1196.130 812.3039	Jan 3-sten	16.2091 19.7310	19.5911 15.5259	244.594 15.5253	243.459 440.204 300.142	430.082 445.787 296.617	1471.432 679.020 555.377	458.818 1391.950	1556.959 623.958 525.477	119.207 672.098	579.449 105.129	254.690 690.745 597.713	253.940 218.047 231.381	440.301 218.038 230.952	870.281 611.569	900.020 611.528 450.414	Jan 3-step
88.969 80.546	538.962 91.049 78.302 95.881	520.554 755.444 548.577	825.393 706.080 545.290	7 1979.36 8 1805.41 976.807	2 1164.42 0 1288.88 1662.55	410.113 1626.18 1755.16 2 2004 26	797.033	589.804 939.400 816.880	487.658	484.279	3 1348.65 976 s41	8 1377.11 979.570	5-stor	5 57.611	31.73	349.17	1 344.10 2 544.60 8 384.71	7 499.32 4 525.43 382.27	$\begin{array}{c} 0 \\ 1415.2 \\ 4 \\ 734.26 \\ 616.68 \end{array}$	9 745.27 9 1462.7 8 1536 0	0 1539.49 0 712.92 4 638.25	9 237.57 2 1278.8 2 1366 5	5 635.16	3 448.01 2 661.00	1 446.30 2 363.51 2 384.64	5 384.26	3 748.76	0 1002.2 4 752.45 0 591.69	5-ste
2 15.72 0 18.07	0 7 8 197.73 18.03 25.66	13 199.04 14 291.81 19 207.31	5 208.70 208.30 209.10	73 1170.3 46 1138.1 60 1204.1 5 372.77	67 374.72 72 232.05 48 188.73	07 1833 /	9 283.51 7 574.01	12 339.90 12 653.82 16 680.14	0 3 0 3 8 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 277.34 2002 41	14 433.54 12 639.90 488.00	79 648.11)4 494.97	Reb	1 2.4 1 7.9 1 7.9	5073 105	49 136.e	52 137.5 37 216.6 44 153.9	32 154.3 32 154.3	729 963.3 09 287.2 88 205.8	43 139.5 157 934.8 217 904.5	022 1267. 35 291.3 00 177.1	36 2344. 370 487.4	30 538.7 208 118.0	18 255.2 36 508.7 17 516.2	78 254.3 86 196.3 44 212.8	40 212.0	378 491.1 69 372.1	91 377.6 75 327.8	p 3-st
97 19 44.6	92 3 6.6 92 44.9 92 74.0	157 282 149 347 177 296	2307 231 231 231 232 232 233 233 233 233 233	247 1320 837 1287 687 1183 700 417.	287 447. 113 310. 125 299.	040 1000 1000 1000 1000 1000 1000 1000	784 578. 701 1968	124 574. 139 715.	61 574 91 448 101 448	06 247 159 447 447	145 171 145 174. 145 174.	25 778 783 668	5	<u>able</u>	289 51. 24.	230 198 230 24. 265 21	823 196 104 258 1945 215	1471 178 1471 178 127 208	1527 946 155 318 1908 234	001 1054 1055	1424 497 1485 347 382 238	7276 7087 7276 7087 1240 387	1063 582 1871 226	$1499 ext{ 433} ext{ 433} ext{ 549} ext{ 539} ext{ 549} ext{ 539} ext{ 549} ext{ 539} ext{ 549} ext{ 539} ext{ 549} ext{ 549} ext{ 539} ext{ 549} ext{ 539} ext{ 549} ext{ 539} ext{ 549} ext{ 549} ext{ 549} ext{ 549} ext{ 539} ext{ 549} ext$	1142 434 1293 329 1958 361	1739 404 1171 328 1947 360	643 589 467 508	1740 074 3007 513 1498 484	ep 5-
1454 15	2363 18 616 14 671 15	6714 18 1173 32 3689 23	6663 23 5063 16 5155 33 5019 22	1747 124 3959 117 6428 113 4215 340	5160 132 5604 126 8185 140	.0303 110 5637 711 6927 771	2577 72 7575 118 8048 111	3360 25 0612 72 1244 64	2386 2386 228 222 2685 222 2385 222	5240 341 6223 222	3094 341 7992 63 49	2142 641 9493 42	fen 3	6: C	4244 11 8 6846 8	9489 8	.7133 11 .4190 22 .3962 15	.7368 11 .3665 23 .5876 14	.1731 89 .8033 24 .2261 16	.9401 61 25489 99 23462 93	2399 101 5458 76 4557 62	.0246 72 .4559 53	.6172 44 .8146 68	.5302 17 .0987 45 .6955 39	.0833 17 .2677 15 .5121 16	.3939 15 .9373 16	.7651 46	.1700 -40 .6411 - 30 .6232 - 24	step 3
	.1458 3 .3271 4	4.5678 2 9.6356 3 2.7168 3	5.7511 2 5.5417 2 3.9652 3 4.7840 3	2.8979 10 5.3453 12 7.8264 12 5.2065 3	9.6645 13 0.7239 15 3.3538 23	3.4517 10 3.4517 10 3.9001 11	0.0840 8 9.1285 1 9.1285 1	1.0555 4 2.6644 7 1.9125 7	2.3516 2.3516 4	3.9883 5 3151 4	23.5134 5 23698 5	9.5175 7	Mar	ompa	.9966	4.0811 1 .9847	5.5595 1 6.3062 2	5.3400 I 2.2673 2 9.4859 2	1.0686 6.8077 4.4377	8.8743 1 5.0687 1 2.0776 0	2.5146 7	1.1291 7 2.82002 8	0.8005 4	5.2330 7.5455 8.5127 4	5.1609 8.6748 1.0804 2	9.5445 8.4944 0.8974 2	0.1713 3.2562 4	0.1733 3.7837 4 0.2837 3	Mar
32.5039 6.1617	68.6408 12.0323 15.1015 18.3266	72.0960 82.7879 08.5723	82.3648 08.8992 87.8050 03.1280	79.7679	85,4095 55,3409 53,6063	100.3047 127.3796 13283768	30.8273 82.9141 88.6114	47.8829 82.4351 41.5411	03.1008 47.4409 92.2305 04.3934	10.4630 92.2606 93.7608	09.8265 70.5534 1 91 8697	88.0661 89.9790	5-sten	rison	20.2625	08.3906 20.1459	70.2632 70.3570 04.4890	43.2046 71.9979 05.0590	44.7242 73.6026 95.9698	122.8953 090.3647 66.0253	10.3146 15.1534 51.9338	31.8116 68.3515	12.2403	11.2450 00.1281 52.3447	110.9853 171.7428 280.4420	71.9280 79.7246	58.1881	114.8720 114.8720 158.2689	5-step
33.1082 34.5555	473.4501 33.0165 34.6069 42.1620	471.4732 624.6696 577.8936	471.1504 376.4128 605.1715 556.5923	658.5822 723.6702 603.7493	974.5968 817.3773 894.6572	070.3934 711.8031 3358.1434	638.4376 363.3506 430.3295	466.0565 301.3126 344.4823	349.7557 375.5751	605.1707 347.6852 374 7307	606.0274 021.4815 708.4430	038.7537 713.8614	Apr 3-sten	of the	$ 24.4801 \\ 14.6081 $	273.0517 14.4267	273.3160 408.2153 346.7027	271.6076 406.7288 342.0074	1310.8651 449.9024 343.6364	564.5404 1254.1863 1966.0010	3729.2538 671.5083 549.6167	201.0002 349.1591 1132.7097 1846 8620	1068.7475	342.6190 944.0201 908.5145	340.7869 257.0133 277.2713	440.1189 255.6137 276.5062	769.6006 521.4950	527.3574 446.5142	Apr 3-step
117.1098	734.5722 111.8065 122.7300 154.4884	721.8013 913.7338 713.1838	529.7678 440.4450 890.0333 721.8817	1557.5639 1648.6916 690.5076	1183.5055 1147.4296 1475.0281	2012.0114 1311.5117 1729.2702	1702.3794 639.8154 974.9396	817.0557 1408.9908 1462.3827	676.1416	605.5090 675.4508	876.4448 1091.1815 037 3301	1108.3298 953.0939	5-sten	B RM	84.1664 39.4587	433.773	426.612 573.5800 444.2259	320.6410 570.4640 447.0655	1267.023 512.286 388.430	921.093 1276.948	1139.661 830.700 768.616	979.7350 1316 746	11 19.699 354.1508	607.928 1039.721 1021.131	605.678 452.9409 501.4107	452.7928 500.648	828.885 696.596	540.005 711.365 649.475	5-step
12.4578	87.4041 12.5063 12.7800 13.8953	88.1447 214.4977 131.7268	183.2638 131.5973 218.0952 133.2180	690.0980 744.4328 259.7811	423.2812 293.4763 255.7910	409.9928	165.6001 168.4076	218.0059 442.8849 380.6003	217.46578 212.2458 214.4423	277.5455 212.5847 214.4628	278.5118 476.3366 346.6516	482.7572	May 3-sten	SE fo	10.277	5 67.317 8.8850	1 67.905 0 167.609 102.893	5 101.257 5 170.056 104.163	2 592.400 5 201.542 3 141.221	5 176.381 0 553.782 1 543.807	2 346.360 3 311.390 213.980	1 101.510	8 278.478 90.34	9 167.750 2 352.456 4 300.655	0 167.420 0 162.481 5 164.504	162.729 164.471	1 375.669	5 271.641 217.014	May 3-step
32.0738 33.1326	131.0969 32.9108 35.2568	131.7384 273.7820 184.3905	231.5820 169.8403 279.5503 187.4026	717.2942 7166.8511 304.9697	491.8790 382.0362 381.7554	200.1309 355.6778 332.6087	202.4699	353.5040 453.1093 405.7060	339.4120 340.4055 339.7697	397.1784 340.4457 330.4796	397.9989 569.2076 451 3753	577.1378 457.2078	5-sten	r mul	24.960	2 102.34	0 102.83 8 213.74 144.35	5 133.48 8 217.86 4 146.81	$ \begin{array}{c} 6 & 607.90 \\ 4 & 181.63 \end{array} $	3 267.640 3 589.820 5 565 541	255.340 263.510 4 282.44	2 275.178 2 275.178	129.23 129.15	12 276.008 1362.948	9 275.43 2 264.47 9 265.09	8 264.590 8 264.849	9 443.970 352.62	0 356.757 5 310.690	5-step
28.4415 27.0971	108.6637 28.3560 26.9244 26.6524	109.7338 218.5572 151.4112	215.0130 154.5742 222.1567 152.9591	776.8678 778.8389 305.2835	306.1467 199.6559 140.0838	392.3103 425.9701	433.5407 322.9955 431.5669	242.3130 506.6194 451.6165	241.9380 206.4674 217.5532	206.3820	287.6464 476.7443 351.6456	490.0680	Jun 3-sten	5 9.986 7 12.958 tiple-s	4 12.920 4 8.862	2 76.960 2 8.945	99 77.860 52 163.59 56 111.22	81 114.47 86 166.73 18 112.22	18 626.08 33 225.77 158.92	105.85 10 623.65	20 440.13 26 237.12 149.56	131818.22 14 305.75	1 143.66 1 143.66	33 179.03 33 394.29 351.56	21 178.78 13 152.69 22 160.96	20 21 3.99 39 152.56 37 160.83	51 355.77 18 259.73	71 263.70 72 213.76	Jun 3-ste
71.714	175.473 73.313 74.602 75.210	174.936 268.988 205.711	200.778 276.625 206.667	805.708 352.581	376.879 271.742 214.201	530.404 562.205	444.144 433.504 1024.17	408.360 525.276 459.416	408.587 357.198	451.175	451.013 621.031	626.079 521.349	5-sten	step a	4 34.3 19.8	124.8	06 124.9 87 206.4 42 152.5	58 148.0 64 212.8 45 153.4	23 641.9 36 260.3 82 193.9	86 163.3 87 656.6 68 636.8	11 410.0 08 288.6 52 202.4	296 6079.1 296 6079.1 82 383.9	97 350.1 38 198.8	40 300.9 18 414.2 82 360.9	04 301.0 82 261.7 15 277.9	10 332.3 07 261.8 26 277.2	69 456.0 35 380.4	29 383.8 11 332.2	p 5-st
21.60	20.82 21.67 27.39	3 198.40 2 284.31 3 218.40	0 199.35 9 283.66 3 214.64	2 276.26	4 373.98 4 310.84 9 263.13	7 571.94 7 571.94 5 705.94	1 828.30 8 533.45 8 533.45	9 260.41 9 559.07 657.28	222.60 232.222.60 232.222.60	0 77 97 2222.34	1 376.35 4 558.19 8 438.30	5 571.34 5 444.73	Jul 3-sto	head	510 15.4	906 128.4 529 10.3	632 129.1 882 211.2 171 155.2	105 113.9591 212.8666 155.7	825 704. 665 208. 546 148.9	269 184.1 956 666.0	761 841.9 467 279.8 734 223.0	2025 361.0 813 431.0	398 570.3 582 156.9	141 194.0 977 424.2 215 487.2	564 194.0 783 156.0 721 167.0	205 156. 239 167.1	265 431.0 556 342.0	769 44442 442 347.7 360 289.9	ep 3-si
67 119.6 66 124.1	104 270.8 87 127.0 01 130.2 67 133.3	49 342.9 24 263.8	62 234.3 194 193.2 123 347.9 187 263.9	00 834.4 54 851.3 98 874.4 02 325.4	23 451.2 156 432.9 197 424.0	200 1940. 190 419.1 128 394.9	97 916.3 98 523.8 99 922.1	87 103 55 651.7	106 448.9 188 370.1	77 369.4 385 518.6	12 518.9 12 701.6	52 708.6	n 5-st	628 30.5 440 44.3 foreca	459 44.3 383 26.0	1573 184. 1707 26.3	5394 186. 3578 257. 3882 193.	9100 146. 3515 260. 1385 194	7454 680 1476 244 0703 175	7732 295. 0759 668. 7903 666	9892 305 8804 338 332 307	5173 816 1682 307	3719 626. 9264 261.	5855 344. 2720 432. 1495 488.	5319 342. 8538 269. 9112 287.	1788 269. 2633 286.	5242 541. 5989 422	7004 427. 1348 401.	1 1 5-8
786 16.	628 201 976 14 976 16. 22	315 198 574 364 905 248	308 298 458 221 196 364 248	655 1000 540 1031 602 408	340 794 758 373 842 283	212 916 211 9716	392 827423 198064 204	592 311 647 695 941 684	393 257	392 401. 107 257	198 401. 823 652	131 670 884 504	en 3-s	asting	10. 10.	146 146 146	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3279 165 4063 276 5188 185	4495 793 9971 306 3038 222	30512 2134677 7877658 781	8311 1478 5138 540 9797 283	5273 123 5364 467 5044 627	8948 633 7273 98.	5457 225 3876 545 3466 534	7343 225 8611 186 2925 195	1030 290 0464 186 0922 195	1750 495 2911 372	5577 376 1529 294	tep 3-
7724 38 7423 44	2995 30 2062 44	2952 29 7183 41 6860 32	$ \begin{array}{r} 9109 \\ 34 \\ 8429 \\ 410 \\ 5280 \\ 32 \end{array} $	$.5444 \\ 102$ $.5454 \\ 102$ $.8267 \\ 110$.3930 460	2480 89 0824 50 9409 44	109 3449 64 9989 63	0035 5481 211 4831 23	6460 54 8533 70 1527 73	3189 46	1835 57 9119 44 6910 45	2455 57 6783 78 9391 64	1396 78 5599 64	ug 5	on t]	2634 24	0105 223 223	.8502 219 .5902 317 .8133 248	.5920 199 .5513 318 .8601 240	.0106 85 .8833 35 .4923 259	.0649 330 .5312 800 780	.6731 590 6042 61 9987 38	-3075 47: 4173 47:	2713 669 7402 141	0258 390 0258 390 4529 58	.0971 399 .8858 320 .4060 337	.0020 430 .9426 319 .1660 33	9550 590 0043 480	.1410 00 .2770 48 9413 43	step 5
8.3785	3.2509 3.1844 1.0335 3.6445	8.4824 9.0260 2	4.3315 5.0290 3.8713	0.0934 4	8.0037 1 5.3330 1 2.4890 1	1.7895 1.1806 1.7627 3	2.5407	6.1829 6.9118 8.4354 0	0.9022	6.9399 2.6015	7.5596 2.0528 1.4445	9.7382 7	⊨sten	he wi	.1221 1 1.0318 1	1.6767 1	9.5796 13 7.4686 28 9.9124 17	9.2934 21 8.6975 28 5.9152 17	1.4549 12 1.3635 30 8.4183 26	5.8276 60 5.9731 10 5.5313 10	5.6181 49 1.2379 73 3.2732 66	8.8802 21 2.6831 13 2.6831 13	9.1281 58	9.9509 20 7.2461 58 1.2625 54	9.5289 20 0.1172 19 5.5759 20	9.5577 19 4.9447 20	0.2857 43	1.0595 43 1.2256 33	step 3
15.4401 17.6960	15.2526 17.5368 17.5368	186.2466 365.0186 233.6467	229.0071 266.0228 366.6496 236.3646	208.0945 254.8883 482.8004 154.1694	361.5175 251.5109 517.8815	332.1309 332.2169	736.6555 124.1485 173.0004	144.4639 732.7756 184.9877	252.4614 273.9684	132.6867 252.3883	136.5185 760.5681 754 4035	82.0290 62.8838	Sept	nd po	7.3972 1.2937	1.3159 21165	9.5508 31.3793 76.8558	12.6405 34.1770 79.2659	02.6634 1 33.0294 4 54.6691 7	32.0675 1 14.4356 1 10.6480 1	72.0481 36.1098 36.6705	16.6763 01.7020	3.6131	50.8599 33.8700 5.6302	0.0936 0.6937 0.9995	0.6182 06.0923	30.1103	17.3328 17.0687	Sept 3-step
36.4757 44.2706	274.7824 36.1598 43.8516 66.3602	275.7622 428.9622 294.3148	371.4490 294.7846 441.2384 294.5159	1274.7958 1274.7958 1388.8371 520.7221	1662.2640 1677.1454 2436.2988	1433.4712 543.4712 559.9002	790.9810 210.6227 433.8563	592.9824 790.7626 774.3079	485.8171 435.8171 486.0317	632.5184 435.2797	635.3860 899.8108 711 1501	921.5778 712.6342	5-sten	wer d	50.0481 26.7066	203.0687 26.6990	203.4543 335.2792 228.2799	239.5407 346.5426 228.8363	122.1492 115.7067 803.6645	068.1487 087.4725 0311064	177.5039 388.0543 883.0848	710.7631 112.8622	529.1416 155.162	153.4982 533.9621 516.4472	151.6944 328.7100 369.5558	190.2004 127.7078 167.8425	19.2652	559.9794 196.2808	5-step
18.6440	243.980 18.5922 20.0325 25.4590	239.4397 459.8400 299.4747	437.206 353.681 463.1440 302.910	1794.638 1849.184 609.4560	1263.460 765.1810 689.7810	1092.430 3290.410 8408 277	1065.409 870.837 1217.437	401.221 938.686 916.485	341.040 397.825 322.385	589.1507 320.8600	593.163 984.0010 743 040	1002.769	3-sten	atase	18.7677 13.4251	176.5799 13.5197	$\begin{array}{c} 174.6281\\ 362.0548\\ 229.8103\end{array}$	288.5516 365.1675 233.8976	1461.9238 489.7404 352.8416	361.3828 1470.0831 1453.0380	4057.2332 662.8647 423.2183	4183.4382 778.5131 1830 1510	809.6229 281.9604	310.1190 755.6205 709.4179	307.7480 246.1343 263.0734	400.0007 244.7642 261.9947	776.1422	461.3559	Oct 3-step
46.775 50.811	5 355.70 46.58 50.489 74.324	352.30 542.91 386.03	489.33 558.86 391.78	9 1871.01 5 2011.57 680.36	6 1500.39 998.07	0 21177.30 9 635.355 0 644.16	2 1129.17 1276.72 8 3068.88	710.58 983.44 954.47	530.111 577.251	528.97 575.51	824.06 1174.95 003.07	0 1182.76	5-stor	53.7340	53.8911 30.1943	30,100	256.001 425.838 301.113	317.108 437.853 304.745	1614.222 541.369 391.021	589.169 1564.630	609.193 791.102 559.583	12246.11 502.901	491.473	550.051 784.092 741.453	550.446 408.896 447.927	407.978 446.294	926.075	992.114 719.172 639.855	5-step
6 11.38 6 14.38	0 4 11.2 14.28 22.75	10 202.4 31 284.0 215.3	75 439.5 28 285.4 216.4	20 1077.2 71 1091.1 91 1274.6 10 560.2	99 186.6 33 143.7 86 112.0	27 2042.0 27 522.1 76 795.4	30 550.1 34 214.8 21 250.1	36 301.7 38 575.1	1888 229.9 258.0	27 228.6 27 228.6	51 697.0 516.3	73 704.0 522.7	3-st	9.644	14.69 7.712	7.090	7 116.64	2 206.94 1 136.00	4 933.17 349.81 4 267.79	5 78.99: 7 808.41 2 821 25	4 1692.29 140.91 2 105.01	205 792.08 393.04	426.58	211.82 3 482.91 448.62	1 211.58 3 164.80 1 185.06	163.88 184.24	4 470.82	9 417.00 9 353.60 7 275.26	Nov 3-ste
91 27.1	593 260.3 573 27.4 573 39.0 58.1	361 256.0 361 315.1 403 249.1	904 471.0 524 393.1 944 318.0 711 250.0	801 1134 191 1172 328 585	495 221. 943 180. 357 161.4	039 0901 056 467.1 126 480.1	462 590. 273 230. 715 519.	846 528.1 365 637.1 552 619.1	453 529.3 306 428. 346 429.4	306 372.0 306 372.0	433 568. 042 772. 669	141 791.0 827 666.3	n Fee	30 37.7	999 37.4 18.4	56 156.8 18.6	41 156.1 51 206.3 27 161.6	43 241.8 32 209.1 74 161.4	79 885.6 23 374.0 12 293.3	60 840 f	334 373.3 55 167.2 34 134.2	21 2534.1 64 336.5	66 456.5 102.	12 365.5 05 505.6 98 489.1	15 366.1 38 266.5 58 305.3	90 392.3 37 265.0 19 305.1	12 532.4 52 456.7	01 040-0 48 459.6 30 393.1	p 5-st
1817 36	3736 223 1203 34 1020 51 199	6043 198 2913 962 3793 4100	0425 35: 5398 325 4009 886 2218 176	.3017 140 .3017 141 1842 448	4853 608 7563 460 8415 656	7075 814 3790 862	6442 668 6858 13 4434 1820	9546 280 8906 750 2615 639	3031 240 8261 285 8316 232 3136 246	5390 231 5390 231	6826 441 7479 720 3749 568	6167 720 3182 569	22	170 57. 754 46.	612 52. 340 10.	5025 605	1286 555 3642 458 3666 1070	3673 218 727 446 914 601	3062 1090 1781 330 1701 250	1767 251 1864 1111 1564 1141	1962 910 1073 368 1293 240	9356 901 341 612	5558 469 105 321	$\frac{5453}{1059}$ $\frac{217}{545}$ $\frac{545}{465}$	1363 216 1356 180 1989 190	513 190 513 190	1366 551 545 428	761 332 761 332	ep 3-
.0122 H	5.8558 31 1.67719 1. .0242 18	8.3151 26 2.4457 17 5.8620 16	3.4215 4: 5.6738 3; 5.5296 14 1.8230 12.	2.4142 10 9.8548 14 8.4216 14 1.0882 58	3.0428 70 3.0936 59 3.7102 99	0.7381 88 11177 20 1.8795 19	8.4886 60 78.52 14 5.6456 24	5.7568 4 0.3701 85 0.8428 70	5.9569 4 9.4974 32 1.3766 41	3.1287 60 .8127 38 .0678 41	1.9826 60 1.9324 90 1.6407 70	3.1265 9 1.7057 70	Dec	.3770 4 .0677 14	.2000 - 3740 14 .8149 2	0648 2	.16673 7t .1294 69 .13949 54	1.8569 21 .2727 60 .8729 47	0.3228 11 .9159 42 .2259 30	.5625 38 1.8790 110 0407 111	1.2188 16 1.9777 42 1.8263 31	.9332 27 .9986 15	1506 48	.2227 31 .2439 60 .0275 50	.5413 .3258 .6326 .32 .32	.9275 30 .5067 32	.6600 69	7847 55 6374 45	Step (
56.8753	145.7189 59.8324 81.1580 42.4897	350.1588 740.1023 715.9190	20.6494 74.5463 01.1066 50.1187	522.7504 169.8945 161.7019 33.3896	08.4014 93.6581 92.6630	120.3739 126.6491 161.3860	88.4125 409.231 21.5536	99.1290 27.1503)1.2311	97.1031 90.0207 16.4158	05.7987 87.7443	08.4412 09.3727 19 1005	12.3556 01.8549	5-sten	12.8224 42.1672	43.8571	38.6733	54.9174 95.8363 11.5434	55.9153)1.9283 78.5997	22.4545 24.4408)3.7076	89.6558 66.8334 37.5799	00.3099 39.5299 19.0817	94.6303	86.5058 47.2871	71.5808)7.8954)9.6282	70.7972 33.2327 21.2055	20.9149	91.8846 29.9669	30.6575 38.3254	5-step

100

41.5976

98.8091

75.0893

17.3982

50.5972

42.8241

161.6443 13.9071

35.3287

26.7528

77.4241

27.3738

130.4685

22.6307

69.2416

22.9990

67.6275

25.4835

73.9961

23.0584

58.7818

164.1982 540.4274

×1	11 M T	Jan		Feb		Mar		Apr		May		Jun		Jul	Ψ	19	Sept		Oet		Nov		0ec	
Algorithm	#INOGE	3-step	5-sten	3-sten	5-sten	3-sten	5-sten	3-sten	5-sten	3-sten 5-	sten 3-	sten 5	-sten 3	-sten 5-s	ten 3-st	cen 5-sten	3-step	5-step	3-sten	5-sten	3-sten	5-step 3	sten 5	step
ELM	25	20.2187	23.4494	13.9035	15.9842	27.0196 3	32.7951	37.8062	40.0772 2	5.6120 31	2640 17	4501 22	2562 30	9832 44.	274 24.9	636 29.7451	21.8951	26.5694	15.0488	18.1922	4.1247 1	6.6025 16	6083 20	3685
	20	14.0701	17.3454	10.6824	14.1488	17.1731 2	22.5251 2	24.0982	34.0261 1	8.1043 24	.2719 12	7104 18	.8348 28	.6928 34.8	3520 17.9	213 23.0263	14.8640	19.6035	11.4311	13.4196	1 7700.01	3.7370 15	5086 19	.0337
	100	10.5397	14.1097	9.2853	13.4575	12.9035 1	18.9778	19.8742	29.8744 1	4.8022 21	.2894 10	.3633 16	.1477 22	.9110 32.5	5182 13.7	681 20.5526	11.4846	17.2270	8.6999	12.1083	7.8914 1	1.4970 12	4322 16	.9418
SZZ	25	19.5934	22.5873	13.7052	15.8735	26.1988 3	31.5599 5	36.9386	39.6380 2	5.2696 30	0.6591 17	.0281 21	8250 35	.6613 44.5	2960 24.5	439 29,3965	21.1549	25.9465	14.6523	18.1088	13.8710 1	6.2943 16	6894 20	3765
	50	13.9313	17.1480	10.5281	14.0181	17.0119 2	22.7664 2	23.7347	33.0640 L	8.0711 24	.0086 12	.5340 18	.6898 28	.4207 34.7	7165 17.7	518 23.087E	14.6007	19.5065	11.2018	13.2278	1 0.0687 1	3.5527 15	5845 19	.1760
	100	10.5150	14.1133	9.2408	13.4633	12.7983 1	8.9257	19.8564	29.8829 1	4.7568 21	.2475 10	.3548 16	.1566 23	.0194 32.5	5201 13.7	892 20.4591	11.4196	17.0777	8.6378	12.0535	7.8116 1	1.4354 12	4888 16	.8321
RVFL	25	5.0475	8.1531	5.2981	8.8338	7.4520 1	3.5150 1	10.8005	19.8372 1	0.3948 17	.5751 7.	5327 15	.1704 11	.1836 20.4	1310 8.06	321 13.7806	6.5030	11.5718	4.1020	6.9658	5.4296 8	3.7505 4.	0329 7.	2997
	50	5.3080	8.7436	5.7688	9.8805	7.6443 1	13.3703	11.8529 1	21.5719 1	9.4504 17	.2882 7.	8577 10	.7616 12	.0596 22.0	819 8.78	393 15.0163	6.9983	12.8227	4.5316	7.7384	5.7817	0.5357 5.	2383 9.	3611
	100	5.9522	10.2460	7.0057	11.8595	8.6301 1	15.4887	14.6281	27.6866 L	9.4779 18	0532 8.	4922 14	.5314 14	.4505 26.3	3844 10.5	382 18.9250	8.6727	14.8826	5.5547	10.2714	6.3286 1	0.5549 7.	3625 13	.3908
RVFL*	25	5.0587	8.2219	5.3085	8.8690	7.4732 1	13.5632 1	10.8601	19.8357 1	9.3414 17	.5632 7.	5337 10	.1778 11	.2072 20.8	652 8.00	337 13.8317	6.5062	11.6141	4.1411	6.9770	5.4353 8	3.7388 4.	0982 7.	5401
	50	5.3065	8.7419	5.7905	9.8964	7.6723 1	13.4620	11.9348	21.6729 1	9.4608 17	.3239 7.	8573 15	.7802 12	.1224 22.5	2127 8.83	158 15.0435	7.0323	12.8581	4.5626	7.7838	5.7887 9	0.4966 5.	2585 9.	4388
	100	5.9680	10.2522	7.0273	11.8492	8.6357 1	15.5845	14.6955	27.7793 1	9.4969 18	.0823 8.	4987 14	.5197 14	.4460 26.6	3147 10.5	324 18.9710	8.6982	14.9086	5.6092	10.2283	6.3081 1	0.5393 7.	4116 13	.4678
VMD-WRELM	25	25.7930	28.4866	14.1016	15.4416	27.8357 3	30.7841 4	44.2707 -	48.2658 2	7.4736 27	.9769 22	.7597 25	.8656 42	.2435 43.5	2085 37.7	873 38.7087	23.4650	25.0877	15.0085	15.3091	19.2407 1	9.6860 17	2460 18	6716
	50	24.4813	26.9797	14.9195	15.5557	22.6860 2	33.6887 3	36.5097	41.5942 2	1.9449 22	.8151 19	.0935 19	.9527 48	.4487 49.1	099 35.4	321 37.9324	21.4388	23.4491	13.6293	13.8929	17.5715 1	8.9638 15	9361 17	.7818
	100	23.9613	26.6574	15.3885	16.5431	23.3960 2	34.0650 2	37.5435	40.9523 I	S.8896 20	0.7259 17	.5625 18	.3756 55	3.15 0628.	3325 36.5	708 39.0239	23.0849	24.1081	15.2407	16.1753	16.7130 1	8.3972 14	S1 1508.	.3826
EMD-RVFL	25	2.2055	2.9146	2.5689	4.6342	4.1427	8.6897	6.056	12.7094	4.626 6.	.6089 5.	6116 7	7372	9.69 17.8	3765 4.95	583 6.865	3.5078	5.9791	8.4222	14.1693	2.5578	.5975 9.	9929 21	.8165
	50	2.2081	2.9475	4.594	14.9118	4.8262 1	1.1393	7.3441	16.4435 4	1.7189 6.	8084 9.	7467 30	.6354 14	.1556 31.2	2618 5.14	157 7.2132	5.2603	13.3574	12.3474	33.6783	3.409 (6.9039 17	8893 54	.7724
	100	2.3884	4.5985	52.5038 1	158.2579	5.6678 1	3.7407	12.8728	42.02 5	5.0784 8.	7939 102	2.2381 34	0.9906 24	.9093 62.8	3091 5.8	116 8.3983	11.9889	43.8625	75.457 5	211.0277 2	22.7909 6	7.9725 46	1805 17	7238
CVAELM	25	23.1876	35.5461	14.1810	10.1155 :	38.6057 5	52.6734 4	46.4291	50.1326 2	1.9009 18	17724 15	9793 19	.4300 35	.4392 23.9	0224 26.7	917 21.8235	42.5586	14.5977	14.0883	8.8063	15.3165 1	1.8460 21	.0477 38	.1425
	20	22.2488	34.7798	17.1048	10.5683	35.4188 5	51.1682 €	53.4095 t	50.5926 2	9.8490 17	71 1877.	.5397 20	.2701 44	.3687 22.6	3122 33.8	367 21.2111	53.4584	14.7518	32.2831	9.0667	18.6406 1	2.3590 24	1028 46	.9652
	100	33.6753	35.6527 .	38.2033	13.3806	59.3244 4	16.3253 1	17.0900 -	48.1290 2	3.0004 17	.1607 20	.3459 19	.8394 75	.3236 23.6	535 91.7	390 26.5507	119.4635	15.8876	69.0199	11.0433 3	36.2673 1	2.2059 37	0257 54	8529
WPD-EMD-ELM	25	33.4366	37.3127	8.0626	9.4910	50.4250 5	58.9493 5	54.4951 (52.1794 L	9.0558 22	.5120 11.	.7201 15	.9076 23	.1411 27.9	266 33.1	526 37.2794	23.6524	27.2004	11.9650	14.2899	5.9000 6	.9123 13	6284 15	.9781
	20	25.4493	30.7883	4.9191	6.5317 :	38.0816 5	51.5608 4	44.4760	58.3732 1.	2.7531 17	.0513 7.	4419 9	8047 18	.3510 25.3	066 16.2	910 22.1923	26.5103	31.7749	8.0133	10.4365	4.8034 (3105 10	8420 13	6290
	100	22.9683	37.1407	3.9312	6.3174 :	34.2585 6	32.0483 4	44.4477	59.3220 5	0.6239 14	7357 5.	1922 8	0626 15	.8717 25.1	622 12.3	949 19.2294	1 20.0839	31.7345	6.6693	10.6520	3.8587 3	09860 11	8737 17	.2556
CEEMDAN-ANN	25	50.3492	48.2929	26.4782	30.1775	90.4517 9	97.8740 ¢	55.5227 (63.2703 4	9.6651 43	1.4140 30	.7820 32	.5018 61	.7828 63.9	9998 44.0	667 43.1685	39.9474	43.8406	29.8607	32.1797 3	31.7724 3	1.7437 34	.3322 37	.0536
	50	50.6157	51.8075	26.0377	30.9072	\$0.8019 7	76.9569 (35.9968 (62.2487 3	9.4735 40	0.8234 30	.5861 32	.5862 56	.4931 61.4	1867 43.8	533 43.4664	. 38.5900	40.1872	27.9244	30.2672 3	32.6860 3	4.2170 35	5005 34	.5663
	100	51.5224	54.1020	28.5224	27.6295	76.7735 7	73.8664 (56.4273 (56.3484 4	2.8587 43	1.6733 31	.3448 32	.6642 63	.2210 61.7	$7541 \ 45.3$	813 50.3780	43.4211	42.3126	29.6707	31.8922 3	36.6496 3	5.9587 35	9768 39	.0248
VMD-GSO-ELM	25	12.0519	13.1204	7.8295	8.6552	15.2714 1	16.7112 3	19.2023	22.1430 I	3.3921 14	.9289 11	.3648 13	.0571 16	.9026 20.0	823 17.0	955 20.816C	12.8139	15.3264	9.4349	10.5410	8.4923 8	.9651 10	.0353 14	.1069
	00	9.1627	10.0181	5.4894	6.1890	10.3807 1	11.6839	14.3599	16.4008 5	0.0362 11	.6906 7.	9868 9	8013 12	.2127 14.3	3046 13.0	688 15.9892	9.3752	11.5192	6.5333	7.4291	5.9858 (6.8131 9.	0953 11	2100
	100	6.7800	8.1694	4.0446	4.6451	6.9157	8.6323	10.9490	13.7642 (3.4499 8.	.6053 5.	7846 7	6414 9	1675 12.3	3400 10.1	303 12.0349	7.7595	9.3034	5.2778	6.0370	4.6263 8	5444 10	.3875 11	8012
EDNNRWELM	23	17.0421	20.5972	6.0610	7.3272	14.3575 1	17.6393	15.8570	22.0726 1	1.3399 14	L5251 7.	7958 10	.0226 18	.4432 23.7	256 15.2	288 17.9212	9.7698	12.0475	7.1369	8.6984	5.2991 (0642 24	7079 38	6214
	20	10.1010	13.0853	4.4162	5.7869	8.7395 1	13.3418	11.6955	15.6375 ;	7.6547 10	1.3659 5.	1202 7	0752 18	.9021 17.8	3551 9.78	578 13.6955	6.3402	8.4266	4.6563	5.9663	3.6560 2	L4330 35	5285 25	.2605
	100	8.3345	13.0473	3.8046	5.4275	6.2673	9.1878	8.8749	$13.4554 \le$	t.8486 7.	.2338 3.	5590 5	7479 IC	.6991 15.8	3604 7.63	362 11.8945	4.7964	7.1926	3.6762	5.4835	2.7201	35 35 35	.0047 37	7088.
EDNNRWSNN	25	16.9160	21.1922	6.0408	7.2773	13.9303 1	17.2174	15.6100 :	21.7748 1	1.2585 14	.2031 7.	6097 9	6793 18	.3882 23.7	7101 15.2	773 17.7653	9.6275	11.6927	7.0815	8.4307	5.2271 8	.9566 24	7759 39	.6751
	50	10.3739	13.0476	4.3919	5.9578	8.6339 1	13.1625	11.6245	15.5687 7	7.5411 10	0.1775 5.	0670 7	0142 13	.8204 17.7	7056 9.87	701 13.4757	6.2747	8.3548	4.5670	5.9409	3.5922 4	L4131 49	99990 25	8715
	100	8.2175	12.7025	3.7730	5.4998	6.2098	9.0352	8.8813	13.6056 4	1.8145 7.	.1701 3.	5212 5	7537 1C	.6289 15.7	7.78	327 12.0446	4.7583	7.1928	3.7200	5.5269	2.7174 5	35 35 35	.6565 40	9879
EDNNRWRVFL	25	0.3634	0.8420	0.2910	0.6805	0.5271	1.2716	0.5814	1.6124).5597 1.	.0.76	3856 0	8758 0	8100 1.8	678 0.4	397 1.2674	0.4312	1.0404	0.2465	0.5669	0.2622	0.6257 0	2978 0	8382
	50	0.3935	0.9877	0.3460	0.8624	0.5873	1.5087	0.7023	2.0849 (0.6043 1.	4673 0.	4331 1	0388 0	9551 2.2	819 0.56	355 1.5673	0.4875	1.2498	0.2685	0.6592	0.3022 (0.7434 0.	6509 1.	6428
	100	0.5096	1.7291	0.4955	1.4279	0.6116	1.7160	1.0294	3.2828 (0.6883 1.	7216 0.	5789 1	5202 1	2559 3.3	765 0.80	077 2.6059	0.6426	1.8713	0.3613	1.1415	0.3922	.0015 2.	6391 6.	7936
EDNNRWRVFL*	25	0.3636	0.8477	0.2888	0.6726	0.5026	1.2416	0.5987	1.6592	1.5579 1.	.3214 O.	3832 0	8648 0	7814 1.8	445 0.45	972 1.2663	0.4258	1.0395	0.2441	0.5681	0.2592 (0.6171 0	3164 0.	8915
1	50	0.3926	1.0083	0.3460	0.8587	0.5630	1.4678	0.7175	2.1460 (0.6071 1.	4919 0.	4387 1	0312 0	9315 2.2	645 0.58	323 1.5784	0.4869	1.2476	0.2682	0.6637	0.2999 (.7419 1.	8786 1.	6246
	100	0.5162	1.7733	0.4988	1.4357	0.6034	1.7064	1.0515	3.3621 (0.6911 1.	.7427 0.	5815 1	5327 1	2455 3.3	619 0.82	205 2.6334	0.6419	1.8937	0.3634	1.1368	0.3941	.0002 2.	3161 6.	6447

Table 8: Comparison of the MAPE for multiple-step ahead forecasting on the wind power datasets.

Fig.1: Critical difference diagram of average ranks of all the algorithms. The average rank of each competitor over all the datasets is plotted on the x-axis. The average ranks of the proposed methods are represented by blue lines. The best average rank is on the right side.

five step ahead forecasting are presented in Tables 9 to 11. The greater values indicate higher improvement scores of the proposed EDNNRW_{RVFL}, which are close to one hundred.

The data in Tables 9 to 11 can be summarized as follows:

- 1. When comparing the EDNNRW_{RVFL} with the competitors, the forecasting accuracy of the proposed model is remarkably higher than all of the other methods. The improvement percentages between the proposed EDNNRW_{RVFL} and the other competing algorithms, except for the EMD-RVFL and the VMD-GSO-ELM, were generally higher than 90%.
- 2. When comparing the EDNNRW_{RVFL} with EMD-RVFL and VMD-GSO-ELM, the forecasting accuracy of the former method is higher than the two latter approaches. The improvement percentages of the EDNNRW_{RVFL} over EMD-RVFL and VMD-GSO-ELM were generally higher than 60%.
- 3. The improvement percentages between the proposed EDNNRW_{RVFL} and VMD-GSO-ELM were lower than those of the others because the VMD-GSO-ELM employed the feature selection process to eliminate irrelevant features. Thus, we conclude that the feature selection process can improve the predictive performance of the VMD-GSO-ELM.
- 4. The improvement percentages between the proposed EDNNRW_{RVFL} and EMD-RVFL were lower than those of the others. Thus, we conclude that the FLN family promotes the predictive performances of the decomposition-based hybrid approaches. This indicates that the direct connections between the input layer and the output layer within the predictors can significantly improve the

Fig.2: Results of five step ahead forecasting and the corresponding residual errors for the wind power datasets. Grey shaded regions represent the intervals at night time.

Fig.2: Results of five step ahead forecasting and the corresponding residual errors for the wind power datasets. Grey shaded regions represent the intervals at night time (Cont.).

predictive performance of the decomposition-based hybrid model.

5. The performance of the proposed EDNNRW_{RVFL} is relatively superior to the other comparative algorithms in terms of forecasting capability, thereby indicating a significant improvement exists in the predictive performance of the EDNNRW_{RVFL}.

4.6 Comparison of computational times

All experiments were conducted in the MATLAB environment and run on a personal computer with an Intel Core i7-3370 3.40 GHz processor, 8 GB of RAM, and Windows 7 x64 operating system. The computational times of all competitors were obtained using the *tic* and *toc* commands in the MATLAB program. The average computational time of each algorithm across all the problems is shown in Fig-This figure shows that the computational ure 3. times of the NNRW algorithms (ELM, SSN, RVFL, and RVFL*) were faster among all competing algorithms, due to the benefit of random weights generation and the closed-form least-squares solution. The computational speeds of the proposed EDNNRW algorithms were much faster than that of the CEEMDANN-ANN. In the CEEMDANN-ANN, the estimators must be iteratively fine-tuned by the back-propagation algorithm to obtain the optimal weight parameters. Consequently, the CEEMDANN-ANN was the most time-consuming technique. This supports our hypothesis that the algorithm for training the predictors in the decompositionbased method should be a non-iterative learning approach. As seen in Figure 4, the proposed $EDNNRW_{ELM}$, $EDNNRW_{SNN}$, $EDNNRW_{RVFL}$, and EDNNRW_{RVFL*} achieved good trade-offs between predictive performance and computational speed compared to other decomposition-based hybrid meth-Although the computational speeds of the ods. proposed EDNNRW_{RVFL} and EDNNRW_{RVFL}* were slower than some decomposition-based approaches, the forecasting accuracy obtained by the proposed methods is dramatically increased. In practical applications, the additional accuracy is worth the extra computational time.

5. CONCLUSION

We developed an improved decomposition-based hybrid approach for wind power forecasting using EMD, VMD, SSA, DWT, WPD, NNRW, and a linear combiner. In our approach, each decomposition technique is applied to decompose the original time-series data into a collection of components. The NNRW is then exploited as an estimator for each decomposed component. After the reconstruction of the predicted values, the reconstructed results of all of the decomposition techniques are combined with a linear combiner. The main advantage of our approach is that

Fig.3: Computation time of different comparative methods.

Fig.4: Trade-offs between predictive performance and computational time of different decomposition-based hybrid methods.

the valuable characteristics of several decomposition techniques are combined.

The experimental results lead to the following conclusions:

- 1. The proposed EDNNRW_{ELM} and EDNNRW_{SNN} have good average ranks and were significantly superior to the other decomposition-based ELM methods and single models with a confidence of 95%. This indicates that the heterogeneous combination of different decomposition-based models can improve the forecasting capability of the proposed model.
- 2. When comparing both the EDNNRW_{RVFL} and EDNNRW_{RVFL*} with the EDNNRW_{ELM} and EDNNRW_{SNN}, the forecasting accuracies of the former methods were higher than the latter approaches. The FLN family approaches (RVFL and RVFL*) generated greater forecasting accuracy for the developed decomposition-based hybrid framework.

EDNNRW _{RVFL}							Dat	aset					
VS	<i>n</i> -step	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
ELM	1-step	98.80~%	98.50~%	98.67~%	98.92~%	98.56~%	97.86~%	98.42~%	98.97~%	98.94~%	99.09~%	99.12~%	98.36~%
	3-step	93.81~%	96.09~%	96.35~%	94.94~%	96.24~%	92.10~%	92.82~%	96.40~%	96.55~%	97.02~%	96.36~%	92.34~%
	5-step	86.30~%	92.63~%	93.50~%	87.28~%	92.75~%	84.99~%	83.21~%	92.46~%	93.16~%	93.73~%	93.13~%	75.77~%
SNN	1-step	98.78~%	98.49~%	98.65~%	98.91~%	98.55~%	97.81~%	98.40~%	98.95~%	98.93~%	99.08~%	99.11~%	98.35~%
	3-step	93.74~%	96.06~%	96.33~%	94.90~%	96.22~%	92.02~%	92.74~%	96.36~%	96.49~%	96.98~%	96.34~%	92.33~%
	5-step	86.21~%	92.61~%	93.47~%	87.18~%	92.69~%	84.91~%	83.11~%	92.43~%	93.11~%	93.69~%	93.07~%	75.71~%
RVFL	1-step	94.30~%	95.59~%	95.19~%	95.96~%	96.34~%	93.99~%	94.01~%	96.08~%	95.71~%	96.36~%	96.55~%	93.15~%
	3-step	84.79~%	93.72~%	93.42~%	90.61~%	93.96~%	87.28~%	86.61~%	93.82~%	93.63~%	93.98~%	93.61~%	84.21~%
	5-step	74.78~%	90.38~%	90.83~%	82.57~%	90.28~%	79.36~%	75.66~%	90.13~%	90.48~%	90.55~%	90.44~%	62.95~%
RVFL*	1-step	94.30~%	95.59~%	95.19~%	95.96~%	96.35~%	94.00~%	94.02~%	96.09~%	95.72~%	96.36~%	96.55~%	93.16~%
	3-step	84.82~%	93.74~%	93.42~%	90.65~%	93.96~%	87.29~%	86.63~%	93.83~%	93.65~%	94.01~%	93.64~%	84.26~%
	5-step	74.87~%	90.39~%	90.84~%	82.61~%	90.30~%	79.36~%	75.73~%	90.15~%	90.51~%	90.57~%	90.45~%	63.10~%
VMD-WRELM	1-step	98.98~%	99.25~%	99.28~%	99.56~%	99.08~%	98.90~%	99.19~%	99.48~%	99.33~%	99.39~%	99.33~%	99.03~%
	3-step	93.80~%	97.22~%	97.64~%	97.34~%	96.65~%	93.90~%	95.09~%	97.64~%	97.42~%	97.78~%	97.00~%	94.07~%
	5-step	84.38~%	93.36~%	94.93~%	91.82~%	91.82~%	83.49~%	85.61~%	93.79~%	93.81~%	94.32~%	92.92~%	77.10~%
EMD-RVFL	1-step	97.94~%	98.05~%	95.34~%	98.35~%	97.96~%	97.02~%	99.02~%	98.13~%	93.10~%	97.41~%	98.51~%	99.47~%
	3-step	84.95~%	96.59~%	86.69~%	91.80~%	92.40~%	94.00~%	94.18~%	91.80~%	90.09~%	98.06~%	95.32~%	97.46~%
	5-step	61.30~%	96.27~%	80.01~%	87.09~%	84.86~%	89.80~%	87.63~%	80.65~%	88.35~%	97.57~%	91.75~%	92.26~%
CVAELM	1-step	99.01~%	99.13~%	99.30~%	99.68~%	98.99~%	98.72~%	98.99~%	99.42~%	99.62~%	99.56~%	99.34~%	99.03~%
	3-step	93.80~%	97.25~%	97.59~%	98.36~%	96.60~%	92.92~%	94.78~%	97.37~%	99.02~%	98.49~%	97.15~%	94.78~%
	5-step	89.88~%	91.49~%	95.62~%	90.63~%	90.12~%	85.43~%	76.04~%	92.04~%	91.53~%	91.55~%	91.03~%	90.26~%
WPD-EMD-ELM	1-step	98.43~%	96.77~%	99.42~%	99.01~%	98.43~%	96.16~%	97.41~%	98.46~%	99.35~%	98.98~%	96.13~%	98.04~%
	3-step	92.72~%	91.53~%	98.24~%	95.63~%	95.54~%	85.32~%	89.40~%	94.87~%	98.02~%	96.79~%	86.70~%	91.09~%
	5-step	84.67~%	84.64~%	96.82~%	89.93~%	91.47~%	71.16~%	77.11~%	89.74 %	96.45~%	93.84~%	75.19~%	74.19~%
CEEMDAN-ANN	1-step	99.58~%	99.55~%	99.64~%	99.64~%	99.51~%	99.33~%	99.37~%	99.62~%	99.64~%	99.71~%	99.66~%	99.51~%
	3-step	97.29~%	98.29~%	98.63~%	97.74~%	98.13~%	96.35~%	96.08~%	98.25~%	98.57~%	98.75~%	98.46~%	97.09~%
	5-step	92.57~%	95.89~%	96.86~%	92.38~%	95.42~%	90.26~%	88.30~%	95.32~%	96.24~%	96.85~%	96.10~%	88.35~%
VMD-GSO-ELM	1-step	98.85%	97.78~%	97.73~%	98.59~%	97.71 %	96.93~%	96.84 %	98.43~%	98.49~%	98.67~%	99.08~%	98.03~%
	3-step	93.23~%	92.37~%	92.85~%	91.92~%	92.53~%	86.27~%	83.59~%	93.71~%	94.19~%	94.91 %	95.70~%	88.73~%
	5-step	83.30 %	82.66~%	85.30~%	76.75~%	84.70 %	69.48~%	59.19~%	84.97 %	86.20~%	87.65~%	90.12~%	62.14~%

 $\label{eq:Table 9: Improvement percentages of the RMSE results of EDNNRW_{\rm RVFL} over the other competitors.$

Table 10: Improvement percentages of the MAE results of $EDNNRW_{RVFL}$ over the other competitors.

EDNNRW _{RVFL}	n stop						Dat	aset					
vs	<i>n</i> -step	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
ELM	1-step	99.04 %	98.60~%	98.80~%	98.96~%	98.60~%	98.49~%	98.85~%	98.94~%	99.00~%	99.11~%	99.09~%	98.83~%
	3-step	96.90~%	96.42~%	96.68~%	96.58~%	96.51~%	95.85~%	96.10~%	96.54~%	96.65~%	97.20~%	96.58~%	96.15~%
	5-step	93.71~%	93.21~%	94.02~%	92.43~%	93.79~%	92.95~%	92.65~%	93.06~%	93.46~%	94.49~%	93.63~%	89.48~%
SNN	1-step	99.03~%	98.59~%	98.79~%	98.95~%	98.59~%	98.46~%	98.84~%	98.92~%	98.98~%	99.10~%	99.08~%	98.83~%
	3-step	96.87~%	96.39~%	96.66~%	96.56~%	96.49~%	95.81~%	96.06~%	96.51~%	96.59~%	97.17~%	96.55~%	96.14~%
	5-step	93.67~%	93.18~%	94.01~%	92.36~%	93.74~%	92.90~%	92.61~%	93.03~%	93.39~%	94.45~%	93.58~%	89.46~%
RVFL	1-step	95.44~%	95.33~%	95.65~%	96.06~%	96.21~%	95.79~%	95.36~%	95.97~%	95.86~%	96.32~%	96.70~%	95.12~%
	3-step	92.46~%	94.00~%	93.94~%	93.88~%	94.31~%	93.54~%	92.43~%	93.94~%	93.67~%	94.26~%	94.12~%	92.47~%
	5-step	88.93~%	90.93~%	91.45~%	90.07~%	91.72~%	90.68~%	89.42~%	90.75~%	90.60~%	91.73~%	91.25~%	84.62~%
RVFL*	1-step	95.44~%	95.33~%	95.66~%	96.06~%	96.22~%	95.79~%	95.37~%	95.97~%	95.87~%	96.32~%	96.71~%	95.13~%
	3-step	92.47~%	94.02~%	93.95~%	93.90~%	94.31~%	93.54~%	92.45~%	93.94~%	93.68~%	94.29~%	94.14~%	92.49~%
	5-step	88.98~%	90.93~%	91.46~%	90.09~%	91.73~%	90.69~%	89.46~%	90.76~%	90.63~%	91.75~%	91.25~%	84.66~%
VMD-WRELM	1-step	99.25~%	99.31~%	99.31~%	99.56~%	99.11~%	99.26~%	99.40~%	99.49~%	99.39~%	99.40~%	99.42~%	99.27~%
	3-step	97.10~%	97.43~%	97.63~%	98.14~%	96.93~%	97.01~%	97.31~%	97.85~%	97.56~%	97.91~%	97.49~%	96.91~%
	5-step	93.36~%	93.79~%	94.73~%	94.98~%	93.12~%	92.85~%	93.79~%	94.58~%	94.16~%	95.05~%	94.17~%	89.62~%
EMD-RVFL	1-step	94.49~%	94.97~%	92.48~%	94.79~%	94.91~%	95.92~%	97.62~%	94.88~%	91.82~%	95.76~%	96.02~%	98.60~%
	3-step	83.86~%	94.63~%	86.00~%	91.86~%	90.11~%	95.72~%	94.07~%	88.72~%	89.17~%	96.63~%	91.97~%	96.64~%
	5-step	72.51~%	93.93~%	79.72~%	90.88~%	84.43~%	94.36~%	92.37~%	80.12~%	86.92~%	96.49~%	88.51~%	93.71~%
CVAELM	1-step	99.25~%	99.21~%	99.40~%	99.67~%	99.03~%	99.14~%	99.26~%	99.42~%	99.61~%	99.52~%	99.40~%	99.29~%
	3-step	97.05~%	97.53~%	97.94~%	98.84~%	96.87~%	96.55~%	97.13~%	97.53~%	98.94~%	98.41~%	97.43~%	97.39~%
	5-step	95.65~%	91.97~%	96.06~%	94.53~%	91.54~%	93.28~%	89.26~%	92.65~%	91.63~%	92.70~%	92.01~%	95.86~%
WPD-EMD-ELM	1-step	98.48~%	97.01~%	99.29~%	98.97~%	98.33~%	97.34~%	98.02~%	98.45~%	99.16~%	98.64~%	96.33~%	97.90~%
	3-step	95.49~%	92.19~%	97.97~%	96.82~%	95.51~%	92.31~%	93.85~%	95.19~%	97.42~%	96.07~%	88.17~%	93.67~%
	5-step	91.71~%	85.75~%	96.40~%	93.61~%	92.20~%	86.54~%	89.47~%	90.76~%	95.31~%	92.97~%	78.57~%	84.55~%
CEEMDAN-ANN	1-step	99.69~%	99.61~%	99.71~%	99.67~%	99.53~%	99.56~%	99.56~%	99.63~%	99.68~%	99.72~%	99.70~%	99.66~%
	3-step	98.73~%	98.50~%	98.89~%	98.57~%	98.30~%	98.24~%	97.95~%	98.40~%	98.66~%	98.85~%	98.67~%	98.60~%
	5-step	96.80~%	96.37~%	97.39~%	95.69~%	96.16~%	95.83~%	95.09~%	95.85~%	96.50~%	97.32~%	96.70~%	95.15 %
VMD-GSO-ELM	1-step	99.10~%	97.97~%	97.95~%	98.64~%	97.75~%	97.84~%	97.67~%	98.41~%	98.63~%	98.75~%	98.97~%	98.47~%
	3-step	96.57~%	92.92~%	93.42~%	94.46~%	92.96~%	92.70~%	90.71~%	94.00~%	94.53~%	95.40~%	95.43~%	93.89~%
	5-step	92.24~%	83.68~%	86.22~%	85.61~%	86.87~%	85.39~%	81.34~%	86.17~%	87.20~%	89.42~%	89.89~%	81.44~%

EDNNRW _{RVFL}							Dat	aset					
VS	<i>n</i> -step	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
ELM	1-step	99.03~%	98.63~%	98.94~%	99.00 %	98.69~%	98.56~%	98.86~%	98.91~%	98.92~%	99.14 %	98.92~%	98.66~%
	3-step	96.76~%	96.45~%	96.81~%	96.80~%	96.61~%	96.22~%	96.17~%	96.35~%	96.34~%	97.20~%	96.66~%	95.49~%
	5-step	92.38~%	93.09~%	93.79~%	93.21~%	93.88~%	93.69~%	93.12~%	92.24~%	92.85~%	94.09~%	94.00~%	84.85~%
SNN	1-step	99.01~%	98.62~%	98.93~%	98.97~%	98.67~%	98.53~%	98.86~%	98.89~%	98.90~%	99.12~%	98.89~%	98.66~%
	3-step	96.73~%	96.42~%	96.76~%	96.77~%	96.59~%	96.19~%	96.14~%	96.33~%	96.29~%	97.15~%	96.63~%	95.49~%
	5-step	92.32~%	93.07~%	93.75~%	93.13~%	93.82~%	93.64~%	93.10~%	92.21~%	92.78~%	94.04~%	93.94~%	84.84~%
RVFL	1-step	95.19~%	95.06~%	95.34~%	95.78~%	95.96~%	95.87~%	94.56~%	95.47~%	95.48~%	96.10~%	96.60~%	92.98~%
	3-step	92.13~%	93.87~%	93.27~%	93.99~%	94.09~%	94.15~%	91.78~%	93.33~%	92.97~%	93.81~%	94.54~%	89.90~%
	5-step	86.41~%	90.69~%	90.08~%	90.52~%	91.54~%	91.78~%	89.55~%	89.07~%	89.46~%	90.73~%	91.87~%	76.76~%
RVFL*	1-step	95.20~%	95.07~%	95.35~%	95.78~%	95.96~%	95.87~%	94.57~%	95.48~%	95.49~%	96.10~%	96.60~%	93.04~%
	3-step	92.14~%	93.89~%	93.28~%	94.02~%	94.08~%	94.16~%	91.80~%	93.34~%	92.98~%	93.86~%	94.54~%	90.00~%
	5-step	86.43~%	90.71~%	90.14~%	90.54~%	91.55~%	91.78~%	89.63~%	89.10~%	89.49~%	90.74~%	91.85~%	76.97~%
VMD-WRELM	1-step	99.53~%	99.32~%	99.44~%	99.53~%	99.21~%	99.39~%	99.51~%	99.61~%	99.45~%	99.45~%	99.53~%	99.19~%
	3-step	98.25~%	97.46~%	97.79~%	98.03~%	97.18~%	97.57~%	97.86~%	98.31~%	97.69~%	97.95~%	98.17~%	96.25~%
	5-step	95.40~%	93.88~%	94.46~%	94.77~%	93.54~%	94.28~%	95.31~%	95.42~%	94.19~%	94.75~%	95.82~%	84.38~%
EMD-RVFL	1-step	92.88~%	93.49~%	91.71~%	92.68~%	93.35~%	95.39~%	96.55~%	95.63~%	92.24~%	96.75~%	96.09~%	97.67~%
	3-step	81.13~%	93.08~%	88.99~%	91.04~%	87.21~%	95.42~%	92.80~%	88.54~%	90.47~%	97.75~%	92.61~%	96.32~%
	5-step	64.19~%	91.90~%	87.25~%	88.99~%	79.69~%	94.13~%	91.87~%	76.78~%	88.73~%	97.44~%	89.47~%	94.32~%
CVAELM	1-step	99.48~%	99.23~%	99.57~%	99.67~%	99.05~%	99.23~%	99.33~%	99.46~%	99.58~%	99.53~%	99.47~%	99.23~%
	3-step	97.85~%	97.59~%	98.35~%	98.76~%	96.89~%	96.98~%	97.41~%	97.67~%	98.75~%	98.38~%	97.90~%	97.13~%
	5-step	94.81~%	91.52~%	96.01~%	94.70~%	91.63~%	94.07~%	89.47~%	91.26~%	90.64~%	91.86~%	93.39~%	93.60~%
WPD-EMD-ELM	1-step	99.23~%	97.02~%	99.43~%	99.43~%	98.11~%	97.58~%	98.11~%	98.73~%	99.12~%	98.71~%	97.36~%	98.11~%
	3-step	97.71~%	92.16~%	98.45~%	98.22~%	94.87~%	93.09~%	94.13~%	95.73~%	97.10~%	96.09~%	92.81~%	93.82~%
	5-step	95.01~%	85.60~%	97.25~%	96.26~%	91.05~%	87.91~%	90.34~%	91.17~%	94.39~%	92.48~%	87.32~%	81.78~%
CEEMDAN-ANN	1-step	99.79~%	99.62~%	99.83~%	99.72~%	99.58~%	99.61~%	99.60~%	99.69~%	99.69~%	99.74~%	99.76~%	99.60~%
	3-step	99.14~%	98.56~%	99.31~%	98.82~%	98.45~%	98.46~%	98.18~%	98.54~%	98.68~%	98.90~%	99.04~%	98.20~%
	5-step	97.50~%	96.49~%	98.15~%	96.45~%	96.41~%	96.40~%	95.90~%	95.94~%	96.54~%	97.32~%	97.63~%	92.44~%
VMD-GSO-ELM	1-step	98.68~%	97.84~%	98.34~%	98.56~%	97.70~%	98.06~%	97.61~%	98.66~%	98.53~%	98.76~%	98.50~%	98.60~%
	3-step	94.92~%	92.49~%	94.21~%	94.27~%	92.74~%	93.63~%	90.84~%	94.86~%	94.29~%	95.27~%	94.34~%	93.77~%
	5-step	86.78~%	82.59~%	86.92~%	85.96~%	86.16~%	87.55~%	82.79~%	87.67~%	87.15~%	88.76~%	87.92~%	78.96~%

Table 11: Improvement percentages of the MAPE results of EDNNRW_{RVFL} over the other competitors.

3. The proposed EDNNRW_{RVFL} and EDNNRW_{RVFL*} ranked higher and significantly outperformed the comparative algorithms with a 0.05 significance level.

Future research directions and further possible improvements to this work include:

- 1. The type of prediction model selected has a significant influence on the predictive performance. Thus, the reservoir computing model and other variants of recurrent NN with random weights [48] should be further investigated.
- 2. The number of lag orders and structure size of NNRW within the proposed method are userspecified parameters. Therefore, further work on how to automatically determine the optimal lag orders and node sizes is worth further investigation.

ACKNOWLEDGMENT

This work was supported by the Graduate Education of Computer and Information Science Interdisciplinary Research Grant from Department of Computer Science, Faculty of Science, Khon Kaen University #002/2556.

References

- Global Wind Energy Council, "Global wind report 2018," 2019.
- [2] B. Bhandari, K.-T. Lee, G.-Y. Lee, Y.-M. Cho, and S.-H. Ahn, "Optimization of hybrid renewable energy power systems: A review," *International journal of precision engineering and*

manufacturing-green technology, vol. 2, no. 1, pp. 99–112, 2015.

- [3] E. B. Ssekulima, M. B. Anwar, A. Al Hinai, and M. S. El Moursi, "Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review," *IET Renewable Power Generation*, vol. 10, no. 7, pp. 885–989, 2016.
- [4] H. Liu, X. Mi, and Y. Li, "Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks," *Energy Conversion and Management*, vol. 155, pp. 188–200, 2018.
- [5] X. An, D. Jiang, M. Zhao, and C. Liu, "Shortterm prediction of wind power using emd and chaotic theory," *Communications in Nonlinear Science and Numerical Simulation*, vol. 17, no. 2, pp. 1036–1042, 2012.
- [6] L. Han, R. Zhang, X. Wang, A. Bao, and H. Jing, "Multi-step wind power forecast based on vmd-lstm," *IET Renewable Power Generation*, vol. 13, no. 10, pp. 1690–1700, 2019.
- [7] J. P. d. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes, "Short-term wind power forecasting in portugal by neural networks and wavelet transform," *Renewable energy*, vol. 36, no. 4, pp. 1245–1251, 2011.
- [8] A. Laouafi, M. Mordjaoui, A. Medoued, T. E. Boukelia, and A. Ganouche, "Wind power forecasting approach using neuro-fuzzy system combined with wavelet packet decomposition, data

preprocessing, and forecast combination framework," *Wind Engineering*, vol. 41, no. 4, pp. 235– 244, 2017.

- [9] C. Wang, H. Zhang, and P. Ma, "Wind power forecasting based on singular spectrum analysis and a new hybrid laguerre neural network," *Applied Energy*, vol. 259, p. 114139, 2020.
- [10] Z. Qian, Y. Pei, H. Zareipour, and N. Chen, "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," *Applied energy*, vol. 235, pp. 939–953, 2019.
- [11] W. Cao, X. Wang, Z. Ming, and J. Gao, "A review on neural networks with random weights," *Neurocomputing*, vol. 275, pp. 278–287, 2018.
- [12] W. F. Schmidt, M. A. Kraaijveld, and R. P. Duin, "Feedforward neural networks with random weights," in *Proceedings.*, 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems, pp. 1–4, IEEE, 1992.
- [13] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, "Learning and generalization characteristics of the random vector functional-link net," *Neurocomputing*, vol. 6, no. 2, pp. 163–180, 1994.
- [14] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," *Neurocomputing*, vol. 70, no. 1, pp. 489– 501, 2006.
- [15] L. Tang, Y. Wu, and L. Yu, "A non-iterative decomposition-ensemble learning paradigm using rvfl network for crude oil price forecasting," *Applied Soft Computing*, vol. 70, pp. 1097–1108, 2018.
- [16] E. Fijani, R. Barzegar, R. Deo, E. Tziritis, and S. Konstantinos, "Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters," *Science of the total environment*, vol. 648, pp. 839–853, 2019.
- [17] R. Prasad, R. C. Deo, Y. Li, and T. Maraseni, "Soil moisture forecasting by a hybrid machine learning technique: Elm integrated with ensemble empirical mode decomposition," *Geoderma*, vol. 330, pp. 136–161, 2018.
- [18] N. Huang, C. Yuan, G. Cai, and E. Xing, "Hybrid short term wind speed forecasting using variational mode decomposition and a weighted regularized extreme learning machine," *Energies*, vol. 9, no. 12, pp. 1–19, 2016.
- [19] T. Peng, J. Zhou, C. Zhang, and Y. Zheng, "Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and adaboost-extreme learning machine," *Energy Conversion and Management*, vol. 153, pp. 589–602, 2017.

- [20] H. Liu, H.-Q. Tian, and Y.-F. Li, "Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms," *Energy conversion and management*, vol. 100, pp. 16–22, 2015.
- [21] L. Tang, Y. Wu, and L. Yu, "A randomizedalgorithm-based decomposition-ensemble learning methodology for energy price forecasting," *Energy*, vol. 157, pp. 526–538, 2018.
- [22] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis," *Proceedings of the Royal Society of London. Series* A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903–995, 1998.
- [23] K. Dragomiretskiy and D. Zosso, "Variational mode decomposition," *IEEE transactions on signal processing*, vol. 62, no. 3, pp. 531–544, 2014.
- [24] D. S. Broomhead and G. P. King, "Extracting qualitative dynamics from experimental data," *Physica D: Nonlinear Phenomena*, vol. 20, no. 2-3, pp. 217–236, 1986.
- [25] S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, no. 7, pp. 674–693, 1989.
- [26] R. R. Coifman and M. V. Wickerhauser, "Entropy-based algorithms for best basis selection," *IEEE Transactions on information theory*, vol. 38, no. 2, pp. 713–718, 1992.
- [27] P. Du, J. Wang, W. Yang, and T. Niu, "A novel hybrid model for short-term wind power forecasting," *Applied Soft Computing*, vol. 80, pp. 93–106, 2019.
- [28] Y. Li, H. Shi, F. Han, Z. Duan, and H. Liu, "Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy," *Renewable Energy*, vol. 135, pp. 540–553, 2019.
- [29] G. E. P. Box and G. M. Jenkins, *Time Series Analysis, Forecasting and Control.* San Francisco, CA: Holden-Day, 1970.
- [30] L.-L. Li, X. Zhao, M.-L. Tseng, and R. R. Tan, "Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm," *Journal of Cleaner Production*, vol. 242, p. 118447, 2020.
- [31] A. P. Marugán, F. P. G. Márquez, J. M. P. Perez, and D. Ruiz-Hernández, "A survey of artificial neural network in wind energy systems," *Applied energy*, vol. 228, pp. 1822–1836, 2018.
- [32] Y. Ren, P. Suganthan, and N. Srikanth, "Ensemble methods for wind and solar power forecasting—a state-of-the-art review," *Renewable and Sustainable Energy Reviews*, vol. 50, pp. 82–91, 2015.

- [33] A. Tascikaraoglu and M. Uzunoglu, "A review of combined approaches for prediction of shortterm wind speed and power," *Renewable and Sustainable Energy Reviews*, vol. 34, pp. 243– 254, 2014.
- [34] Y.-H. Pao and Y. Takefuji, "Functional-link net computing: Theory, system architecture, and functionalities," *Computer*, vol. 25, no. 5, pp. 76–79, 1992.
- [35] G. Li, P. Niu, X. Duan, and X. Zhang, "Fast learning network: A novel artificial neural network with a fast learning speed," *Neural Computing and Applications*, vol. 24, no. 7-8, pp. 1683–1695, 2014.
- [36] A. A. Abdoos, "A new intelligent method based on combination of vmd and elm for short term wind power forecasting," *Neurocomputing*, vol. 203, pp. 111–120, 2016.
- [37] J. Naik, P. Satapathy, and P. Dash, "Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression," *Applied Soft Computing*, vol. 70, pp. 1167–1188, 2018.
- [38] C. R. Rao, S. K. Mitra, et al., Generalized inverse of a matrix and its applications. New York: Springer, 1972.
- [39] D. Serre, *Matrices: Theory and Applications*. New York: Springer, 2002.
- [40] H. Liu, X. Mi, and Y. Li, "An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and elm algorithm," *Renewable energy*, vol. 123, pp. 694–705, 2018.
- [41] Y. Ren, P. Suganthan, and N. Srikanth, "A comparative study of empirical mode decompositionbased short-term wind speed forecasting methods," *IEEE Transactions on Sustainable Energy*, vol. 6, no. 1, pp. 236–244, 2014.
- [42] H. Yin, Z. Dong, Y. Chen, J. Ge, L. L. Lai, A. Vaccaro, and A. Meng, "An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization," *Energy conversion and management*, vol. 150, pp. 108– 121, 2017.
- [43] Y. Zhang, J. Le, X. Liao, F. Zheng, and Y. Li, "A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing," *Energy*, vol. 168, pp. 558–572, 2019.
- [44] J. Demšar, "Statistical comparisons of classifiers over multiple data sets," *Journal of Machine learning research*, vol. 7, pp. 1–30, 2006.
- [45] R. L. Iman and J. M. Davenport, "Approximations of the critical region of the fbietkan statistic," *Communications in Statistics-Theory and Methods*, vol. 9, no. 6, pp. 571–595, 1980.

- [46] M. Lindauer, J. N. van Rijn, and L. Kotthoff, "The algorithm selection competitions 2015 and 2017," *Artificial Intelligence*, vol. 272, pp. 86– 100, 2019.
- [47] I. A. Carvalho, "On the statistical evaluation of algorithmic's computational experimentation with infeasible solutions," *Information Process*ing Letters, vol. 143, pp. 24–27, 2019.
- [48] Y. Rizk and M. Awad, "On extreme learning machines in sequential and time series prediction: A non-iterative and approximate training algorithm for recurrent neural networks," *Neurocomputing*, vol. 325, pp. 1–19, 2019.

Pakarat Musikawan received his B.S. degree in information technology from Ubon Ratchathani University, Thailand. He received his M.S. and Ph.D. degrees in computer science from Khon Kaen University, Thailand. His research interests include machine learning, artificial intelligence, computational intelligence, soft computing, data mining, and knowledge-based systems.

Khamron Sunat received his B.S. degree in chemical engineering from Chulalongkorn University, Thailand, in 1989. He received his M.S. degree in computational science in 1998 and his Ph.D. degree in computer science from Chulalongkorn University in 2004. He now works as a lecturer in the Department of Computer Science at Khon Kaen University, Thailand. His research interests are in neural networks, pattern recogni-

tion, computer vision, soft computing, fuzzy systems, evolutionary computing and, optical computing.

Yanika Kongsorot received her B.S., M.S. and Ph.D. degrees in computer science from Khon Kaen University, Thailand. Her research interests include machine learning, pattern recognition, data mining, intelligent information processing, and decision support systems.