122 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

Wind Power Forecasting Using A
Heterogeneous Ensemble of
Decomposition-based NNRW Techniques

Pakarat Musikawan!, Khamron Sunat?, and Yanika Kongsorot?,

ABSTRACT

Accurate and reliable wind power forecasting plays
a vital role in the operation and management of power
systems. Hence, it has become necessary to research
and develop a high-accuracy wind power forecasting
model. However, owing to highly nonlinear and non-
stationary patterns of wind power time-series, cre-
ating a wind forecasting model capable of predict-
ing such series accurately is both complicated and
challenging. Aiming at this challenge, this paper in-
troduces a new decomposition-based hybrid model
based on multiple decomposition techniques, neural
network with random weights (NNRW), and a lin-
ear combiner. In our approach, the original time-
series is decomposed into a collection of sub-series by
different decomposition techniques. Each sub-series
is modeled and predicted separately using NNRW.
The predicted signals of each decomposition model
are then reconstructed independently. Finally, all of
the reconstructed results are integrated by the com-
biner using a linear combination method. The predic-
tive performance of the proposed method was com-
pared with other state-of-the-art techniques in over
12 wind power time-series. The experimental results
show that the predictive performance of the proposed
method remarkably outperforms the other competi-
tors, proving the developed model to be effective, ef-
ficient, and practical.

Keywords: Wind power forecasting, Time-series,
Neural network with random weights, Decomposition
technique, Hybrid model, Ensemble system

1. INTRODUCTION

Wind energy is becoming more and more impor-
tant as a worldwide energy supply. According to the
report of the Global Wind Energy Council (GWEC),
the global cumulative installed electricity generation
capacity from wind power in 2018 was 51.3 gigawatts
(GW) and the GWEC forecasts that the capacity of
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wind power generation will reach higher than 840 GW
by the end of 2022 [1]. Moreover, the report released
by the GWEC shows that the cumulative installed
wind power capacity could reach 2000 GW by 2030.
This illustrates that wind energy has gained greater
distinction and has attracted global attention. Wind
power is the conversion of energy from the wind into
electricity, which is generated by the passing of air-
flow through wind turbines. The power generated is
therefore dependent upon the wind speed. Accurate
wind power forecasting is necessary for power system
operations, such as planning, dispatching, and main-
tenance schedules. However, as wind speed is inter-
mittent and fluctuating, it is not easy to model and
predict accurately [2, 3].

In applications of wind power forecasting,
decomposition-based hybrid approaches have been
proposed based on the combination of decomposition
techniques and forecasting models. Different decom-
position techniques have been widely applied in the
hybrid methods for preprocessing because they can
effectively reduce the non-stationary characteristics
of the wind power time series [4], including empiri-
cal mode decomposition (EMD) [5], variational mode
decomposition (VMD) [6], discrete wavelet transform
(DWT) [7], wavelet packet decomposition (WPD) [§],
and singular spectrum analysis (SSA) [9]. These de-
composition methods are used in the data preprocess-
ing stage to decompose the time-series of wind power
into several components. Then, a forecasting model
is built for each decomposed component. Generally,
conventional machine learning algorithms are usually
utilized to perform as forecasting models [10]. They
have been become the most dominant techniques in
decomposition-based hybrid approaches, due to their
forecasting ability. However, these algorithms require
a lot of training time to iteratively find their opti-
mal parameters. Hence, it is necessary to balance
forecasting accuracy with the required computational
time.

Non-iterative learning approaches have also been
proposed to avoid some of the difficulties faced by it-
erative learning algorithms [11]. A neural network
with random weights (NNRW) is a class of non-
iterative learning algorithm for training NN with a
fixed hidden layer size [12, 13, 14]. The weights and
biases within the hidden layer of NNRW are randomly
assigned, while the output layer parameters are de-
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termined by finding the least square solution. Due
to their ability to generate a forecasting model with
extremely fast learning speed and satisfactory per-
formance, they have attracted the attention of nu-
merous research studies [15, 16, 17], especially in the
area of wind energy [18, 19, 20]. According to pre-
vious literature [21], it is clear that NNRW can dra-
matically accelerate the computational speed of the
decomposition-based hybrid approach.

Based on the aforementioned research, there have
been a lot of successful applications of the in-
dividual decomposition technique integrated with
NNRW in time-series forecasting. However, the single
decomposition-based hybrid approaches often cannot
accurately capture the complex relationships exist-
ing in the highly nonlinear and non-stationary time-
series. By borrowing the idea of ensemble learn-
ing that incorporates the advantages of different
individual algorithms, this paper proposes a new
decomposition-based hybrid approach, named Het-
erogeneous Ensemble of Decomposition-based NNRW
(EDNNRW). In our approach, the original time-
series is decomposed into a finite number of com-
ponents through different decomposition techniques.
Five prominent decomposition techniques (EMD,
VMD, SSA, DWT, and WPD) have been applied in
the decomposition process in the preprocessing of our
system because they are extensively applied signal de-
composition techniques that have been proven to be
effective, rapid, and practicable data preprocessing
tools in time-series forecasting [22, 23, 24, 25, 26].
To inherit the merits of fast learning, computational
simplicity, and good generalization capabilities, four
types of NNRW models are utilized to perform as
predictors for each decomposed component in the
forecasting process. The final forecasting results of
each decomposition technique can be reconstructed
by adding up all the predicted results. Finally, all of
the reconstructed signals are integrated as the ulti-
mate result via a linear combiner, due to its archi-
tectural simplicity, fast modeling, and functional ap-
proximation capabilities. Simulations on wind power
forecasting have demonstrated that the developed
model significantly outperforms all comparative al-
gorithms for single and multiple step forecasting.

The three main scientific contributions and novel-
ties of this research are given in the following list:

1. We propose a new decomposition-based hybrid
framework integrating multiple decomposition
techniques, NNRW, and a linear combiner. This
method has not been found in previous studies to
the best knowledge of the authors.

2. EMD, VMD, SSA, DWT, and WPD were inte-
grated into the developed framework to decompose
the original signals to reduce the non-stationary
characteristics as much as possible. This technique
has also not been previously published.

3. Four types of NNRW methods were utilized as

predictors of the developed decomposition-based

hybrid approach. The impacts of various NNRW

methods in the developed model were investigated
and documented.

The remainder of this paper is organized as fol-
lows: the literature review is presented in Section 2;
our proposed method is described in Section 3; our
experimental results and performance evaluations are
presented in Section 4; and lastly, the conclusions are
illuminated in Section 5.

2. LITERATURE REVIEW

Many previously published studies have proposed
different methods for wind power forecasting. These
can be divided into four broad categories [27]: (a)
physical methods, (b) statistical methods, (c¢) in-
telligent methods, and (d) hybrid methods. Each
method, however, is not without its limitations.
Physical methods build forecasting methods through
physical or meteorological information, such as tem-
perature, pressure, altitude, and so on. Their draw-
back is that they are very time-consuming [28]. Sta-
tistical methods model the predictors through the
use of historical data including autoregression (AR),
moving average (MA), the combination of AR and
MA (ARMA), and AR integrated MA (ARIMA) [29].
Since these models are linear approaches, they are in-
capable of accurately predicting highly nonlinear or
non-stationary time series. Intelligent methods pri-
marily employ machine learning techniques to find
the relationship between the input variables and the
corresponding output data. Some of these approaches
are support vector machine (SVM) [30], artificial
neural network (ANN) [31], and ensemble systems
[32]. Hybrid methods aggregate various methodolo-
gies together. Generally, hybrid approaches combine
decomposition-based methods and predictors. They
generally have better prediction performance than
the previously mentioned approaches. The hybrid ap-
proaches provide effective forecasting performance as
they combine the advantages of different methodolo-
gies, and have thus received increasing attention [33].

The decomposition technique is a powerful tool
for reducing the forecast difficulty by converting the
original non-stationary time series into several rel-
atively more stationary sub-series. EMD is a self-
adaptive analysis technique for the time-domain pro-
cessing of a nonlinear and non-stationary signal [22].
The EMD decomposes a signal x = [z(1),...,z(T)]
into a finite collection of K — 1 intrinsic mode func-
tions (IMFs) and one residue [22]. The group of
IMFs {uy,...,ux—_1} and the residue r can be math-
ematically expressed as x = r + Zf:_ll ug. VMD
[23] is an adaptive and non-recursive signal decom-
position algorithm which is appropriate for analyz-
ing non-stationary signals. The VMD decomposes
a signal into K components with limited bandwidth
in the spectral domain. Both the bandwidth and
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center frequency of each component are determined
by iteratively searching for the optimal solution of
a variational problem. DWT [25] is a mathematical
technique and powerful tool for analyzing the time-
frequency domain. It is well suited for non-stationary
signals. The DWT decomposes the signal into a set
of approximation and detail coefficients. The approx-
imation and detail coefficients represent the low and
high frequency components, respectively. DWT de-
composes only the approximation coefficient at each
level. The WPD [26] is a generalized version of DWT
which decomposes both the approximation and detail
coefficients at each level. SSA [24] is a non-parametric
technique which is widely employed in time series
analysis. The core purpose of this approach is de-
composing an original time-series of data into a sum
of sub-series in which each sub-series can be identified
as either a trend, quasi-periodic component, or noise.

Jiang et al., 2012 [5] proposed a combination of the
EMD, the largest Lyapunov exponent (LLE) predic-
tion method, and the grey forecasting model. The
EMD was employed as the data preprocessing ap-
proach to decompose the time-series of wind power
into various IMF components and one residual com-
ponent. Then, the LLE method was performed to
predict each IMF. Finally, the grey forecasting model
was employed to predict the residual component.
Zhang et al., 2018 [6] proposed a hybrid prediction
model with the VMD and a long short-term mem-
ory network (LSTM), called VMD-LSTM. In the
first step, the wind power time-series is decomposed
into various sub-series using the VMD. In the VMD-
LSTM, the LSTM network is exploited to find each
sub-series of wind power. Wang et al., 2020 [9] pre-
sented a hybrid of SSA and the Laguerre neural net-
work (LNN) optimized by the opposition transition
state transition algorithm (OTSTA). The time-series
of wind power was decomposed into various sub-series
using SSA in the first step. An optimized LNN was
built for each sub-series. Catalao et al., 2011 [7] pro-
posed a combination of the DWT and multilayer per-
ceptron (MLP) trained by the Levenberge-Marquardt
(LM) algorithm for wind power forecasting in Portu-
gal. In the first stage, the DWT was used to de-
compose the wind power series into a set of sub-
series. Then, the future values of these sub-series
were predicted using the LM network. Laouafi et al.,
2017 [8] presented a hybrid of the WPD and adap-
tive neuro-fuzzy inference system (ANFIS) for the
prediction of wind power generation in France. As
mentioned before, the literature shows that EMD,
VMD, SSA, DWT, and WPD can improve the pre-
dictive performance of the hybrid approaches in ap-
plications of wind power forecasting. The iterative
intelligent methods were adopted to perform as pre-
dictors in the hybrid methods. These algorithms are
very time-consuming because they employ iterative
learning methods for tuning their parameters.

NNRW was originally described by Schmidt et al.
[12], and they called it a Schmidt neural network
(SNN). It is a fast learning approach for training a
single hidden layer feedforward network (SLFN) with
a fixed hidden layer size. The hidden layer parameters
of an SLFN trained by NNRW are randomly gener-
ated, whereas the output weights and output biases
are analytically determined by finding a least-square
solution. Pao et al. [13] proposed a variant version
of NNRW named random vector function-link net-
work (RVFL). The RVFL was developed for training
a functional-link network (FLN) [34]. In the RVFL,
direct connections from the input nodes to the out-
put nodes were allowed. Another version of the RVFL
[35] considered the output bias term, which herein we
name RVFL*. Huang et al. [14] proposed a learning
algorithm, referred to as extreme learning machine
(ELM), for training SLFN. Unlike the original SNN,
the bias term within the output layer of the ELM is
not considered [11].

In the area of wind energy forecasting, several hy-
brids of decomposition techniques and NNRW have
been proposed by researchers [18, 19, 20]. Abdoos [36]
proposed a combination of the Gram-Schmidt orthog-
onalization (GSO), VMD, and ELM, called VMD-
GSO-ELM. The VMD was utilized to decompose the
wind power signal into several sub-series, and each de-
composed sub-series was utilized to create the train-
ing patterns. Then, the GSO was employed as a
feature selection method to eliminate irrelevant in-
put features from each training dataset for ELM.
Finally, the ELM was used as a forecasting model
for each dataset with selected features. The experi-
mental results showed that the VMD-GSO-ELM had
faster learning speed than other iterative learning al-
gorithms. Naik et al., 2018 [37] proposed a hybrid
EMD and non-iterative learning approach for both
wind speed and wind power predictions. Several non-
iterative learning methods were selected and com-
pared in this work, including kernel ridge regression
(KRR), RVFL, and ELM. The experimental results
showed that both a hybrid EMD and KRR (EMD-
KRR), as well as a combination of EMD and RVFL
(EMD-RVFL), could achieve promising results in ap-
plications of both wind speed and wind power fore-
casting. Their experimental results have also shown
that although the predictive performance of EMD-
RVFL was slightly lower than that of EMD-KRR,
the training speed of EMD-RVFL was much faster
than EMD-KRR. Moreover, there are a large number
of parameters which must be set in the EMD-KRR
algorithm and the EMD-KRR was very sensitive to
the values of those parameters. This illustrates that
these aforementioned hybrid techniques inherit the
advantages of fast learning speed, and good gener-
alization performance from NNRW. Moreover, they
have shown excellent results working with time-series
for wind power forecasting.
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3. PROPOSED METHOD

Let {fi,...,far} denote a set of M base models,
where the mth base model f,, is separately trained on
{X,Y} = {(xi,y:)}V,. Here, x; = [2(1),...,2(n)] €
R™ is the ith input sample and y; € R is the corre-
sponding desired output. Suppose that the (x;,y;)
for the base model f,, can be decomposed into K
components using the mth decomposition technique
Dy, that is {(X]",¥71), - (X%, Vi) } X7 and
¥y denote the kth decomposed components of x;
and y; using the m decomposition technique, re-
spectively, where f(mk = [27.(1),..., A;”k(n)] € R”,
yzk € R Xy = Zk 1sz’ and yi = Zk 1yzk:
Here D., € {EMD, VMD SSA, WPD,DWT}, and
m = 1,..., M. Therefore, the base model f,, for a
sample xj With K components can be expressed as
shown in Eq. (1).

K

= &) (1)
k=1

fi* is the kth predictor within f,,,. In considering the

influence of the type of network structure, f;" is given

by Eq. (2).

fm (XJ)

L
(X)) = Zﬁir,nka(&??mwzlkab?fk)*‘ﬂkfmﬂ) (2)
i=1

&;"k represents the kth component decomposed from
x; using the mth decomposition technique. Here,
w,;". € R" denotes the input weighs that connect the
input layer and the ith hidden node, and b}"} is the
bias of the ith hidden node. Both the weights and bi-
ases within the hidden layer are randomly generated
based on a uniform distribution. 8] is the weight
connecting the ith hidden node and the output layer
of fi* within f,,. ¢ denotes the structural function,
which is adopted to define the type of network struc-
ture. The ¢ for an input X", is formulated as shown
in Eq. (3).

Sp(f(??ka ) =
0, if 1 =0 (ELM)
ok if 4 =1 (SNN)
S o= D)7 if 11 = 2 (RVFL)
B+ S &7 (L— L)BF, if = 3 (RVFL¥)

(3)
By’ and ]}, represent the output bias and the weight,
respectively, that connect the Ith input node and the
output layer of the f,, for the kth component. Here,
the SLFN structure is adopted if ;1 € {0, 1}, while the
FLN structure is employed if p € {2,3}. The output
weights within the mth base model for estimating the
kth component are determined by the minimization
in Eq. (4).

N 2
argmin ¢ Y [§7 — fit (X7%)] (4)

{ﬁ'rn j=1

To combine the predicted results of all the base
models, all the predicted results of the M base model
are integrated through a linear combination method.
Therefore, the ensemble output function can be writ-
ten as shown in Eq. (5).

F(xj) =wo+ > wmfm(x;) (5)

wy, denotes the coefficient connecting the mth base
model and the combination layer.

To obtain the optimal {wy, . ..,ws}, the objective
function for minimizing the training error can be for-
mulated as shown in Eq. (6).

N M 2
argmin Z [yj - [wo + Z wmfm(xj)] 1
{wm} j=1 m=1
(6)
By using Eq. (6), the objective function can be
rewritten in the matrix form as shown in Egs. (7)
to (9).

L=(Pw-Y) (dw-Y)
= Y'Y+w ®Pw-Y ®w—-w'®'Y (7)
=Y Y4+w ® dw-—2w®'Y
1 f1 (Xl) fM(Xl)
e (8)
1 fl(XN) fM(XN)
wo Y1
w = Y=|: (9)
W YN

& ¢ RV*(M+1) ig the output matrix of the base mod-
els. w € RM+Dx1 3nd Y € RV*! denote the ensem-
ble weight and the desired output vectors, respec-
tively.

Taking the derivative of £ with respect to w
and setting the derivative equal to zero, we obtain
Eq. (10).

%:0—>2¢’T<I>w—2‘1>TY:O
ow (10)

@ Pw=2"Y
Assuming that ®'® is an invertible matrix, the
optimal least square solution of Eq. (7) is given by
Eq. (11).

w==>alY (11)
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& = (<I>T<I>)71 &7 is the generalized pseudoinverse
of ®. However, ®'® can be a non-invertible ma-
trix. To avoid the non-invertible problem, the SVD
is commonly employed to compute the generalized
pseudoinverse in all cases [14]. Therefore, the SVD
was adopted to compute ®1 in this study.

Theorem 1 ([38, 39]) Given P € R™*™ such that
Pb is the minimum norm least-square solution of
Ax = b, where A € R™"™ and b € R™. It is
necessary and sufficient that P = AT, which is the
generalized inverse of A.

Remarks 1: According to Theorem 1, the pro-
posed ensemble model has following important prop-
erties:

o x* = A'b is the least-square solution of Ax =b

|Ax* —b|| = ||[AATb — b|| = argmin ||Ax — b|
(12)

e x* = A'b has the minimum norm among all the
other solutions of Ax =b

|| =[lATB] < [|x]],
vx € {x: |[Ax — y|| < ||Az — y|,Vz € R"}
(13)
e x* = A'b is the minimum norm least-squares so-
lution of Ax = b, which is always unique.

The learning process of the proposed decomposition-

based hybrid approach is summarized as follows:

1. Each decomposition technique is used to decom-
pose the wind power series data. The time-series
data of each decomposition method is decomposed
into K decomposed components. In this step, five
single decomposition techniques are adopted sepa-
rately: EMD, VMD, SSA, DWT, and WPD.

2. The NNRW predictor is built to complete the fore-
casting computation for each decomposed compo-
nent of each decomposition technique. In this step,
four types of NNRW models are presented: ELM,
SNN, RVFL, and RVFL*.

3. The predicted signals of each decomposition tech-
nique are directly summed to built the recon-
structed time-series of wind power through Eq. (1).

4. All of the reconstructed results are integrated by
a linear combination method using Eq. (5). The
weighted coeflicients of this combiner can be ob-
tained via Eq. (11).

4. CASE STUDY AND RESULTS DISCUS-
SION

4.1 Datasets specification and preparation

Twelve actual wind power datasets were retrieved
from the 50Hertz Transmission GmbH website. They
are available at https://www.50hertz.com/. These
datasets were collected over 12 months from January
1, 2018, to December 31, 2018, in Germany. These

data series were recorded at an interval of 15 minutes.
The series of the wind power datasets were continu-
ously recorded with the exception of March 25, 2018,
from 2:00 to 2:45, and November 26, 2018, at 12:00
and 12:15, when data was not collected. The spec-
ification and statistical information including mean,
maximum (Max.), minimum (Min.), standard devi-
ation (SD), skewness (Skew.), and kurtosis (Kurt.)
values of each dataset are detailed in Table 1.

Table 1: Statistical information for the wind power
datasets.

Dataset #Sample Mean — Max.  Min. SD  Skew. Kurt.

Jan 2976 6092.09 14354.70 90.48 4266.99 0.30 1.78
Feb 2688 2771.60 10329.50 11.67 2283.86 0.91 3.02
Mar 2972 445847 13775.59 85.37 3522.37 0.81 2.75
Apr 2880 3886.14 12935.60 25.05 286542 049 2.28
May 2976 2988.28 11406.52 89.84 2097.93 1.05 4.22
Jun 2880 2545.68 12204.81 59.69 2071.62 1.79 6.50
Jul 2976 1911.56 6085.28 15.07 1440.31 0.90 2.94
Aug 2976 2567.85 9687.07 90.10 1963.07 1.11 3.90
Sept 2880 3307.30 13037.33 127.15 2844.73 1.24 3.97
Oct 2976 4884.26 15382.38 11.03 4060.25 0.78 2.61
Nov 2878 3837.43 12527.33 90.10 2943.53 0.83 2.79
Dec 2976 6388.35 15672.40 275.67 4022.16 047 2.26

All of the experiments were performed using 30 in-
dependent runs. In each run, the dataset was divided
into training and test sets, in which the first 80% was
designated for training, and the last 20% was assigned
for testing. In our experiment, the min-max normal-
ization method was adopted to scale the time-series
data to values in the range of 0 to 1.

4.2 Evaluation metrics

To evaluate the predictive performance of differ-
ent comparative algorithms, three well-known error
measurement indices were considered. These metrics
include the root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percent-
age error (MAPE). The details of these error mea-
surements are given in Table 2.

Table 2: Evaluation metrics for measuring predic-
tive accuracy.

Criteria Formula
Root mean square error N . 3
(RMSE) ~ e (G —vi)
Mean absolute error 1 <N .
(MAE) ~ 2i=1 | — vil
Mean absolute percentage error N | gi—us
(MAPE) N iz | U] x 100

To further evaluate the enhancement of model A
over model B, the improvement percentage of each
criterion was exploited to illustrate the promotion de-
gree, which can be expressed as shown in Eq. (14).

Er—Ep

100
Es | ©

T, ‘ (14)




Wind Power Forecasting Using A Heterogeneous Ensemble of Decomposition-based NNRW Techniques 127

v is the RMSE, MAE, or MAPE. Here, E4 and Eg
are the evaluated values of model A and B, respec-
tively, using measure v.

4.3 Comparative algorithms and parameter
settings

To verify the effectiveness of the proposed
EDNNRW, ten comparative algorithms were se-
lected for comparison with the proposed method.
The selected algorithms were ELM [14], SNN [12],
RVFL [13], RVFL* [35], VMD-WRELM [18], EMD-
RVFL [37], CVAELM [19], WPD-EMD-ELM [40],
CEEMDAN-ANN [41], and VMD-GSO-ELM [36].

Following previous studies [42, 28, 43], three-level
decomposition of WPD was applied in this study.
Since the three-level WPD provides eight frequency
bands, the maximum number of decomposed compo-
nents for each decomposition method was eight. For
all algorithms, an additive sigmoid function was ap-
plied as the nonlinear mapping activation function
for the hidden layer. The 15-minute historical data
values of the wind power series in the past day (24
hours) were considered as the input for prediction of
the desired value. The maximum number of lag or-
ders (features) was empirically set to 24x4 = 96. The
other parameters of each competing algorithm were
set to the same as those used in the corresponding
published research.

4.4 Comparison of statistical error measures

The predictive performance comparisons of the
different algorithms in one, three, and five step
ahead forecasting for the wind power predictions are
tabulated in Tables 3 to 8. As shown in these
tables, we find that the proposed EDNNRWgyFpr,
and EDNNRWRgyprx produce a relatively better
forecasting accuracy than the other comparative
algorithms in most cases. The average RMSE,
MAE, and MAPE of the proposed EDNNRWgp M
and EDNNRWgny are generally lower than those
of the ELM, SNN, VMD-WRELM, CVAELM,
WPD-EMD-ELM, VMD-GSO-ELM, EMD-RVFL,
and CEEMDAN-ANN. From these tables, it can be
observed that RVFL, RVFL* and the decomposition-
based RVFL methods (EMD-RVFL, EDNNRW gy,
and EDNNRWgypr+) have good forecasting abilities.
This indicates that the direct connections between
the input layer and the output layer can significantly
improve the predictive performance of these mod-
els. Interestingly, we observed that the proposed
EDNNRWgyrr, and EDNNRWRgygr+ approaches do
not need a large number of hidden nodes to attain
good predictive performance. In Tables 6 to 8, we
observed that the predictive performance of all the
competitors decreases as the number of n-step ahead
increases. This indicates that it gets harder to accu-
rately capture the complex relationships existing in
the multi-step ahead forecasting as n increases.

For multiple-comparison tests, the Friedman sta-
tistical test was employed to perform multiple-
comparison tests for multiple-problem analysis, as
suggested in [44]. Under the null hypothesis, the per-
formance of all k competitors are equivalent, so their
average ranks R; over all ' benchmarks should be
equal. The Friedman statistic (x%) can be calculated
as shown in Eq. (15).

(15)

R; = % Zi\il 75,5, and 7; j represents the rank of the
jth of k algorithms on the ith of N” benchmarks. The
X% is distributed according to the chi-square or y2-
distribution with &k — 1 degree of freedom whenever
the values of A" and k are sufficiently large. As a rule
of a thumb, N > 10, and k > 5 [44].

Iman and Davenport [45] showed that the x% is
undesirably conservative, and presented an improved
version of the x%, called the Iman-Davenport test
(Fp) which is computed with Eq. (16).

N =D
N (k=1) = x%
The FF is distributed according to the F'-distribution
with & — 1 and (k — 1)(N — 1) degrees of freedom.
If the null-hypothesis is rejected, which means that
the differences among the competitors are statisti-
cally significant, the Nemenyi post-hoc test can be
applied to compare all the competitors with each
other as previously suggested in [46, 47]. The per-
formance of two among k competitors are considered
to be significantly different if the difference of their
corresponding average ranks is greater than the crit-
ical difference (Cp). The value of the Cp for the
Nemenyi post-hoc test is computed with Eq. (17).

Fp = (16)

k(k+1)
6N

g« is the critical value that is based on the studentized
range statistic divided by /2. « is the significance
level and was set to be 0.05 in this study.

In this experiment, the number of competitors is
13. There are twelve time-series datasets for this
experiment. For each dataset, one, three, and five
step ahead forecasting were considered. Three differ-
ent sizes of hidden layers with 25, 50, and 100 nodes
were tested. Three evaluation metrics were utilized.
Therefore, N' = 12 x 33 = 324, and k = 14.

In our case, the x% value for this experiment is
equal to 3213.41, and thus the Fr value is 1039.40.
The critical value for the F-distribution with 14—1 =
13 and (14—1)(324—1) = 4199 degrees of freedom at a
0.05 significance level is 1.72. Because the value of FF
is greater than the critical value of the F-distribution,

CD = (qu (17)
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Table 3: Comparison of the RMSE for single-step ahead forecasting on the wind power datasets.

Algorithm #Node Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

ELM 25 1077.8899  508.1707  527.9063  799.7369  350.5450 399.1899  472.0114  571.3072 638.9294 865.6619  669.4292  634.2632
50 640.8990  354.2666  339.6481  533.5646  238.8330 241.0928  336.8541 = 381.3924 438.9887 595.6127  419.7418  451.4413
100 454.1925  246.6544  217.2271  399.1912  160.9137 159.7372  252.7164  270.6281 317.4356 435.8968  323.5809  297.5217
SNN 25 1065.3440  492.8111  524.0015  776.6720  345.3606 382.4041  469.6051  548.7256 624.3776 858.9303  659.9267  625.1785
50 633.9775  352.7503  337.9543  530.1204  236.5219 236.4948  333.0792  375.4767 430.1154 587.4965  414.6198  451.7378
100 446.3632  246.3696  216.0351  399.2304  160.4021 157.8549  250.3847  270.2166 314.8736 431.3529  322.0117  297.0513
RVFL 25 125.6721  107.3927 83.8238 128.3062  87.1840  77.8762 82.0211 91.0204 95.0954 130.8247 90.8343 85.9773
50 127.5425  108.9456 84.8563 133.5205  87.2764  80.1918 83.5758 93.0134 98.8170 135.5087 98.9546 88.0795
100 134.3287  117.7148 88.2966 150.4055  88.5737  85.7771 89.5043 101.3499 113.0885 152.1445  120.6946 94.2397
RVFL* 25 125.8285  107.4328 83.8803 128.5537  87.1982  77.8577 82.0705 91.0582 95.1461 131.0043 91.0161 86.0730
50 127.5367  108.9495 84.8750 133.9194  87.3500  80.2569 83.6643 93.0815 99.0298 135.7172 99.2281 88.2107
100 134.3888  117.6728 88.2968 150.4742  88.6466  85.8525 89.6685 101.4722 114.0421 152.4270  120.8202 94.3402
VMD-WRELM 25 813.6324  625.3517  660.2039  1239.6683 404.7806 480.5825  561.3909  709.6684 673.3550 821.5793  563.0511  700.0600
50 685.8568  653.7556  538.0673  1233.5268 336.3726 432.7172  655.0061  669.0840 646.9663 830.3886  536.6075  609.1592
100 691.3892  717.4448  611.0715  1396.3089 318.2711 423.6853 711.3816  776.9645 660.1612 886.2147  514.1605  632.5330
EMD-RVFL 25 344.5322  233.1965 89.1176 328.8172  154.3878 143.9844  566.5544  196.6954 62.6973 163.336 217.9763  1529.3758
50 376.6307  230.4858 89.1513 336.6596  157.7874  142.4879  569.9852 200.121 63.1513 205.1379  227.4321  1926.329
100 374.5026  385.8259 87.5015 349.8421  160.3974 283.7791  723.8319  203.7918 64.8406 415.6875  290.8698  2001.6393
CVAELM 25 889.6870  560.7026  693.9573  1787.8637 366.4071 425.0032 462.9788  681.3635  1350.4911 1178.0192  501.7303  708.9714
50 1108.0442  573.0517  813.2144  2965.5171 382.5068 453.0623  653.9089  838.4289  2391.7360  2785.2966 1223.6144  764.7904
100 1525.5777  1172.7979  1349.8339  7406.1711 436.6313 479.0533  1951.2137  3094.4727 13309.0908 7244.2236 3756.7232  1268.4420
WPD-EMD-ELM 25 907.3720  307.7888  1272.7869  800.6908  359.6207 244.3873  304.3849  707.8707  1114.4254 1075.6277  155.6857  517.0279
50 913.7809  165.8250  1027.8840  572.7348  211.2338 139.6895 214.8595  280.2406 973.1849 617.3614  109.8208  356.9260
100 607.2151  110.5022  941.8276  501.1405 157.1439 84.8838  150.7874  176.0198  1015.8936  426.0218 70.8776 432.6715
CEEMDAN-ANN 25 1905.8862  1075.3154 1272.1952 1513.8517 659.0357 746.7405 823.1969  986.3195  1295.0372  1694.6829 1086.0782 1333.3237
50 1764.5858  1110.7394 1154.1826 1504.8091 651.8736 742.9948  798.8099  955.1060  1262.1357 1984.9719 1029.1094 1312.6860
100 1896.8751  1257.1964 1127.0232 1638.7462 689.8876 742.8222  891.4711 1106.2863  1341.9202  1863.1557 1174.8174 1314.3089
25 881.2108  345.5984  278.9920  510.9522  226.6726 260.9036  245.2514  353.3819 397.4226 566.3508  533.7089  432.2714
50 666.3918  232.9827  187.5592  399.7784  139.2565 172.6345 162.2051  244.7778 310.0748 400.7444  409.9243  315.5440
100 539.3314  171.8538  138.8488  330.9926  105.3167 113.3443  125.9376  182.4463 234.0031 304.4986  326.5897  275.8758
EDNNRWEgLm 25 505.0901  232.2337  275.9698  508.7423  165.0745 169.9321  222.9359  274.8745 321.3706 413.5750  233.9303  993.4474
50 373.3667  145.0110  174.2149  381.1074  89.8081  96.8357  184.2217  174.3016 165.9073 243.5601  177.2189  1461.4089
100 241.0919  118.7535  102.7784  280.3973  49.4380  61.4337  136.0190  130.0768 119.5172 160.1496  150.1401  956.7388
EDNNRWgnn 25 500.0111  233.0730  267.8660  485.8635 158.7690 166.3369  220.5385  274.1589 316.3518 404.8543  234.2711  1042.1312
50 372.5830  147.1491  168.7073  380.1015  88.1280  96.7649  183.0695  174.5345 162.5399 242.3527  171.8997  2646.3118
100 238.8608  121.5439  103.0565  284.0253  49.0589  61.2850  134.4357  133.1456 119.3373 160.0442  149.9189  1158.5729

VMD-GSO-ELM

EDNNRWRyrL 25 7.8874 4.6234 4.1081 5.4890 3.2465 4.9058 5.0988 3.6484 4.1831 4.8844 3.0902 5.0826
50 7.8479 4.9563 4.1367 5.5655 3.2560 4.9385 5.2417 3.7373 4.3464 4.9898 3.2849 6.3320
100 7.9060 5.7693 4.2774 6.2961 3.2945 5.1106 5.6658 4.1276 4.7403 5.4126 3.9753 26.2878
EDNNRW gy g+ 25 7.6434 4.5755 4.0416 5.4695 3.2286 4.8631 4.9818 3.7185 4.2110 4.8694 3.1984 5.0437
50 7.6572 4.8798 4.0999 5.5545 3.2530 4.8929 5.1580 3.8004 4.3726 4.9759 3.4146 8.3492
100 7.7463 5.6926 4.2486 6.2588 3.3120 5.0712 5.5942 4.2098 4.7692 5.3775 4.0908 34.2599

Table 4: Comparison of the MAE for single-step ahead forecasting on the wind power datasets.

Algorithm #Node Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

ELM 25 815.8571  386.9769  379.2840  597.7381  275.4511 299.3291  365.1250  430.5173  503.4171  685.3628  437.8410  475.5373
50 476.1355  265.3042  238.5636  389.2144  186.9524 178.9438  258.8831  282.6584  338.7535  471.2694  273.5344  336.7140
100 318.6395  182.0499  150.4487  281.1206 124.6839 116.9624 190.2233  194.2716  239.7398  338.6025  206.3221  223.7423
SNN 25 805.9921  376.1213  374.4639  575.4442  270.8105 287.2023  362.9652  413.8325  490.1372  678.1006 ~ 432.5123  468.1485
50 471.6339  263.3988  235.8666  385.3006  185.2271 175.6564  256.0916  278.4988  330.9019  464.3356  269.4299  336.2978
100 3149176 181.1263  149.9874  279.8402 124.2716 115.6614 188.7571  193.6917  237.4048  335.4531  204.6273  222.9956

RVFL 25 90.4460 68.5560 58.3082 90.3931 63.4333  57.4272 56.9510 66.4128 71.7640 99.5213 64.4714 64.8439
50 91.8332 70.8246 59.0609 94.6415 63.6101  59.3000 58.7233 68.2711 74.4287 103.4544 70.0130 66.8110
100 96.9845 80.3043 61.7505 107.8839  64.8475  63.2891 64.9440 74.1059 85.0861 116.6331 83.8304 71.5084
RVFL* 25 90.5517 68.5904 58.3620 90.5826 63.4583  57.4146 57.0295 66.4555 71.8004 99.6885 64.5660 64.9213

50 91.8301 70.8405 59.1242 94.8865 63.7009  59.3602 58.8425 68.3238 74.5785 103.5803 70.1905 66.9383
100 97.0713 80.3327 61.7846 108.0634  64.9111  63.3118 65.0848 74.1730 85.7452 116.8851 83.9385 71.5928
VMD-WRELM 25 645.3862  488.3664  419.9084  898.3230  321.3213 368.1130  423.4135  551.6838  540.1781  665.3102  442.6742  505.8623
50 542.0940  490.4546  357.1310  831.2453  263.3951 330.7619  468.1280  515.8237  513.7614  644.2939  419.1064  437.4046
100 540.3123  515.3404  385.3128  933.6569  247.9951 330.2487  513.4009  585.0001  523.6549  675.0130  397.5713  441.9259
EMD-RVFL 25 75.3936 50.3246 34.1455 68.4339 46.9466  48.0777  112.1531 52.8543 36.7794 70.8037 52.5839 261.5778
50 77.7332 57.9072 34.3903 70.767 474587  50.2838  117.7685 53.9788 38.2965 84.4715 55.2208 306.808
100 78.5829 161.5351 34.9845 83.9616 48.4928  157.541  139.2714 57.4025 41.94 205.9874 77.6723 318.7244
CVAELM 25 695.6507  450.1853  515.8671  1138.3536 286.5855 335.8334  350.4484  515.9827  937.6208  806.1816  373.9924  536.6474
50 827.2152  449.3084  569.3605  1658.5690 302.5415 358.1443  459.7391  574.4164  1482.9795 1542.7116 788.1099  545.8501
100 1056.4935  848.6936  836.1761  3536.0303 335.6564 354.2607 1045.3076 1658.8732 5639.0706 3610.6457 2076.0189  770.3259
WPD-EMD-ELM 25 551.4060  238.8270  726.3307  541.2890  262.7741 191.2006  227.5170  477.9326  607.0901  558.8497  116.7970  307.1884
50 436.1511  124.7816  518.7147  383.5262  152.2198 105.4829  155.8090  209.6170  515.3919  333.7621 77.2940 175.0845
100 276.4080 80.1083 362.5024  315.3561  107.0952  63.7494  105.4998  127.7800  435.2223  220.3437 47.0195 158.1389
CEEMDAN-ANN 25 1496.3263  854.3280  1017.9726  1146.7017 523.0925 583.4575 651.1669  775.3121  1036.8420 1361.4095  809.0477  1041.6028
50 1388.7172  897.4433  923.3721  1138.2485 515.0391 586.4912  626.9452  734.5713  1008.1767 1595.6819  784.7846  1009.3777
100 1465.5620 1021.2199  882.9250  1232.5768 547.2246 584.3813  685.8896  834.8523  1075.6768 1493.4406  865.8511  1021.0675
VMD-GSO-ELM 25 649.1723 2712430  199.0004  379.9538  174.8860 192.8345 186.5545  264.9409  315.0681  460.6094  322.9775  314.2355
50 488.8307  180.9148  132.6759  285.4889  106.2888 126.9460 122.5665  181.1018  247.3631  326.4358  244.7236  220.5259
100 388.2253  127.1839 95.5271 236.6562  81.1939  84.7179 93.3178 134.8169  187.1926  251.8681  195.1250  187.1156
EDNNRWgLMm 25 371.5382  173.4993  191.8137  333.7307 127.6760 126.8459 164.7642  210.1783  245.1167  325.5672  151.8334  423.2275
50 254.0502  107.5098  110.3154  226.0334  69.2052  68.7867  118.3891  129.3360  125.5250  187.9327  104.8907  458.0442
100 162.1875 80.3277 64.2684 159.7526  37.6289  41.6249 84.5161 92.9461 88.8080 118.7498 82.0769 274.1549
EDNNRWgnN 25 370.4031 171.4971 185.1557  320.8384  122.6410 123.2375 161.1921  210.2877  240.5747  321.5252  150.2949  446.4118
50 251.4375  108.4675  107.3938  224.5323  67.9871  68.3786  118.4546  128.7430  122.6814  186.1820  102.0856  718.8392
100 160.8584 81.2750 64.2516 159.7800  37.3148  41.5595 84.4769 94.5145 88.3786 117.9325 81.9517 309.9661
EDNNRWRyrL 25 4.1822 3.2169 2.5530 3.7098 2.4473 2.4503 2.6049 2.7271 3.0151 3.7356 2.1183 2.7139
50 4.2284 3.4135 2.5767 3.7908 2.4630 2.5009 2.7398 2.7947 3.1304 3.8229 2.2686 3.2911
100 4.4484 3.8757 2.6791 4.3436 2.5008 2.7168 3.1263 3.0792 3.4460 4.1818 2.7106 8.4174
EDNNRW gypy,+ 25 4.1166 3.1897 2.4946 3.6570 2.4182 2.4250 2.5503 2.7742 2.9413 3.6917 2.1616 2.7547
50 4.1772 3.3697 2.5432 3.7524 2.4467 2.4887 2.7143 2.8283 3.0679 3.7919 2.3327 3.7514
100 4.4062 3.8394 2.6555 4.3036 2.4981 2.7249 3.0965 3.1236 3.4168 4.1311 2.7677 10.3436
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Table 5: Comparison of the MAPE for single-step ahead forecasting on the wind power datasets.
Algorithm #Node Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
ELM 25 19.0714 10.8339 22.5434  28.6360 18.9860 14.0783 31.0597 21.0864  17.5301  13.2591 12.3757 15.0837
50 11.4012  7.7611 13.6877 18.1869  12.8655 8.4980 21.5434 13.5902 11.2088 8.7281 7.6228  12.7084
100 7.3628 5.1955 8.1340 11.8284 8.5794 5.3886  15.2657  8.8876 7.8598 6.2778 5.3055 8.4465
SNN 25 18.7381 10.5954  21.6196 27.0012 18.5100 13.6347 30.6579 20.1414 17.0254 13.1517 12.2841 15.1862
50 11.1968  7.7215  13.4755 17.8115 12.7293 8.3300 21.3890 13.3809 10.9761 8.6173 7.4367  12.7792
100 7.2769 5.1600 8.1464 11.6038 8.5189 5.3385  15.2433  8.8558 7.7955 6.1855 5.1900 8.4155
RVFL 25 2.0527 1.8040 2.6274 3.4194 3.8771 2.6052 3.8113 2.7626 2.3726 1.6197 2.1295 1.3873
50 2.0836 1.8728 2.6891 3.7222 3.7944 2.6917 3.9910 2.9054 2.4615 1.7270 2.2502 1.6064
100 2.2106 2.1505 2.9182 4.4795 3.8627 2.8499 4.5932 3.2672 2.7752 2.0574 2.4832 1.9035
RVFL* 25 2.0568 1.8054 2.6350 3.4216 3.8698 2.6055 3.8193 2.7663 2.3736 1.6236 2.1309 1.3934
50 2.0848 1.8736 2.6959 3.7350 3.8002 2.6955 3.9982 2.9096 2.4656 1.7309 2.2546 1.6244
100 2.2128 2.1505 2.9260 4.4809 3.8658 2.8510 4.6113 3.2719 2.7926 2.0620 2.4872 1.9142
VMD-WRELM 25 22.8170 13.7216 24.1591 40.2863 25.0575 21.2942 41.7686 39.9625 21.6897 13.3948 17.8272 15.7598
50 21.1606  14.2085 22.0551 32.2838 19.2460 17.6767 46.7381 33.3791 20.1960 12,5352 16.6224 15.1090
100 21.6433 14.7236 22.9083 33.1818 16.8616 16.8434 49.8259 33.1635  20.4968 12.8901 15.4296 14.0311
EMD-RVFL 25 1.3975 1.0782 1.4728 2.0294 2.2979 1.8153 5.7781 2.9774 1.3509 1.6984 1.7889 4.5273
50 1.4366 1.2361 1.5394 2.1337 2.3216 1.9205 6.3674 3.0474 1.4394 2.0549 1.8622 5.6718
100 1.4518 3.5867 1.6182 2.5089 2.3753 8.191 7.7054 3.2238 1.6746 4.3943 2.4587 7.9021
CVAELM 25 25.7810 13.1272  35.3606 45.6340 18.0660 17.0745 31.7731 27.3987  32.0918 14.3997 14.6504 17.7185
50 25.2309 13.0346 35.9238  57.6773  20.1139 17.8089 43.9052 30.1831  42.4472  26.9993 23.4337 21.1156
100 26.4516 24.7665 47.2477 106.1666 22.7581 16.5511 95.9618 93.0120 114.1415 61.9417 44.1566 32.8827
WPD-EMD-ELM 25 30.2686  6.7387  42.5932  47.3757 15.9584  9.6716  19.2425 29.6637 20.4512 10.0715 4.8729 11.7394
50 21.7418  3.5348  27.8078  32.4750 8.9213 5.3562  13.2426 12.1165  22.7088 6.3604 3.4004 8.3056
100 14.1987  2.2665 18.5993 25.9765 5.7635 3.0920 9.2606 8.0996 13.7385 4.1275 2.1544 8.3349
CEEMDAN-ANN 25 49.0757 24.5001 91.8048  55.3903  37.5744 28.8084 58.3581 44.4531  39.8705  27.5509 33.0076 32.8728
50 48.1933  26.1839 83.5642  57.8535 36.9776 29.7961 57.6330 42.3377 37.9342 31.7365 31.9632 32.4556
100 53.5551 30.0813 75.3938  62.0737 40.0481 29.6424 60.8706 50.3714  39.5476  28.9557 35.1428 32.5400
VMD-GSO-ELM 25 11.1375  7.4982 13.0015 15.3906  11.2672  9.5049  14.9598 14.8694 10.7605 8.6001 7.4976  10.0999
50 7.9357 4.8664 8.2622 11.8099 6.6775 6.1988 9.6686 10.8448 8.2195 5.8902 5.3546 8.7225
100 6.1516 3.2854 5.8359 9.2806 5.0796 4.2643 7.3995 7.8700 6.3872 4.6048 4.1634 8.8351
EDNNRWgLMm 25 13.4722  4.9183 11.7116 12.8007 8.4419 5.8104 14.0766  12.4318 8.2873 6.3834 4.3132 23.6246
50 9.9242 3.0448 6.1558 7.5497 4.9608 3.1859 9.7110 7.0780 4.2891 3.6854 2.6477  26.6362
100 5.3058 2.2510 3.2762 5.1028 2.6780 1.8377 6.6828 4.6075 2.9293 2.4248 1.6971 16.9545
EDNNRWgnN 25 13.3533  4.8803 10.9287 12.1103 8.1190 5.6027 13.8343 12.1533 8.0956 6.2799 4.1623  25.9442
50 9.4506 3.0710 6.0146 7.3917 4.8923 3.1554 9.7471 7.0901 4.2053 3.6608 2.5630  40.8008
100 5.1107 2.2849 3.2209 5.0950 2.6435 1.8230 6.6751 4.6705 2.9221 2.4248 1.6925  16.9076
EDNNRWRyFrL 25 0.0980 0.0889 0.1330 0.1501 0.1552 0.1068 0.2011 0.1290 0.1090 0.0661 0.0740 0.0615
50 0.0985 0.0954 0.1357 0.1559 0.1573 0.1095 0.2168 0.1335 0.1135 0.0677 0.0774 0.1195
100 0.1067 0.1089 0.1378 0.1814 0.1616 0.1201 0.2601 0.1508 0.1255 0.0756 0.0850 0.5204
EDNNRW Ry pr* 25 0.0965 0.0888  0.1292 0.1506 0.1539  0.1061 0.1931  0.1312 0.1071 0.0643 0.0720  0.0688
50 0.0977 0.0942 0.1335 0.1568 0.1567 0.1098 0.2131 0.1347 0.1121 0.0667 0.0762 0.1452
100 0.1065 0.1083 0.1373 0.1808 0.1613 0.1222 0.2549 0.1523 0.1272 0.0744 0.0846 0.6853

we reject the null hypothesis that the predictive per-
formance of all competitors are statistically equiva-
lent.

Based on this null hypothesis rejection, the Ne-
menyi post-hoc test was conducted to determine
whether the predictive performances of two among
k competitors are significantly different. The value
of g, for a 0.05 significance level is qg.05 = 3.354,
which can be confirmed in standard statistical text-

books. Thus, the value of the Cp is equal to
3.354 % ~ 1.102. The statistical results of

the post-hoc analyses for the wind forecasting are pre-
sented using a critical difference diagram, as shown
in Figure 1. In this figure, the algorithms with higher
ranks (lower numbers) are preferable to those with
lower ranks (higher numbers). Statistically equiva-
lent algorithms are grouped into a clique, represented
by a red horizontal bar.

In Figure 1, the overall performance of RVFL,
RVFL*, EDNNRWELM, and EDNNRWSNN were
comparable. This figure shows that the overall pre-
dictive performance of the proposed EDNNRWRyF1,,
and EDNNRWRgyp+ were significantly superior to
the other competitors. The overall predictive per-
formance of VMD-GSO-ELM and EMD-RVFL were
significantly better than those of VMD-WRELM,
CVAELM, WPD-EMD-ELM, and CEEMDAN-ANN.
Interestingly, we observed that the FLN family

approaches (RVFL and RVFL*) have good aver-
age ranks when compared with ELM, SNN, VMD-
WRELM, CVAELM, WPD-EMD-ELM, VMD-GSO-
ELM, and CEEMDAN-ANN. It is noteworthy that
the proposed EDNNRWgyrr+ and EDNNRWRyEr,
had statistically significantly better average ranks
than the other comparative algorithms, and their
clique was located far from the other cliques with
large gaps.

The forecasting results and the corresponding
residual errors of the different competitors in five
step ahead forecasting for the wind power forecasts
are depicted in Figure 2. From this figure, it can
be observed that the proposed EDNNRWgypr, has
good forecasting abilities and its residual errors are
closer to zero than those of the other comparative
algorithms in most cases.

4.5 Comparison of improvement percentages

To further exhibit the effectiveness of the pro-
posed EDNNRWgyrr,, the improvement percent-
ages in terms of RMSE, MAE, and MAPE indices
were used for analysis. The improvement percent-
ages of the proposed EDNNRWgyp;, over ELM,
SNN, RVFL, RVFL* VMD-WRELM, EMD-RVFL,
CVAELM, WPD-EMD-ELM, VMD-GSO-ELM, and
CEEMDAN-ANN in terms of RMSE, MAE, and
MAPE for the wind power forecast in one, three, and
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Table 7:

Comparison of the MAE for multiple-step ahead forecasting on the wind power datasets.

Aoorithm #Node Tan Toh Mar Apr May Tun Tul Aug Scpt Oct Nov Doc
& S-step B-step S-step 5-step 3-step 5-step 3-step B-step Sstep  bstep 3-step 5step 3-step  b-step Fstep Bstep 3-step Sstep Fstep B-step 3-step B-stop 3-step 5-step
ELM 25 900.6206 1052.2449 498.0746 594.1750 468.1733 571.2852 781.9564 845.6080 379.8969 450.5709 365.0867 444.6031 547.5290 507.1416 603.9966 623.2961 739.6992 791.1609 932.1749 477.5601  543.5188 557.8449  693.5304

50 6G11.5284 7524591 377.6007 513.6411 303.7837 414.8720 527.3574 T11.3656 271.6410 356.757 263.7029 3477004 4275577 376.2770 481.0595 437.3328 559.9794 594.7136 719.1729 353.6048  459.6340 4287847 530.6575
100 450.4140  591.6975 327.8498 484.6232 240.2837 358.2689 446.5142 649.4751 217.0145 310.6937 213.7611 332.2360 289.9348 401.4529 294.9413 431.2256 337.0687 496.2808 461.3559 639.8557 275.2630 393.1761 332.6374 458.3254
SNN 25 870.2810 1026.9378 491.1643 589.7651 460.1713 558.1881 769.6006 828.8854 375.6699 443.9761 355.7769 456.0265 431.5242 541.1750 4959550 595.8713 603.2102 719.2652 776.1422 926.0754 470.8212 5324366  551.6600 691.8846
50 611.5693  T748.7669 372.1467 508.7591 303.2562 417.3183 521.4950 696.5961 270.3593 352.6248 259.7335 380.4556 342.6989 422.2911 372.0043 480.2857 430.1103 558.3685 586.1845 709.5271 350.1252 456, 428.2155 529.9669
100 446.3812  590.9005  326.2739 484 8727 239.5445 358.3418 4451189 650.0316 216.4308 310.0426 213.9910 3323987 289.7584 401.4635 295.0020 430.5986 334.1796 4 354 458.0387 638.4304 273.8398 3923916 332.9143  457.2607
RVFL 25 218.0382  360.3952 196.0171 328.3939 158.4944 271.9280 255.6137 452.7928 162.7298 264.5939 152.5607 261.8205 156.4788 269.0464 186.9426 319.5577 190.6182 327.7078 244.7642 407.9783 163.8837 265.0284 179.9275 301.1714
50 230.9525  384.2640 212.0947 360.9373 160.8974 279.7246 276.5062 500.6481 164.4718 264.8497 160.8326 277.2239 167.2633 286.0922 195.1660 334.9447 206.0923 367.8425 261.9947 446.2945 184.2419  305.1513  190.5067 320.9149
100 253.9401 446.3578 254.3142 434.0833 175.1609 310.9853 340.7869 605.6780 167.4259 2754321 178.7804 301.0564 194.5319 342.7343 225.0971 399.5289 260.0936 451.6944 307.7480 550.4461 211.5815 366.1363 216.5413 370.7972
RVFL* 25 218.0478 363.5186 196.3293 329.2677 158.6748 271.7428 257.0133 452.9409 1624812 2644713 152.6982 261.7783 156.8538 269.8611 186.8858 320.1172 190.6937 328.7100 246.1343 408.8968 164.8038  266.5356 180.3258  303.2327
50 231.3812 384.6444 212.8958 361.5121 161.0804 280.4420 277.2713 501.4105 164.5049 265.0922 160.9615 277.9721 167.9112 287.2925 195.4060 335.5759 206.9995 369.5558 263.0734 447.9270 185.0658 305.3989 190.6326 321.2055
100 254.6903  448.0118 255.3499 433.5302 175.2330 311.2450 342.6190 607.9289 167.7532 276.0083 179.0340 300.9141 194.6855 344.5457 2250258 399.9509 260.8599 453.4982 310.1190 550.0510 211.8212  365.5453  217.2227 371.5808
VMD-WRELM 25 690.7455  750.6136  508.7109 547.0987 457.5455 500.1281 944.0201 1039.7212 352.4566 362.9483 394.2018 414.2977 424.2720 432.3876 545.9010 557.2461 583.8700 633.9621 755.6205 784.0928 482.9105  505.6059 545.2439 607.8954
50 597.7132  661.0017 516.3549 539.6955 3985127 452.3447 908.5145 1021.1314 300.6581 319.0632 351.5682 360.9215 487.4495 483.0466 534.4529 581.2625 545.6302 61 709.4179 741.4530 448.6298  489.1777 465.0275  509.6282
100 579.4497 1630  538.7063 582.6172 440.8005 485.5634 1068.7475 1119.6998 2784787 300.0264 340.7297 350.1398 570.3719 626.8948 633.2713 669.1281 588.4484 629.1416  809.6229 863.7520 426.5866  456.5558  469.1566  486.5058
EMD-RVFL 25 105.1298 3698 118.6871 226.8146 68.6806 112.2403 158.085 354.1508 90.34 129.231 143.6638 198.8582 156.9264 261.7273 98.7402 145.2091 6131 155.162 281.9604 191.473 74.3956 102.105 321.2902  447.2871
50 104.8962 9658  227.6695 740.0545 71.0217 118.9774  201.6852 508.192 92.8124 133.1527 222.5668 607.5708 212.9209 437.9861 104.2385 156.388 117.4065 256.7806 4383187 1558.4125 100.4161 221.3341 472.1596 758.5718
100 119.2079 5736 2344.7276 TOS87.0246  T4.2728 131.8116  349.1591 1143.1451 101.5103 171.0093 1818.2296 6079.2025 361.5173 816.5273 123.0106 188.8802 216.6763 T710.7631 4183.4382 12246.1105 792.0821 2534.9356 901.9332 2740.5287
CVAELM 25 672.0082 1278.8370 487.4240 387.4559 531.1291 768.3515 1132.7097 979.7355 333.8142 275.1784 305.7582 383.9813 431.1682 307.6364 467.3075 472.6831 1301.7020 412.8622 778.5131 502.9013 393.0464  336.5341  612.9986 1594.6303
50 672.1818 1366.5493 582.7604 404.9851 552.8293 851.9881 1846.8629 1316.7465 318.0668 260.1941 339.0813 406.5126 486.1962 290.9944 627.4173 475.8190 1942.1796 424.8615 1839.1519 511.0246 5525759 349.8984  620.2725 1529.8485
100 1556.9590 1539.4922 1267.1424 497.2399 1015.7169 810.3146 3729.2538 1139.6612 346.3658 255.3450 440.1311 410.0761 841.9892 305.8311 1475.6731 595.6181 4972.0481 477.5039 4057.2332 609.1934 1692.2634 373.3962 910.2188 1600.3099
WPD-EMD-ELM 25 623.9580 7129235 291.3485 347.5458 769.3842 815.1534 671.5083 830.7003 311.3995 363.5136 237.1208 288.6467 279.8804 338.5138 540.6042 379 T36.1098 888.0543 662.8647 791.1020 140.9155  167.2073  368.9777  439.5299
50 5254774  638.2500 177.1382 2384557 6225146 751.9338 549.6167 T68.6165 213.9854 282.4442 149.5652 202.4734 223.6332 307.9797 283.9987 383.2732 666.6705 883.0848 423.2183 559.5832 105.0134  134.2293  240.8263 319.0817
100 458.8189  745.2743  139.5943 223.9401 G618.8743 1122.8953 564.5404 921.0935 176.3813 267.6433 105.8586 163.3269 184.7732 295.0512 213.0649 336.8276 662.0675 1068.1487 361.3828 589.1696 78.9935 117.1767  251.5625 389.6558
CEEMDAN-ANN 25 1391.9500 1462.7157 934.8458 1062.5489 995.0687 1090.3647 1254.1863 1276.9480 553.7820 589.8239 623.6587 656.6956 666.0759 G68.4677 T87.5312 805.9731 1014.4356 1087.4725 1470.0831 1564.6307 808.4181 876.9864 1111.8790 1166.8334
50 1557.5668 1536.0217 904.5001 1056.2462 932.0776 966.0253 1266.0010 1195.0061 543.8075 565.5459 611.7668 636.8103 609.7903 666.5658 781.4340 785.5313 1010.6480 1031.1064 14 0380 1494.7312 821.2569 849.0564 1141.0407 1137.5722
100 1471.4320 1415.2729 963.3527 946.1731  891.0686 944.7242 1310.8651 1267.0232 592.4096 607.9018 626.0823 641.9825 7T04.7454 680.4495 793.0106 851.4549 1202.6634 1122.1492 1461.9238 1614.2224 933.1779 885.6062 1090.3228 1122.4545
25 679.0204  734.2609 287.2155 318.8033 246.8077 273.6026 449.9024 512.2866 201.5426 236.2053 225.7736 260.3665 208.4476 244.9971 306.8833 351.3635 363.0294 415.7067 489.7404 541.3698 349.8123  374.0781 330.9159 424.4408
50 5553775 616.6888  205.8908 234.2261 164.4377 1959698 343.6364 388.4303 141.2214 181.6329 158.9282 193.9546 148.9703 175.6038 2224923 2584183 264.6691 303.6645 352.8416 391.0214 267.7912  293.3701 250.2259 303.7076
100 430.0823  499.3258 154.3471 1787368 115.3400 143.2046 271.6076 320.6416 101.2575 133.4831 114.4758 148.0105 113.9100 146.3279 165.5920 199.2934 212.6405 239.5407 288.5516 317.1082 206.9443  241.8673 218.8569 255.9153
EDNNRWE 25 445.7874 5254381  218.1840 261.3665 232.2673 271.9979 406.72838 570.4645 170.0568 217.8686 166.7364 212.8591 212.8515 260.4063 276.5513 318.6975 284.1770 346.5426 365.1675 437.8532 185.7732  209.1727 446.2727  601.9283
50 296.6177 82.2732  154.9127  208.5876  149.4859  205.0590 342.0074 447.0652 104.1634 146.8148 112.2245 153.4666 155.1385 194.5188 185.8601 246.9152 179.2659 228.83 233.8976 304.7451 136.0074  161.4914  601.8729 478.5997
100 243.4591  344.1552  137.5823 196.7133 1155595 170.2632 273.3160 426.6121 67.9050 102.8309 77.8606 124.9632 129.5394 186.0167 144.8502 219.5796 139.5508 203.4543 174.6281 256.0017 116.6441 156.1286  555.6673 754.9174
EDNNRWgNN 5 440.2042  544.6537 216.6104 2584190 226.3062 270.3570 408.2153 573.5800 167.6098 213.7452 163.5087 206.4882 211.8578 257.7374 274.5902 317.4686 281.3793 335.2792 362.0548 25.8380 183.6051  206.3642 458.1294  695.8363
50 300.1428  384.7144 153.9945  215.3962 151.7990 204.4890 346.7027 444.2259 102.8934 144.3506 111.2242 1525171 155.3882 193.4586G 185.8133 2489124 176.85568 2282799 229.8103 301.1137 135.0127  161.6666 1070.3949 541.5434
100 244.5942  349.1749 136.6901 198.7333 114.0811 168.3906 273.0517 433.7736 67.3172 102.3412 76.9601 124.89006 128.4573 184.5087 146.5223 222.4921 138.9022 203.0687 176.5799 257.6755 117.2056  156.8525 605.0503
EDNNRW gyt 25 15.5253 31.6719 10.6230 24.9489 8.9847 20.1459 14.4267 38.2465 8.8855 20.3692 8.9450 20.1629 10.3707  26.3858 10.0105 23.6767 26.6990 13.5197 30.1001 7.6967 18.6059 10.6648
50 16.2441 35.8409 12.4465 31.2575 9.7638 23.0840 16.6586 49.1314 9.2200 21.9700 9.9016 7538 11.7536  30.6430 11.4877 29.4162 33.1022 14.7305 5274 9.6205 25.3309 17.2656
100 19.5911 56.5707 17.8289 51.4244 11.4437 31.6200 24.4801 84.1664 10.2771 24.9608 12.9254 34.3610 15.4459  44.3281 15.9691 48.1221 50.0481 18.7677 53.8911 14.6999 37.4612 52.3740
EDNNRW gy gy * 25 15.5259 31.7350 10.5527 24.6846 8.9966 20.2625 14.6081 39.458 8.8064 20.3644 8.8624 19.8591 10.2383 26.0964 10.2634 24.0318 26.7066 13.4251 0.1943 7.7129 18.4340 10.8149
50 16.2091 36.0985 12.4411 31.0691 9.8117 23.4595 16.7153 50.7210 9.2076 21.9725 9.9869 23.6153 11.6628 30.5411 11.8281 30.0195 33.1934 14.6478 34.8009 9.6443 25.3170 57.3770 42.8224
100 19.7316 57.6197 17.9463 51.9648 11.4467 24.9778 86.6148 10.2849  24.9177 12.9580 34.8300 15.4440  44.3740 16.2: 48.6382 17.4154 50.7295 18.7768 53.7340 14.8889 37.7754 46.0677 142.1672
Table 6: Comparison of the RMSE for multiple-step ahead forecasting on the wind power datasets.
Algorithm #Node Teh Mar Apr May Tun Jul Aug Scpt. Oct Nov Deoc
i B B-step. Sstep B-step Sstop 5-stop 3-step B-step 3step  Gstep  B-step Bstep. 3-step B-step step B-stop 3step B-step 3-step 5-stop Bstep 5-step. S-step B-step
ELM 25 1196.1308 1377.1179 648.1125 T78.2142 645.0175  7T88.0661 1038.7537 1108.3298 482.7572 577.1378 490.0680 626.0798 571.3452  TO8.6131 670.1396 T789.7382 782.0290 921.5778 1002.7690 1182.7673 704.0141 791.6167 726.1265 912.3556
50 812.3039 979.5704 494.9783 668.9493 4295174  589.9790 T13.8614 953.0939 348.7016 457.2078 356.5005 521.3495 444.7357  553.9884  504.5599 643.9643 562.8838 712.6342  755.5092 915.7106 522.7827  666.3182  56G9.7057  T01.8549
100 597.6562  770.3504  433.5471 632.3094  345.2194 509.8265 606.0274 876.4448 278.5118 397.9989 287.6464 451.0131 376.3549 5189198 401.2455 577.5596  436.5185 635.3860 593.1632 824.0663  398.0433 568.6826 441.9826 608.4412
SNN 25 152.0283 1348.6512 639.9045 TT4.7992 633.5134  770.5534 1021.4815 1091.1815 476.3366 569.2076 476.7443 621.0314 558.1912  701.6823 652.6783 782.0528 T60.5681 899.8108 984.0016 1174.9551 697.0042 7727479 720.9324 909.3727
50 811.5155 976.8459 488.0994 662.2163  428.3628 591.8697 7T08.4430 937.3391 346.6516 451.3753 351.6456 517.2778  438.3012 547.9184 499.2321 641.4445  554.4935 T11.1501  743.9490 903.9732 516.3822  662.9749 568.6407 702.1095
100 590.8803 T68.5357  431.0247 632.5240 3439883  510.4630 605.1707 877.8251 277.5455 397.1784 287.7856  451.1759 376.0286  518.6392 401.1835 576.9399 432.6867 6325184  589.1507 822.3557 396.4841  567.8835 443.1287  605.T987
RVFL 25 207.6241  484.2797 277.3459  447.6223  228.6972 392.2606 347.6852 605.5090 212.5847 340.4457 206.3820 357.5347  222.3482 369.4107 257.9119 442.6015 252.3883  435.2797 320.8606 528.9727  228.6880 372.6390 231.8127 387.7443
50 312.3295 510.6293 292.4196 480.3884 2323151 403.7608 374.7307 6754598 214.4638 339.4726 217.5264 376.1550 231.8077 385.6300 268.6219 459.9372 273.1892 483.9276  341.6465 575.5135 256.8306  428.5091 246.0678 415.4107
100 338.8400 587.9890 338.5161 574.2386  250.9031 447.4409 463.8067 813.3801 217.6575 352.4576 241.9380 408.5879 260.1406 4489105 311.6700 544.7555  343.1402 590.5818  397.8253 711.0038  301.0453 529.8261 285.9569 497.1031
RVFL* 25 207.6520 487.6583 277.5291 448.3685 2289201 392.2305 349.7557 607.0020 212.2458 340.4055 206.4674 357.1983 222.6969 370.1393 257.8833 443.3350 252.4614 435.8171  322.3851 530.1158 229.9057 375.8316 232.4974  390.0207
50 313.0831 511.2570 293.3401 481.0604  232.3516  404.3934 375.5751 676.1416 214.4423 339.7697 217.5532 377.0018 232.2588 386.8655 269.3189 460.9022  273.9684  486.0317 342.8993 S5T77.2557 2582346  429.6136  246.3766 416.4158
100 ).8945  589.8042  339.9024 574.3360 251.0555 447.8829 466.0565 817.0557 218.0059 353.5040 242.3130 408.3609 260.4187  451.0592  311.6460 546.1829 344.4639 592.9824  401.2211 T10.5836 301.7846  528.9546 286.7568  499.1290
VMD-WRELM 25 870.9149  939.4002  653.8300 697.0612 722.6644 782.4351 1301.3126 1408.9908 442.8849 453.1093 506.6194 525.2769 559.0703  569.9647  695.8533  T06.9118 T32.7756 T790.7626  938.6864 983.4485  608.4365 637.8906 750.3701 827.1503
50 745.8662  816.8806  680.1 715.1244 641.9125 T741.5411 1344.4823 1462.3827 380.6003 405.7060 451.6165 459.4163 657.2855 651.7941  684.1527 738.4354 684.9877 T74.3079  916.4851 954.4738 575.1652  619.2615 639.8428 701.2311
100 734.2019  797.0334  739.0038 7922577  T720.0840 830.8273 1638.4376 1702.3794 354.2897 379.1077 433.5407 444.1441 828.3097  916.3392  827.0035 868.1535 736.6555 7909810 1065.4092 1129.1730 550.1462 590.6442 668.4886 688.4125
EMD-RVFL 25 314.8228 312.2519 83.5784 578.7575 118.4579 182.9141 363.3506  639.8154  165.6001 202.4699 322.9955 433.5043 439.0698  523.8423 198.5481 215.2933 124.1485 210.6227 870.8377 1276.7234 214.8273 230.6858 1378.52 1409.231
50 317.6434  317.7997 574.0701 1968.8048 119.1285 188.6114 430.3295 974.9396 168.4076 206.9434 431.5669 1024.178 533.4599  922.1064 204.4831 232.5407 173.0004  433.8563 1217.4378 3068.8821 250.1715 519.4434 1825.6456 2421.5536
100 3254791 418.1192 5679.6048 15837.6563 118.0461 200.3047 670.5954 125114 178.0749 268.1309 3206.456 10667.0802 944.886 1946.6833 228.189 291.7895  392.1509 455.4738 T498.0156 21177.3827 2042.3039 6961.7199 3370.7381 8826.375
CVAELM 5 861.6277 1626.1838 602.8696 524.5637  713.4517 1027.3796 1711.8031 1311.5117 427.9976 355.6778 392.3103 530.4047 571.9490 419.1537  599.3449 641.1806 1885.1660 543.4712 1092.4309 635.3527 522.1056 467.7075 814.1177 2026.6491
50 882.7860 1755.1614 754.7649 542.6927 7789001 1158.3768 3358.1434 1729.2702 409.9928 332.6087 425.9701 562.2055 705.9428  394.9212 916.9989 631.7627 2.2169  559.9002 3290.4100 644.1676 795.4126  480.6790 862.8795 1961.3860
100 2336.6858 2004.2697 1833.4983 656.9383 1474.3612 1112.3832 8133.1967 1564.2253 444.0069 329.0231 586.5567 566.1975  1446.0966 411.8311 2716.2962 841.9484 10198.0277 626.2012 8498.2779 T83.3138 3277.1970 522.3361 1419.7246 2118.4552
WPD-EMD-ELM 25 1022.0992 1164.4267 374.7287  447.5160 1329.6645 1385.4095 974.59068 1183.5055 423.2812 491.8790 306.1467 376.8794 373.9823 451.2340 794.2480 898.0037 1361.5175 1662.2640 1263.4606 1500.3999 186.6495 221.4853 608.0428 708.4014
50 1081.2380 1288.8872 232.0513 310.5604  1260.7239 1555.3409 817.3773 1147.4296 293.4763 382.0362 199.6559 271.7424 310.8456 4329758 373.0824 505.3330 1251.5109 1677.1454 765.1816 998.0733 143.7943  180.7563 466.0936  593.6581
100 1028.7225 1662.5548 188.7325 209.8185 1403.3538 2353.6063 894.6572 1475.0281 255.7910 381.7554 140.0838 214.2019 263.1397  424.0842 283.9409 4424890 1517.8815 2436.2988 689.7816 1157.6886 112.0357 161.8415 656.7102 992.6630
CEEMDAN-ANN 25 1760.6021 1870.5673 1170.5347 1326.7747 12428575 1372.8219 1607.7262 1668.4350 693.1198 T37.2780 789.4834 836.0456 837.8806 834.4783 1005.5444 1050.1979 1268.6945 1349.0015 1814.1457 1920.4830 1077.3716 1177.3321 1452.4142 1522.7804
50 1975.2977 1979.3646 1138.1837 1287.3959 1175.3453 1237.1729 1658.5822 1557.5639 690.0986 717.2942 776.8678 805.7084 T76.3754 851 1006.5454 1025.8896 1254.8883 1274.7958 1794.6389 1871.0171 1091.1801 1134.4431 1459.8548 1469.8945
100 1894.1868 1805.4160 1204.1687 1183.6428 1137.8264 1215.7120 1723.6702 1648.6916 744.4328 T66.8511 TO8.8389 818.7258 9074598  874.4540 1031.8267 1100.6003 14828004 1388.8371 1849.1845 2011.5791 1274.6191 1172.3017 1418.4216 1461.7019
VMD-GSO-ELM 25 907.0701  976.8075 372.7700 417.4215 346.2065 379.7679 603.7493 690.5076 259.7811 304.9697 305.2835 352.5817  276.2602 25,4602 408.3930  460.0934  454.1694 520.7221  609.4566 680.3610 560.2628 585.1842 448.0882 583.3896
50 T49.9383  825.3936  268.7603 307.6663 2357511 2823648 471.1504 529.7678 183.2638 231.5820 215.0130 261.5730 199.3562  234.3308 2989109 344.3315 329.0071 371.4490  437.2069 489.3375 439.5904  471.0425 353.4215 420.6494
100 H87.1853  673.3719  208.3691 239.5063 166.5417 208.8992 376.4128 440.4450 131.5973 169.8403 154.5742 200.7787 152.4094  193.2458 221.1502  265.0290  266.0228 204.7846  353.6811 392.6975  341.1524 393.5398 325.6738 374.5463
EDNNRWE 25 6171077  706.0860  292.1097 347.5155 333.9652  387.8050 605.1715 890.0333 218.0952 279.5503 2221567 276.6259 283.6623 347.9196 364.8429 416.0080 366.6196 441.2384  463.1440 558.8628 285.4944  318.4009 886.5296 1401.1066
50 415.6525  545.2905  209.4361 284.6019  224.7840 303.1280 556.5923 721.8817 133.2180 187.4026 152.9591 206.6673 214.6487  263.9060 248.5280 323.8713  236.3646 204.5159  302.9102 391.7891 216.4711  250.2218 1764.8230 1250.1187
100 352.6440 520.5543  199.0457 282.6714 1845678  272.0960 471.4732 721.8013 88.1447 131.7384 109.7338 174.9363 198.4567 273.3315 198.2952 298.4824 186.2466 275.7622  239.4397 352.3040 202.4881  256.6043 1988.3151 2650.1588
EDNNRWgNN 25 607.2652  755.4444  291.8149 347.1173  329.6356 382.7879 624.6696 913.7338 214.4977 273.7820 218.5572 268.9882 284.3149 3429574 364.7183 417.9652 365.0186 4289622 459.8406 542.9161 284.0361  315.2913  962.4457 1740.1023
50 429.3295 5HA85TT9  207.3177 296.3689 2327168  308.572 HT7.8936  T13.1838 131.7268 184.3905 151.4112 205.7113 218.4024  263.8905 248.6860 329.0260 233.6467 204.3148  299.4747 386.0336 215.3403  249.3793 4106.8620 1615.9190
100 880 538.9625 197.7967  284.2363 1821781  268.6408 473.4501 734.5722 87.4041 131.0969 108.6637 175.4738 199.0404  270.8628 201.0388 303.2509 185.5615 274.7824  243.9808 355.7054 204.4693  260.3756 2235.8558 3145.7189
EDNNRW Ry 25 42.2337 91.0498 15.7278 36.6616 14.3571 32.0323 33.0165 111.8085 12.5063 31.7643 23.3560 73.3131 20.8287 127.0346 14.3896 15.2526 36.1598 18.5922 46.5881 11.2674 27.4203 34.6719 159.8324
50 41.2410 78.3027 18.0386 44.9371 15.1458 35.1015 34.6069 122.7300 12,7800 32.9108 26.9244 74.6022 21.6701 130.2976 16.2995 17.5368 3.8516 20.0325 50.4894 14.2873 39.0020 51.0242 181.1580
100 41.2166 95.8810 25.6692 74.0465 17.3271 48.3266 42.1620 154.4884 13.8953  35.25638 26.6524 75.2109 27.3967 133.3630 22.2062 229135 66.3602 25.4590 74.3240 22.7256 58.1057 199.0248  542.4897
EDNNRW gy g+ 5 42.0043 88.9692 15.7297 36.3899 14.5155 32.5039 33.1082 117.1098 124578 32.0738 28.4415 71.7148 20.5567 119.6818 14.7724 15.4401 36.4757 18.6440 46.7751 11.3822 27.1817 36.0122 156.8753
50 41.0239 80.5460 18.0719 44.6654 15 38 36.1617 34.5555 127.5297 127793 33.1326 27.0971 73.9524 21.6066 124.1786 16.7423 44.5245 17.6960 44.2706 20.0379 50.8116 14.3891 39.0095 272.9683 177.3689
100 41.5976 8091 25.8559 75.0893 17.3982 50.5972 42.8241 161.6443 13.9071 35.3287 26.7528 774241 27.3738 130.4685 22.6307 69.2416 22.9990 67.6275 25.4835 73.9961 23.0584 58.7818 164.1982  540.4274
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Comparison of the MAPE for multiple-step ahead forecasting on the wind power datasets.

Table 8

Algorithm

28.4207 34.71
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17.0119 22.7¢

14.0181

RVFL
RVFL*
VMD-WRELM
EMD-RVFL
CVAELM
WPD-EMD-ELM
CEEMDAN-ANN
VMD-GSO-ELM
EDNNRW |
EDNNRWsNN
EDNNRW gy,

EDNNRW jy/ 1+

Critical difference (CD) = 1.1024

14 10 6 2
| I P N P Y I P I P
I
-
-
-
=
L
-
=
CEEMDAN-ANN  13.5062 1.5 EDNNRW,,.
CVAELM  11.7932 1.5247 EDNNRW_,. .
VMD-WRELM  11.3611 5.0833 RVFL
ELM 10.5741 5.7346 EDNNRW_
SNN  9.787 5.8272 RVFL*
WPD-EMD-ELM  9.0185 6.0123 EDNNRW_
VMD-GSO-ELM  6.7006 6.5772 EMD-RVFL

Fig.1: Critical difference diagram of average ranks
of all the algorithms. The average rank of each com-
petitor over all the datasets is plotted on the z-axis.
The average ranks of the proposed methods are rep-
resented by blue lines. The best average rank is on
the right side.

five step ahead forecasting are presented in Tables 9
to 11. The greater values indicate higher improve-
ment scores of the proposed EDNNRWRypr,, which
are close to one hundred.

The data in Tables 9 to 11 can be summarized as
follows:

1. When comparing the EDNNRWgypr, with the
competitors, the forecasting accuracy of the pro-
posed model is remarkably higher than all of the
other methods. The improvement percentages be-
tween the proposed EDNNRWRgyrr, and the other
competing algorithms, except for the EMD-RVFL
and the VMD-GSO-ELM, were generally higher
than 90%.

2. When comparing the EDNNRWgypr, with EMD-
RVFL and VMD-GSO-ELM, the forecasting accu-
racy of the former method is higher than the two
latter approaches. The improvement percentages
of the EDNNRW gy, over EMD-RVFL and VMD-
GSO-ELM were generally higher than 60%.

3. The improvement percentages between the pro-
posed EDNNRWRgyr;, and VMD-GSO-ELM were
lower than those of the others because the VMD-
GSO-ELM employed the feature selection process
to eliminate irrelevant features. Thus, we conclude
that the feature selection process can improve the
predictive performance of the VMD-GSO-ELM.

4. The improvement percentages between the pro-
posed EDNNRWgyrr, and EMD-RVFL were lower
than those of the others. Thus, we conclude
that the FLN family promotes the predictive per-
formances of the decomposition-based hybrid ap-
proaches. This indicates that the direct connec-
tions between the input layer and the output layer
within the predictors can significantly improve the
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Fig.2: Results of five step ahead forecasting and the corresponding residual errors for the wind power datasets.
Grey shaded regions represent the intervals at night time.
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Fig.2: Results of five step ahead forecasting and the corresponding residual errors for the wind power datasets.
Grey shaded regions represent the intervals at night time (Cont.).
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predictive performance of the decomposition-based
hybrid model.

5. The performance of the proposed EDNNRWRgyFr,
is relatively superior to the other comparative al-
gorithms in terms of forecasting capability, thereby
indicating a significant improvement exists in the
predictive performance of the EDNNRWRyFr,.

4.6 Comparison of computational times

All experiments were conducted in the MATLAB
environment and run on a personal computer with
an Intel Core i7-3370 3.40 GHz processor, 8 GB of
RAM, and Windows 7 x64 operating system. The
computational times of all competitors were obtained
using the tic and toc commands in the MATLAB
program. The average computational time of each
algorithm across all the problems is shown in Fig-
ure 3. This figure shows that the computational
times of the NNRW algorithms (ELM, SSN, RVFL,
and RVFL*) were faster among all competing al-
gorithms, due to the benefit of random weights
generation and the closed-form least-squares solu-
tion. The computational speeds of the proposed
EDNNRW algorithms were much faster than that of
the CEEMDANN-ANN. In the CEEMDANN-ANN,
the estimators must be iteratively fine-tuned by the
back-propagation algorithm to obtain the optimal
weight parameters. Consequently, the CEEMDANN-
ANN was the most time-consuming technique.
This supports our hypothesis that the algorithm
for training the predictors in the decomposition-
based method should be a non-iterative learning
approach. As seen in Figure 4, the proposed
EDNNRWEg v, EDNNRWgsnN, EDNNRWRyEr, and
EDNNRWRyrr+ achieved good trade-offs between
predictive performance and computational speed
compared to other decomposition-based hybrid meth-
ods. Although the computational speeds of the
proposed EDNNRWRgyrr, and EDNNRW Ry g+ were
slower than some decomposition-based approaches,
the forecasting accuracy obtained by the proposed
methods is dramatically increased. In practical ap-
plications, the additional accuracy is worth the extra
computational time.

5. CONCLUSION

We developed an improved decomposition-based
hybrid approach for wind power forecasting using
EMD, VMD, SSA, DWT, WPD, NNRW, and a linear
combiner. In our approach, each decomposition tech-
nique is applied to decompose the original time-series
data into a collection of components. The NNRW is
then exploited as an estimator for each decomposed
component. After the reconstruction of the predicted
values, the reconstructed results of all of the decom-
position techniques are combined with a linear com-
biner. The main advantage of our approach is that

ELM

SNN

RVFL

RVFL*
VMD-WRELM
EMD-RVFL
CVAELM
WPD-EMD-ELM
VMD-GSO-ELM
CEEMDAN-ANN
EDNNRW_,
EDNNRW

25 nodes | |
EDNNRW_, [ 50 nodes |
EDNNRW,,,_ . 100 nodes| |

0 10 20 30 40 50 60 70
Training time (s)

Fig.3: Computation time of different comparative
methods.
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o
8r = CVAELM
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EMD-RVFL

]
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]
4l EDNNRW

21 EDNNRW

[¢]
1L EDNNRW -

RVFL*

Average ranks of predictive performances
(4]
T

0 1 2 3 4 5 6 7 8 9 10
Average ranks of training times
Fig.4: Trade-offs between predictive performance

and computational time of different decomposition-
based hybrid methods.

the valuable characteristics of several decomposition

techniques are combined.

The experimental results lead to the following con-
clusions:

1. The proposed EDNNRWgp, v and EDNNRWgnn
have good average ranks and were significantly
superior to the other decomposition-based ELM
methods and single models with a confidence of
95%. This indicates that the heterogeneous com-
bination of different decomposition-based models
can improve the forecasting capability of the pro-
posed model.

2. When comparing both the EDNNRWgypr, and
EDNNRWRypr+ with the EDNNRWgry and
EDNNRWgNn, the forecasting accuracies of the
former methods were higher than the latter ap-
proaches. The FLN family approaches (RVFL and
RVFL*) generated greater forecasting accuracy for
the developed decomposition-based hybrid frame-
work.
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Table 9: Improvement percentages of the RMSE results of EDNNRWRgyry, over the other competitors.

EDNNRW v L,
Vs

n-step

Dataset

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sept

Oct

Nov

ELM

SNN

RVFL

RVFL*

VMD-WRELM

EMD-RVFL

CVAELM

WPD-EMD-ELM

CEEMDAN-ANN

VMD-GSO-ELM

1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step

98.80 %
93.81 %
86.30 %
98.78 %
93.74 %
86.21 %
94.30 %
84.79 %
74.78 %
94.30 %
84.82 %
74.87 %
98.98 %
93.80 %
84.38 %
97.94 %
84.95 %
61.30 %
99.01 %
93.80 %
89.88 %
98.43 %
92.72 %
84.67 %
99.58 %
97.29 %
92.57 %
98.85 %
93.23 %
83.30 %

98.50 %
96.09 %
92.63 %
98.49 %
96.06 %
92.61 %
95.59 %
93.72 %
90.38 %
95.59 %
93.74 %
90.39 %
99.25 %
97.22 %
93.36 %
98.05 %
96.59 %
96.27 %
99.13 %
97.25 %
91.49 %
96.77 %
91.53 %
84.64 %
99.55 %
98.29 %
95.89 %
97.78 %
92.37 %
82.66 %

98.67 %
96.35 %
93.50 %
98.65 %
96.33 %
93.47 %
95.19 %
93.42 %
90.83 %
95.19 %
93.42 %
90.84 %
99.28 %
97.64 %
94.93 %
95.34 %
86.69 %
80.01 %
99.30 %
97.59 %
95.62 %
99.42 %
98.24 %
96.82 %
99.64 %
98.63 %
96.86 %
97.73 %
92.85 %
85.30 %

98.92 %
94.94 %
87.28 %
98.91 %
94.90 %
87.18 %
95.96 %
90.61 %
82.57 %
95.96 %
90.65 %
82.61 %
99.56 %
97.34 %
91.82 %
98.35 %
91.80 %
87.09 %
99.68 %
98.36 %
90.63 %
99.01 %
95.63 %
89.93 %
99.64 %
97.74 %
92.38 %
98.59 %
91.92 %
76.75 %

98.56 %
96.24 %
92.75 %
98.55 %
96.22 %
92.69 %
96.34 %
93.96 %
90.28 %
96.35 %
93.96 %
90.30 %
99.08 %
96.65 %
91.82 %
97.96 %
92.40 %
84.86 %
98.99 %
96.60 %
90.12 %
98.43 %
95.54 %
91.47 %
99.51 %
98.13 %
95.42 %
97.71 %
92.53 %
84.70 %

97.86 %
92.10 %
84.99 %
97.81 %
92.02 %
84.91 %
93.99 %
87.28 %
79.36 %
94.00 %
87.29 %
79.36 %
98.90 %
93.90 %
83.49 %
97.02 %
94.00 %
89.80 %
98.72 %
92.92 %
85.43 %
96.16 %
85.32 %
71.16 %
99.33 %
96.35 %
90.26 %
96.93 %
86.27 %
69.48 %

98.42 %
92.82 %
83.21 %
98.40 %
92.74 %
83.11 %
94.01 %
86.61 %
75.66 %
94.02 %
86.63 %
75.73 %
99.19 %
95.09 %
85.61 %
99.02 %
94.18 %
87.63 %
98.99 %
94.78 %
76.04 %
97.41 %
89.40 %
77.11 %
99.37 %
96.08 %
88.30 %
96.84 %
83.59 %
59.19 %

98.97 %
96.40 %
92.46 %
98.95 %
96.36 %
92.43 %
96.08 %
93.82 %
90.13 %
96.09 %
93.83 %
90.15 %
99.48 %
97.64 %
93.79 %
98.13 %
91.80 %
80.65 %
99.42 %
97.37 %
92.04 %
98.46 %
94.87 %
89.74 %
99.62 %
98.25 %
95.32 %
98.43 %
93.71 %
84.97 %

98.94 %
96.55 %
93.16 %
98.93 %
96.49 %
93.11 %
95.71 %
93.63 %
90.48 %
95.72 %
93.65 %
90.51 %
99.33 %
97.42 %
93.81 %
93.10 %
90.09 %
88.35 %
99.62 %
99.02 %
91.53 %
99.35 %
98.02 %
96.45 %
99.64 %
98.57 %
96.24 %
98.49 %
94.19 %
86.20 %

99.09 %
97.02 %
93.73 %
99.08 %
96.98 %
93.69 %
96.36 %
93.98 %
90.55 %
96.36 %
94.01 %
90.57 %
99.39 %
97.78 %
94.32 %
97.41 %
98.06 %
97.57 %
99.56 %
98.49 %
91.55 %
98.98 %
96.79 %
93.84 %
99.71 %
98.75 %
96.85 %
98.67 %
94.91 %
87.65 %

99.12 %
96.36 %
93.13 %
99.11 %
96.34 %
93.07 %
96.55 %
93.61 %
90.44 %
96.55 %
93.64 %
90.45 %
99.33 %
97.00 %
92.92 %
98.51 %
95.32 %
91.75 %
99.34 %
97.15 %
91.03 %
96.13 %
86.70 %
75.19 %
99.66 %
98.46 %
96.10 %
99.08 %
95.70 %
90.12 %

98.36 %
92.34 %
75.77 %
98.35 %
92.33 %
75.71 %
93.15 %
84.21 %
62.95 %
93.16 %
84.26 %
63.10 %
99.03 %
94.07 %
77.10 %
99.47 %
97.46 %
92.26 %
99.03 %
94.78 %
90.26 %
98.04 %
91.09 %
74.19 %
99.51 %
97.09 %
88.35 %
98.03 %
88.73 %
62.14 %

Table 10: Improvement percentages of the MAE results of EDNNRWgypr,

over the other competitors.

EDNNRWRgyrr,
Vs

n-step

Dataset

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sept

Oct

Nov

Dec

ELM

SNN

RVFL

RVFL*

VMD-WRELM

EMD-RVFL

CVAELM

WPD-EMD-ELM

CEEMDAN-ANN

VMD-GSO-ELM

1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step

99.04 %
96.90 %
93.71 %
99.03 %
96.87 %
93.67 %
95.44 %
92.46 %
88.93 %
95.44 %
92.47 %
88.98 %
99.25 %
97.10 %
93.36 %
94.49 %
83.86 %
72.51 %
99.25 %
97.05 %
95.65 %
98.48 %
95.49 %
91.71 %
99.69 %
98.73 %
96.80 %
99.10 %
96.57 %
92.24 %

98.60 %
96.42 %
93.21 %
98.59 %
96.39 %
93.18 %
95.33 %
94.00 %
90.93 %
95.33 %
94.02 %
90.93 %
99.31 %
97.43 %
93.79 %
94.97 %
94.63 %
93.93 %
99.21 %
97.53 %
91.97 %
97.01 %
92.19 %
85.75 %
99.61 %
98.50 %
96.37 %
97.97 %
92.92 %
83.68 %

98.80 %
96.68 %
94.02 %
98.79 %
96.66 %
94.01 %
95.65 %
93.94 %
91.45 %
95.66 %
93.95 %
91.46 %
99.31 %
97.63 %
94.73 %
92.48 %
86.00 %
79.72 %
99.40 %
97.94 %
96.06 %
99.29 %
97.97 %
96.40 %
99.71 %
98.89 %
97.39 %
97.95 %
93.42 %
86.22 %

98.96 %
96.58 %
92.43 %
98.95 %
96.56 %
92.36 %
96.06 %
93.88 %
90.07 %
96.06 %
93.90 %
90.09 %
99.56 %
98.14 %
94.98 %
94.79 %
91.86 %
90.88 %
99.67 %
98.84 %
94.53 %
98.97 %
96.82 %
93.61 %
99.67 %
98.57 %
95.69 %
98.64 %
94.46 %
85.61 %

98.60 %
96.51 %
93.79 %
98.59 %
96.49 %
93.74 %
96.21 %
94.31 %
91.72 %
96.22 %
94.31 %
91.73 %
99.11 %
96.93 %
93.12 %
94.91 %
90.11 %
84.43 %
99.03 %
96.87 %
91.54 %
98.33 %
95.51 %
92.20 %
99.53 %
98.30 %
96.16 %
97.75 %
92.96 %
86.87 %

98.49 %
95.85 %
92.95 %
98.46 %
95.81 %
92.90 %
95.79 %
93.54 %
90.68 %
95.79 %
93.54 %
90.69 %
99.26 %
97.01 %
92.85 %
95.92 %
95.72 %
94.36 %
99.14 %
96.55 %
93.28 %
97.34 %
92.31 %
86.54 %
99.56 %
98.24 %
95.83 %
97.84 %
92.70 %
85.39 %

98.85 %
96.10 %
92.65 %
98.84 %
96.06 %
92.61 %
95.36 %
92.43 %
89.42 %
95.37 %
92.45 %
89.46 %
99.40 %
97.31 %
93.79 %
97.62 %
94.07 %
92.37 %
99.26 %
97.13 %
89.26 %
98.02 %
93.85 %
89.47 %
99.56 %
97.95 %
95.09 %
97.67 %
90.71 %
81.34 %

98.94 %
96.54 %
93.06 %
98.92 %
96.51 %
93.03 %
95.97 %
93.94 %
90.75 %
95.97 %
93.94 %
90.76 %
99.49 %
97.85 %
94.58 %
94.88 %
88.72 %
80.12 %
99.42 %
97.53 %
92.65 %
98.45 %
95.19 %
90.76 %
99.63 %
98.40 %
95.85 %
98.41 %
94.00 %
86.17 %

99.00 %
96.65 %
93.46 %
98.98 %
96.59 %
93.39 %
95.86 %
93.67 %
90.60 %
95.87 %
93.68 %
90.63 %
99.39 %
97.56 %
94.16 %
91.82 %
89.17 %
86.92 %
99.61 %
98.94 %
91.63 %
99.16 %
97.42 %
95.31 %
99.68 %
98.66 %
96.50 %
98.63 %
94.53 %
87.20 %

99.11 %
97.20 %
94.49 %
99.10 %
97.17 %
94.45 %
96.32 %
94.26 %
91.73 %
96.32 %
94.29 %
91.75 %
99.40 %
97.91 %
95.05 %
95.76 %
96.63 %
96.49 %
99.52 %
98.41 %
92.70 %
98.64 %
96.07 %
92.97 %
99.72 %
98.85 %
97.32 %
98.75 %
95.40 %
89.42 %

99.09 %
96.58 %
93.63 %
99.08 %
96.55 %
93.58 %
96.70 %
94.12 %
91.25 %
96.71 %
94.14 %
91.25 %
99.42 %
97.49 %
94.17 %
96.02 %
91.97 %
88.51 %
99.40 %
97.43 %
92.01 %
96.33 %
88.17 %
78.57 %
99.70 %
98.67 %
96.70 %
98.97 %
95.43 %
89.89 %

98.83 %
96.15 %
89.48 %
98.83 %
96.14 %
89.46 %
95.12 %
92.47 %
84.62 %
95.13 %
92.49 %
84.66 %
99.27 %
96.91 %
89.62 %
98.60 %
96.64 %
93.71 %
99.29 %
97.39 %
95.86 %
97.90 %
93.67 %
84.55 %
99.66 %
98.60 %
95.15 %
98.47 %
93.89 %
81.44 %
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Table 11: Improvement percentages of the MAPE results of EDNNRWRypy, over the other competitors.

EDNNRWRyFL
Vs Jan Feb

Dataset

n-step Mar Apr

May

Jun Jul Aug Sept Oct Nov Dec

ELM

SNN

RVFL

RVFL*

VMD-WRELM

EMD-RVFL

CVAELM

WPD-EMD-ELM

CEEMDAN-ANN

VMD-GSO-ELM

99.03 %
96.76 %
92.38 %
99.01 %
96.73 %
92.32 %
95.19 %
92.13 %
86.41 %
95.20 %
92.14 %
86.43 %
99.53 %
98.25 %
95.40 %
92.88 %
81.13 %
64.19 %
99.48 %
97.85 %
94.81 %
99.23 %
97.71 %
95.01 %
99.79 %
99.14 %
97.50 %
98.68 %
94.92 %
86.78 %

98.63 %
96.45 %
93.09 %
98.62 %
96.42 %
93.07 %
95.06 %
93.87 %
90.69 %
95.07 %
93.89 %
90.71 %
99.32 %
97.46 %
93.88 %
93.49 %
93.08 %
91.90 %
99.23 %
97.59 %
91.52 %
97.02 %
92.16 %
85.60 %
99.62 %
98.56 %
96.49 %
97.84 %
92.49 %
82.59 %

98.94 % 99.00 %
96.81 % 96.80 %
93.79 % 9321 %
98.93 % 98.97 %
96.76 % 96.77 %
93.75 % 9313 %
95.34 % 95.78 %
9327 % 93.99 %
90.08 % 90.52 %
95.35 % 95.78 %
93.28 % 94.02 %
90.14 % 90.54 %
99.44 % 99.53 %
97.79 % 98.03 %
94.46 % 94.77 %
91.71 %  92.68 %
88.99 % 91.04 %
8725 % 88.99 %
99.57 % 99.67 %
98.35 % 98.76 %
96.01 % 94.70 %
99.43 % 99.43 %
98.45 % 98.22 %
97.25 %  96.26 %
99.83 % 99.72 %
99.31 % 98.82 %
98.15 % 96.45 %
98.34 % 98.56 %
9421 % 9427 %
86.92 % 85.96 %

1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step
1-step
3-step
5-step

98.69 %
96.61 %
93.88 %
98.67 %
96.59 %
93.82 %
95.96 %
94.09 %
91.54 %
95.96 %
94.08 %
91.55 %
99.21 %
97.18 %
93.54 %
93.35 %
87.21 %
79.69 %
99.05 %
96.89 %
91.63 %
98.11 %
94.87 %
91.05 %
99.58 %
98.45 %
96.41 %
97.70 %
92.74 %
86.16 %

98.92 %  98.66 %
96.66 %  95.49 %
94.00 % 84.85 %
98.89 %  98.66 %
96.63 % 95.49 %
93.94 % 84.84 %
96.60 %  92.98 %
94.54 % 89.90 %
91.87 % 76.76 %
96.60 %  93.04 %
94.54 % 90.00 %
91.85 % 76.97 %
99.53 % 99.19 %
98.17 % 96.25 %
95.82 % 84.38 %
96.09 %  97.67 %
92.61 % 96.32 %
89.47 % 94.32 %
99.47 % 99.23 %
97.90 % 97.13 %
93.39 % 93.60 %
97.36 % 9811 %
92.81 % 93.82 %
87.32 % 81.78 %
99.76 % 99.60 %
99.04 % 98.20 %
97.63 % 92.44 %
98.50 %  98.60 %
94.34 % 93.77 %
87.92 % 78.96 %

98.56 % 98.86 %
96.22 % 96.17 %
93.69 % 9312 %
98.53 % 98.86 %
96.19 %  96.14 %
93.64 % 93.10 %
95.87 % 94.56 %
94.15 %  91.78 %
91.78 % 89.55 %
95.87 % 94.57 %
94.16 % 91.80 %
91.78 % 89.63 %
99.39 % 99.51 %
97.57 % 97.86 %
94.28 % 95.31 %
95.39 % 96.55 %
95.42 % 92.80 %
9413 % 91.87 %
99.23 %  99.33 %
96.98 % 97.41 %
94.07 % 89.47 %
97.58 % 98.11 %
93.09 % 9413 %
87.91 % 90.34 %
99.61 %  99.60 %
98.46 % 98.18 %
96.40 % 95.90 %
98.06 % 97.61 %
93.63 % 90.84 %
87.55 % 8279 %

98.91 %
96.35 %
92.24 %
98.89 %
96.33 %
92.21 %
95.47 %
93.33 %
89.07 %
95.48 %
93.34 %
89.10 %
99.61 %
98.31 %
95.42 %
95.63 %
88.54 %
76.78 %
99.46 %
97.67 %
91.26 %
98.73 %
95.73 %
91.17 %
99.69 %
98.54 %
95.94 %
98.66 %
94.86 %
87.67 %

98.92 % 99.14 %
96.34 % 97.20 %
92.85 % 94.09 %
98.90 % 99.12 %
96.29 % 97.15 %
92.78 % 94.04 %
95.48 % 96.10 %
92.97 % 9381 %
89.46 % 90.73 %
95.49 % 96.10 %
92.98 % 93.86 %
89.49 % 90.74 %
99.45 % 99.45 %
97.69 % 97.95 %
94.19 %  94.75 %
9224 % 96.75 %
9047 % 97.75 %
83.73 % 97.44 %
99.58 % 99.53 %
98.75 % 98.38 %
90.64 % 91.86 %
99.12 % 98.71 %
97.10 % 96.09 %
94.39 % 92.48 %
99.69 % 99.74 %
98.68 % 98.90 %
96.54 % 97.32 %
98.563 % 98.76 %
9429 % 9527 %
87.15 % 88.76 %

3. The proposed EDNNRWRryrr, and EDNNRW gy g1, *

ranked higher and significantly outperformed the
comparative algorithms with a 0.05 significance
level.

Future research directions and further possible im-

provements to this work include:

1.

The type of prediction model selected has a sig-
nificant influence on the predictive performance.
Thus, the reservoir computing model and other
variants of recurrent NN with random weights [48]
should be further investigated.

The number of lag orders and structure size of
NNRW within the proposed method are user-
specified parameters. Therefore, further work on
how to automatically determine the optimal lag or-
ders and node sizes is worth further investigation.
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