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Glaucoma Detection in Mobile Phone Retinal
Images Based on ADI-GVF Segmentation with
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ABSTRACT: The advanced development of mobile phone and retinal lens
tech-nology has made fundus imaging more convenient than ever before. In the
digital health era, mobile phone fundus photography has evolved into a low-cost
alterna-tive to the standard slit-lamp machine. Existing image processing
algorithms have a problem with handling retinal images with narrow felds of
view and poor-quality taken by a mobile phone. This paper provides a detailed
method to enhance the accuracy of our recently proposed scheme, Alternated
Defhtion-Infhtion Gradient Vector Flow model (ADI-GVF), to improve the
segmentation of the optic disk (OD) and the optic cup (OC) for glaucoma
detection [1]. We integrated the exclu-sion method (EM), a precise algorithm
for localizing the OD, with the ADI-GVF algorithm. This work has
experimentally proved that it can detect the bound-aries of the OD and OC
very precisely, resulting in a very accurate value of the cup-to-disk area ratio
(CDAR) for precise glaucoma prescreening. The proposed method has been
tested using a mobile phone dataset and two standard datasets (Drishti-GS
and HFS). In mobile phone dataset, it obtains TPR up to 93.33%, and FOR
as low as 6.66%. Satisfactory rates of TPR and FOR are also reported for
those two standard datasets. In addition, the comparison using three datasets
shows that the proposed algorithm outperforms other state-of-the-art methods.
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1. INTRODUCTION

Glaucoma is a group of eye disorders that are char-
acterized by damage to the optic nerve. Glaucoma is
classified into several different types, including open-
angle (most common) and angle-closure. Open-angle
glaucoma occurs when the fluid pressure in an eye in-
creases due to the clogging of drainage, which opens
the drainage angle formed by the cornea and iris.
Angle-closure glaucoma happens when all angles of
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drainage are blocked. As a result, the fluid cannot cir-
culate through the eye causing higher pressure. That
sudden increase in pressure can damage the optic
nerves. The health of these nerves is vital for perfect
vision. When the damage worsens, glaucoma can lead
to progressive vision loss or complete blindness within
a few years. Glaucoma is becoming the second lead-
ing cause of blindness among the population of any
age, globally. In 2020, the number of glaucomatous
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patients is estimated to rise to 80 million, an increase
of approximately 20 million from 2010 [2]. The World
Health Organization recorded that 6.9 million glau-
coma patients suffer vision impairment and blindness
[3].

Glaucoma is undiagnosed in nine out of ten af-
fected people worldwide [2]. In general, glaucoma
has no warning signs at the early stages. The symp-
toms are gradual, and thus, a patient may not no-
tice a change in vision until the glaucoma is getting
worse. If glaucoma is diagnosed early, vision loss can
be avoided. Therefore, it is necessary to get eye ex-
ams regularly and proper treatment.

Retinal imaging is a modality that can be ap-
plied for glaucoma screening. The rapid develop-
ment of modern technology allows retinal images to
be captured via mobile phones attached with a spe-
cial portable lens. Fig. 1 shows examples of mobile
phones attached to wearable retinal lenses that can be
purchased from specific companies. The use of a mo-
bile phone with wearable lenses helps retinal imaging
to be less bulky, cheaper, easier, and quicker than the
standard machine currently used in hospitals. The
cost-effectiveness and convenience of this technology
impacts the digital transformation of health services.
In the future, the ophthalmologists will be able to
handle the large-scale assessment of retinal diseases,
including glaucoma.
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Fig.1:  Mobile phones attached to retinal lenses.
The above images are available from the commercial
websites:  www.d-eyecare.com, www.peekvision.org,
volk.com, and www.welchallyn.com, respectively.

However, the retinal images acquired from mo-
bile phones attached to wearable lenses often have
poor quality. Sometimes, abnormally bright regions,
caused by external light during image capture, are
present in the image. The vessel structures do not ap-
pear perfectly in most images due to the narrow field
of view. The low-contrast between the OD and OC
regions usually causes the boundary between regions
to be blurry. Thus, the images which are taken by
mobile phones have poorer quality than those taken
by a slit-lamp machine. The characteristics of mobile
phone images and abnormalities from the patients
lead to a new challenge of automatic glaucoma detec-
tion and require an improved algorithm to overcome
those difficulties.

Previously, there have been large efforts to analyze
the reliability and quality issues of mobile phone reti-

nal images for computer-aided diagnosis systems in
ophthalmology. Diabetic retinopathy pre-screening
[4] and glaucoma assessment [1][5] are performed
by detecting abnormalities in the images acquired
by a mobile phone. This work is based on our
previously proposed method, Alternated Deflation-
Inflation Gradient Vector Flow (ADI-GVF) snakes [1]
with a more efficient algorithm for localizing the OD.
We estimate the likelihood of having glaucoma for
the patient using the segmented OD and OC areas in
the retinal images obtained by our improved method.
By combining the more powerful localization tech-
nique and ADI-GVF, we aim to achieve a more ac-
curate detection rate than in our previous work. An-
other objective is to help ophthalmologists monitor
the treatment of glaucoma.

Glaucoma diagnosis through retinal imaging can
be accessed by calculating the cup-to-disk ratio, often
referred to the CDR [6]. The cup refers to the optic
cup and the disk refers to the optic disk. The op-
tic disk (OD), known as the optic nerve head, repre-
sents the entry point for the major blood vessels that
supply the retina. It appears as a bright and round
(sometimes vertically oval) area in the retinal image.
Any abnormalities in the OD are related to specific
eye diseases. The optic cup (OC) is a brighter region
located at the center of the OD [7]. An eye with a
larger OC tends to have a higher risk of glaucoma.
Examples of a normal retinal image and a suspected
retinal image for glaucoma, which were taken by a
mobile phone, are shown in Fig. 2.

Fig.2: Retinal images taken by a mobile phone: a
normal retina (left) and suspected case of glaucoma

(right).

The CDR can be calculated by several measure-
ment techniques. The commonly used CDRs are ver-
tical CDR (VCDR) and Horizontal CDR (HCDR) [8],
as shown in Fig. 3 (a) and (b). The VCDR denotes
the ratio of the vertical height of the OC to that of
the OD. Likewise, the HCDR denotes the ratio of the
horizontal width of the OC to that of the OD. An un-
healthy optic nerve causes structural changes in the
OC and has an abnormal Neuroretinal Rim (NR) [9)].
The NR is the OD area which contains the neural
elements: inferior, superior, nasal, and temporal, as
shown in Fig. 3 (c). In a healthy retina, the NR tends
to be symmetric at the inferior and superior margins



136 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.15, NO.1 April 2021

of the OD. If there is an unusual NR, it is a warning
sign of glaucoma. Thus, glaucoma can be diagnosed
alternatively using the Inferior Superior Nasal Tem-
poral (ISNT) rule [10]. The ISNT rule is also called
the neuroretinal rim area rule. Additionally, there is
a variant of CDR computation used for glaucoma as-
sessment, the cup-to-disk area ratio (CDAR). It com-
pares the area of the OC region to that of the OD
instead of using the width and the height, as shown
in Fig. 3 (d). In our experiment, the probability of
having glaucoma is calculated based on the CDAR
scheme.
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Fig.3: Representations of VCDR, HCDR, ISNT,
and CDAR.

In this work, we integrated our successful previ-
ously proposed technique for optic disk localization
together with our previously developed technique for
segmentation of regions of an optic cup and an optic
disk which had already been tested experimentally to
work very well. For the application of glaucoma pre-
screening, when these two techniques are combined,
they considerably enhance the performance of glau-
coma prescreening.

2. LITERATURE REVIEW

This section describes the current state-of-the-art
methods for localization of the OD, and segmentation
of the OD and the OC. Most of the existing methods
have been tested using only standard datasets.

2.1 OD Localization

OD localization is the initial step in the process to
segment the OD and the OC. Lalonde et al. [11] pro-
posed pyramidal decomposition and template match-
ing to detect the OD. The method creates a pyra-
mid using a Haar-based discrete wavelet transform.
Multi-resolution image decomposition is used for pro-
viding the aggregated pyramidal candidate OD loca-
tions. Moreover, the Canny edge detector is applied
to identify edges, and thresholding is performed to

build a binary edge map for Hausdorff-based tem-
plate matching. The Hausdorff distance is computed
between two sets of edge points and a circular tem-
plate in order to find the OD contour. The loca-
tion with the smallest distance value is considered
to be the OD center. Sopharak et al. [12] utilized
a median and a contrast-limited adaptive histogram
equalization (CLAHE) filter on the intensity image.
The entropy value is calculated for each pixel in a
local region. The location with the highest entropy
value is assumed as the OD candidate. Besenczi et
al. [5] combined the works of Lalonde et al. [11]
and Sopharak et al. [12] to create a hybrid OD lo-
calization process for their work of glaucoma assess-
ment. To localize the OD, our previous method [1]
applies the optimal thresholding technique [13] and
adaptive histogram equalization. This method finds
the regions with the maximum intensity value and
merges the nearby regions to get an initial OD region.
All of the above methods depend on the features of
the OD such as shape, intensity, and entropy. The
feature-based methods may be unworkable when the
OD'’s physical appearance becomes abnormal or when
other pathological features (severe lesions) appear in
the image of an unhealthy retina.

Another subclass of the OD localization meth-
ods is based on information of the vascular network.
The most cited vessel-based technique, proposed by
Hoover and Goldbaum [14], creates a fuzzy segment.
An area is generated by voting scores and the cor-
responding pixels in that area are represented by the
fuzzy score of each vessel. Their method produces the
points of the strongest convergence as potential OD
candidates. Muangnak et al. [15] organized the ma-
jor vessels into clusters and characterized each point
of the image as the shortest distance to those clus-
ters. Their technique, called the vessel transform,
is used to detect the OD. Muangnak et al. [16] also
provided an improved hybrid OD detection algorithm
employing phase portrait analysis. The vessel-based
approaches yield high accuracy for OD localization
but they suffer from long computational times.

Ultrafast OD localization methods based on the
projection of the vascular networks and the gray level
intensities onto the horizontal and vertical axes, pro-
posed by Mahfouz and Fahmy [17][18], are approaches
which perform well for mobile technology. The tech-
nique is called feature projection (FP). FP assumes
that the area around the OD contains many vertical
vessels and only a few horizontal vessels. The sum-
mation of vertical vessel scores at each pixel repre-
sents the 1D signal obtained from projecting the ves-
sel features onto the vertical axis. The same process
is done horizontally to obtain the 1D signal projected
onto the horizontal axis. The largest difference be-
tween the vertical and horizontal vessel scores at each
pixel defines the horizontal location of the OD. Next,
the summation and projection of the image intensi-
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ties across the horizontal OD locations can be used to
find the maximum, which indicates the vertical loca-
tion of the OD. Inspired by FP, an extended feature
projection (EFP) was presented by Khaing et al. [19].
EFP considers all possible OD locations based on the
local maximum of vertical vessels and the local min-
imum of horizontal vessels, allowing a better chance
of getting the correct OD candidates.

2.2 OD Segmentation

The segmentation process of the OD and the OC
are important for glaucoma diagnosis for estimating
the CDR or CDAR. Almazroa et al. [7] compared the
segmentation methods of the disk and the cup, and
discussed the challenges faced by the existing algo-
rithms for the identification of glaucoma. Generally,
the segmentation techniques are based on the vessel
structure, intensity, and edge information.

Muangnak et al. [15-16] integrated their vessel
transform and portrait phase algorithms into scale-
space analysis so that they are being applied on sev-
eral resolution levels. Their scale-space segmentation
method performs effectively for low-quality images.
Joshi et al. [20] proposed a multi-stage strategy to
derive a reliable subset of vessel bends at the OD
boundary. Bends in a vessel are extracted based
on a region of support concept, which automatically
chooses the right scale for segmentation. The method
is followed by a spline fitting technique to produce
the accurate boundary. Cox and Wood [21] proposed
an edge detection technique to detect the OD edges.
The unconnected edges were then linked by a trac-
ing procedure. Karkuzhali and Manimegalai [22] ap-
plied an improved superpixel classification and adap-
tive mathematical morphology to obtain the OD con-
tour. The method combines neighboring pixels into
superpixels and classifies each pixel as the OD or non-
OD based on the histogram and center surrounding
statistics. Their work was reported as computational-
intelligent and compared against k-means and fuzzy
c-means.

Giraddi et al. [23] used P-tile thresholding to de-
rive the OD patch. The method assumes the OD
area containing the top five percent of the bright-
est pixels in the retinal images. Then, the too small
and too large areas are removed by using connected
component analysis to produce the initial patch of
OD. To segment the OD boundary, a gradient vector
flow (GVF) snake model is derived based on an exter-
nal force field considered as the diffusion of gradient
vectors of the edge map. The method enhances the
curve to provide a more accurate OD boundary. It
works well even in images which have other patholog-
ical structures as exudates. Nonetheless, the method
may fail in poor-quality images. Kusumandari et al.
[24] presented a comparison of GVF snakes and the
ellipse-fitting method in detecting the OD. They con-
cluded that the GVF gives better accuracy than the

ellipse-fitting method.

Khan et al. [25] performed local adaptive thresh-
olding and a region growing method to detect the
boundary of OD. The method creates an initial seed
by searching for the center of the localized OD. The
difference between the initial seed and an intensity
value of each pixel is measured using a similarity in-
dex. The pixel with the smallest difference is added to
the initial OD region. The process terminates when
the intensity difference between the region and a new
pixel is greater than the specified threshold value. Al-
though the region growing model can detect a weak
contour, the segmentation result is highly sensitive to
the initial contour.

Siddalingaswamy and Prabhu [13] employed itera-
tive thresholding followed by connected component
analysis to localize the OD center. The optimal
threshold value is calculated based on the intensity
value of the image. The OD regions are assumed to
be any region which contains pixels with the highest
intensity. To obtain the boundary of OD, the implicit
active contour model is applied. The energy func-
tional formula is minimized by the use of the gradient
and intensity information. Khaing et al. [19] also uti-
lized the active contour method to segment the OD
boundary. In general, the active contour approach
performs well in high resolution, and high contrast
images. However, it fails in some images which have
low-contrast between the OD and the background.

2.3 OC Segmentation

Many techniques segment the OC region using the
intensity since the OC appears as the brightest re-
gion located inside the OD. It is more challenging
than the OD segmentation due to presence of high-
density vessels around the cup boundary. The region
growing [26] and watershed transform method [27]
are superb techniques for segmentation of the OC.
To detect the cup boundary, Das et al. [26] inte-
grated the segmented results of OC from the region
growing and watershed transformation techniques us-
ing the logical-OR operation. A circular approxi-
mation is applied to fit the final OC contour. Al-
though the methods are simple and computationally
efficient, over-segmentation of the OC can occur when
the boundaries of the OD and the OC have low-
contrast. Karkuzhali and Manimegalai [22] compared
the improved superpixel classification (ISPC) tech-
nique with the adaptive mathematical morphology
(AMM) method. The AMM method detects the OC
rim using a sequence of erosion and dilation opera-
tions together with adaptive thresholding. They con-
cluded that ISPC outperformed the AMM method in
performance and efficiency of computing time. Joshi
et al. [20] and Wong et al. [28] made use of a new
approach based on bending of small vessels, called
kinks. The kinks are generated by the analysis of de-
tected vessel edges within the OD. Then, those kinks
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are used to detect the cup area. The kink method
performed well for images with clear and strong ves-
sels. It can fail to detect the OC for images with no
vessel bends.

Recently, a variant of GVF, Alternated Deflation-
Inflation Gradient Vector Flow snakes (ADI-GVF),
was proposed by Ruennak et al. [1] to segment the
boundaries of OD and OC for prescreening glaucoma.
The method iteratively alternates the processes of de-
flating and inflating the GVF until the region con-
verges. In that work, the initial seed of ADI-GVF is
obtained by using adaptive thresholding of intensity.
ADI-GVF usually gets satisfactory accuracies for the
segmentation of both the OD and OC, and for glau-
coma prescreening. However, it fails in some cases
that are rooted in incorrect initialization. The wrong
initialization in those cases is due to uneven lighting
in the retinal images acquired from a mobile phone.

In this work, we improve the accuracy of glau-
coma prescreening by improving OD and OC seg-
mentation. This is done by integrating the exclu-
sion method (EM) [32], which relies on retinal vessels
rather than (solely) intensity to improve OD local-
ization, with the ADI-GVF method. The ADI-GVF
method is applied based on the OD location obtained
from the EM to segment the OD and the OC.

2.4 Glaucoma Classification

The CDR and the ISNT rules are the commonly
used diagnosis parameters used for the indication of
glaucoma. To improve detection accuracy, Das et al.
[26] made use of a combined evaluation technique us-
ing the CDR and ISNT rules. The XOR operation is
applied to extract the NR region from the OD and
the OC areas. If there is thinning in the superior
and inferior rims, which means the violation of the
ISNT rule and the CDR exceeds the normal ratio,
it indicates the sign of glaucoma. They tested their
proposed methods on four standard datasets: high
resolution fundus dataset, MESSIDOR, DRIONS-DB
and DIARET-DBI1. They claimed a high sensitivity
of 92.59% for glaucoma detection.

Karkuzhali and Manimegalai [22] developed a
decision-support system based on three indicators:
the CDR, the ISNT rule, and distance between optic
disk center and optic nerve head (DOO). The im-
ages are classified as normal or glaucoma using ap-
propriate classifiers and statistical features such as
the CDR (<0.3, >0.3), the ISNT rule (low/high), and
the DOO (low/high). They reported the best classifi-
cation accuracy for standard datasets such as DRIVE,
DIARETDBO, DTARETDBI1, and DRISHTTI.

Machine learning techniques have also been ap-
plied for glaucoma detection. Chen et al. [29][30]
proposed feature learning in detection of glaucoma
based on a deep learning technique. Contextualizing
training strategy is utilized to generate a hierarchical
representation of the retinal images for glaucoma clas-

sification. The method extracts the OD area by using
the template matching technique. Then, each image
containing the segmented OD area is down sampled
and used as the input to their proposed convolutional
neural network (CNN) to get the cup region. They
tested the method on the ORIGA and SCES datasets
and evaluated the accuracy of detection using the
area under curve (AUC). They obtained glaucoma de-
tection accuracy of up to 89.8%. Li et al. [31] recently
proposed a deep learning method named AG-CNN
to detect glaucoma and to localize the pathological
area. The model comprises the subnets of attention
prediction, pathological area localization, and glau-
coma classification. Based upon the predicted atten-
tion maps, glaucoma detection is done using the deep
features provided by the visualized maps of patho-
logical areas. They tested their method on the LAG
and RIM-ONE datasets and evaluated their method
using AUC. Their proposed AG-CNN outperforms
other comparative glaucoma detection methods and
achieved up to 97.5% accuracy on the LAG database.

In this work, we use the CDAR scheme for glau-
coma classification, thus the OD and OC segmenta-
tion results are important. Since deviations of OD
and OC areas can mislead the estimation of glau-
coma, more robust and effective segmentation algo-
rithms are required to generate accurate ratios. All
of the state-of-the-art methods are designated for the
standard retinal datasets. Thus, there is a lack of
an effective glaucoma assessment technique for poor
quality retinal images acquired from mobile cameras.

3. METHODOLOGY

This work presents a method for pre-screening
glaucoma by using a vessel-based OD detection tech-
nique (EM) and ADI-GVF snakes to segment the OD
and the OC. The overall process of detecting glau-
coma is depicted in Fig. 4. To localize the OD, the
EM is applied based on the extracted vessels. The
ADI-GVF method takes the location returned by the
EM to segment the boundaries of the OD and the
OC. The images are then classified as glaucomatous
or non-glaucomatous based on the OD and OC re-
gions. The details of each step are explained next.

Ret|.nal fundus 0D Localization = 0D .
images Segmentation

|

Glaucoma ocC
Classification Segmentation

Fig.4: Flowchart of the proposed method.
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3.1 OD Localization using EM

The green channel of the input image is used to
create a grayscale image, as shown in (a) from Fig.
5. The black-top-hat transformation is applied using
the cross-shaped structuring element with the size of
the maximum thickness of the main retinal vessels.
Then, the Otsu thresholding technique is performed
to create a binary vessel image (Fig. 5 (b)). The
main vertical and horizontal vessel images character-
ized the skeleton of the vascular network essential for
the EM localization algorithm are constructed from
the vessel image. We extract the vertical vessel image
(Fig. 5 (c)) by performing the morphological open-
ing operation with a linear structuring element, with
the size of the maximum vessel thickness. Next, we
extract the horizontal vessel image (Fig. 5 (d)) in a
similar way:.

(b) () (d)

Fig.5:
image, (b) vessel image, (c) vertical vessel image, and
(d) horizontal vessel image.

Process of vessel extraction, (a) grayscale

The exclusion method (EM) [32] generalizes the
idea proposed by Mahfouz et al. [17][18] that the
area around the OD has a low frequency of horizontal
vessels and a high frequency of vertical vessels. The
EM model is simple and fast. Importantly, the EM is
less dependent on the appearance of the OD region.
Furthermore, the EM can still work efficiently even
when the OD deteriorates, such as changing the size
and shape of the image, or when the image contains
other lesions such as exudates or hemorrhages.

First, the EM considers all regions along the y-axis
that have a frequency function of horizontal vessel
pixels that is less than the average of the frequency
function. In a similar manner for the x-location, it
considers all regions along the x-axis that have a fre-
quency function of vertical vessel pixels that is greater
than the average of the frequency function.

Equations (1) and (2) show the mathematical for-
mulas of the OD candidate selection by the EM.

Yioc = {y|HV(y) < W} (1)

Tioe = {2|VV(2) < VV} (2)

HV is a frequency function of horizontal vessel pixels
and HV is the average of the function HV in the range
of y. VV is a frequency function of vertical vessel
pixels and V'V is the average of the function VV in
the domain of x. The OD candidates’ locations are

all (x, y) coordinates such that x € zloc and y € yloc.
The process is illustrated in Fig. 6.

(c) (d)

Fig.6: Process of EM: (a) The HV frequency func-
tion of the horizontal vessel image shown in the blue
graph, (b) The V'V frequency function of the vertical
vessel image shown in the green graph, (¢) OD candi-
dates from HV and V'V, and (d) A final OD location,
obtained from the decision tree.

Since the EM can produce many OD candidates,
a decision tree is used to classify a final OD location.
We generate a circular region centered at each OD
candidate where the radius equals one-twelfth of the
width of the image. Then, we extract the following
features: number of vessels, area of vessels, vessel
thickness, and brightness within the circular region.
These features are used to build the decision tree. If
there is more than one OD location obtained from
the classification process, the decision tree selects the
OD location that has the highest number of vertical
vessels.

3.2 OD and OC Segmentation

After getting an initial OD location from EM, the
regions of OD and OC are detected by applying our
previously proposed method, Alternated Deflation-
Inflation Gradient Vector Flow model (ADI-GVF)
[1]. The ADI-GVF model is a variant of the tradi-
tional Gradient Vector Flow (GVF). The traditional
GVF uses the energy function to find the object
boundary. The energy function is the combination of
the internal and external forces. It is mathematically
defined in Equations (3-8). Firstly, an initial curve or
a snake is created. The curve is deformed towards the
boundary of the object by the energy function. Then
it stops at the point of the minimum energy function.

Let v(s) = [z(s),y(s)] be an initial curve where
s € [0,1]. The energy function is described as
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1
Esnake = / Eint + Eemtds (3)
0
Eint = FEeastic + Ebending
1
= 5(0!|’l/(5)|2 + Bl (s)]%) (4)

where Fg,qre and F;,: represent the energy function
of the snake and the internal energy which determines
the smoothness of the curve. « and 3 indicate the
weighting parameters that are used to define the elas-
ticity and rigidity levels of a snake, respectively. v'(s)
and v”(s) denote the first and the second derivatives
of v(s) with respect to s.

let ¢ = g(x) be a GVF field, defined as a vector
field.

Eext = EGVF + EBalloon (5)

EGVF://,u|Vg|2+|Vf|2|g—V|2dxdy (6)

f@.y) = [V (Go(z,y) = I(z,y))]* (7)

EBalloon =kn (8)

where F..t, Eqvr and Epgjioon represent the exter-
nal energy containing the GVF and balloon forces,
the GVF force which is generated from the diffusion
of the gradient vector of the edge map generated from
the image, and the balloon forces that are used to
perform the inflation or deflation of the curve, re-
spectively. The edge mapping function f(z,y) pro-
duces the edge map f -G, (x,y) and I(z,y) represent
a Gaussian function with standard deviation o and
the gray-scale input image. V denotes the gradient
operator, u denotes a smoothness regularization pa-
rameter, k denotes the force strength, and n denotes
the unit vector normal to the curve at v(s). The sign
of k in Eq. (8) controls the curve direction of the
GVF model. The inflation process will be performed
when k is positive. Otherwise, the deflation process
will be performed.

The ADI-GVF model was proposed to overcome
the unclear boundary between the OD and the OC,
especially in a mobile phone retinal image. It works
by repeatedly alternating the processes of deflating
and inflating the GVF snake until the region con-
verges. The ADI-GVF algorithm [1] is shown in Fig.
7.

Fig. 8 shows how the ADI-GVF snakes work iter-
atively for OD segmentation. Fig. 9 illustrates the
similar way that ADI-GVF snakes work for OC seg-
mentation.

Algorithm: ADI-GVF

Input: IC = initial contour
Output: C

delta = a large number
t = 0.2*Area(IC)
deflat = true

wWKN =

4 while delta > t

5 if deflat == true

6 C = GVF applied to IC with a deflation force
7 else

8 C = GVF applied to IC with an inflation force
9 endif

10 t = 0.2*Area(IC)

11 delta = abs(Area(C) - Area(IC))
12 IC=¢C

13 deflat = !deflat

14 endwhile

Fig.7: ADI-GVF algorithm [1].

(d)

Fig.8: lllustration of OD segmentation using ADI-
GVF, (a) The curve is initially created as a circle
with a radius greater than one-sizth of the retinal
width and centered at the OD location, obtained from
the EM method, (b) After the first iteration, (c) Af-
ter the second iteration, and (d) the final OD contour
after ADI-GVF finishes all iterations.

The ADI-GVF method may not work well for an
OC which sometimes has a concave shape. To solve
this problem, histogram equalization is applied to
cluster only the high intensity pixels. Fig. 10 shows
the OC segmentation results before and after apply-
ing the refinement step.
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Fig.9: OC segmentation using ADI-GVF, blue dot-
ted contour - ADI-GVF and the red solid - ground
truth, (a) Initial contour set to the OD boundary, (b)
After the first iteration, (c) After the second itera-
tion, and (d) the final OC contour after ADI-GVF
finishes all iterations.

Before After

Fig.10: Correction of OC boundary, before and after
the refinement, red solid line - the ground truth and
dashed line - the boundary of the OC detected by ADI-
GVF.

3.3 Glaucoma Classification

There have been various attempts to find a useful
CDR cutoff value to classify ODs as the glaucoma-
tous or normal. The classification cutoff based on
the CDR formula is suggested by Marjanovic [33], as
follows. To detect the signs of glaucoma, the cutoff
difference is set to be between 0.3 and 0.5. A cutoff
of 0.3 indicates the mild stage of glaucoma, whereas
0.5 is used to signify a moderate stage. Several stud-
ies show that a cutoff of 0.5 gives high accuracy of
glaucoma detection. Hence, the recommended cutoff
for more accurate classification in the CDR formula
is 0.5. A CDR cutoff 0.5 is equal to a CDAR cutoff
of 0.3 which is used in our experiment. Equation 9
shows the derivation of the 0.3 (cutoff) of the CDR
formula.

Area(OC)

CDAR = Area(OD)

= (CDR)? < 05> < 0.3 (9)

In this work, a cutoff of 0.3 is used to separate the
glaucomatous and normal images.

4. EXPERIMENT, RESULTS & DISCUS-
SION

In this experiment, we evaluated our proposed
method on three datasets. The primary dataset is
the retinal dataset which was acquired with a mo-
bile phone attached to a retinal wearable lens. It
is comprised of 49 healthy images and 45 glauco-
matous images. The fundus images were captured
by an iPhone 6 mounted with a volk iNview camera
[34] from patients in the Eye Center of Thammasat
Chalermprakiat hospital. Ground truth of regions of
the optic cup and the optic disk for the positive and
the negative cases of glaucoma were also provided by
the ophthalmologists from the Eye Center of Tham-
masat Chalermprakiat hospital. The dimensions of
the images are 1,196 x 1,196 in JPG format with a 50-
degree field of view. Two other datasets are available
publicly for glaucoma assessment. First, the Drishti-
GS dataset has 101 retinal images, consisting of 31
normal images and 70 glaucomatous images. It was
collected from patients between 40-80 years of age by
the Aravind eye hospital [35]. The images were cap-
tured centered at the OD with 30-degree field of view.
The High-Resolution Fundus (HFS) dataset was pub-
licly provided by a collaborative research group [36].
It contains 15 normal images and 15 glaucomatous
images. The dimensions of images in the Drishti-GS
and HFS datasets are set to 875 x 1024 and 584 x
876 respectively.

Our system is implemented using MATLAB and
run on a MacBook Pro (@2.3 GHz, Dual-Core In-
tel Core i5). The quality of the mobile phone reti-
nal images, in comparison to those obtained from the
slit-lamp standard machine, is normally poor. For in-
stance, an image may have low contrast, faint colors
of the optic disk and optic cup, blurry edges, and an
uneven background. It may show an incomplete OD
and usually has a burst of external light in the retinal
areas or shadow. Those problems are depicted in Fig.
11.

There are three main tasks in our algorithm for
glaucoma detection: OD localization, OD detection,
and OC detection. We evaluate the performance of
each task separately and report the example results
from each step. The results are evaluated using the
annotated ground truths from the ophthalmologist.

4.1 OD Localization

For the OD localization, the accuracy of the EM
is compared against the Feature Projection (FP)
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(a) (b)

Fig.11: Ezamples of poor retinal images.

method proposed by Mahfouz and Fahmy [18], the
Extended Feature Projection (EFP) method [19], and
the adaptive thresholding method [1]. To evaluate
the OD localization, the location is considered “cor-
rect” if it locates the OD inside the ground truth
contour of the OD. Fig. 12 shows the qualitative
results of the comparative methods obtained from
the mobile phone dataset. The black contour rep-
resents the ground truth of the OD boundary. The
blue cross symbol represents the result obtained from
each method.

Table 1 shows the information of each dataset and
a comparison of the accuracies of OD localization
resulted by the above methods. The EM method
works correctly in all cases, and thus obtains 100%
accuracy for all datasets. Overall, EFP shows better
performance than FP. The adaptive thresholding has
the lowest accuracy of 93.61% in the mobile phone
dataset, 97% in the Drishti-GS dataset, and 86.67%
in the HFS dataset. The unsuccessful cases of adap-
tive thresholding are due to uneven illumination. The
unsuccessful cases of FP and EFP are due to an in-
complete vessel network and a faint OD in a brighter
background.

Table 1: Descriptions of each dataset and accuracy
comparison of OD Localization.

Device OD Localization Methods
Datasets and Adaptive
Total Images EM EFP FP | rhreshol ding
Mobile | iPhone Camera
Phone (94) 100.00 98.89 95.74 93.61
o Standard
Drishti- | g ndus Camera | 100.00 | 100.00 | 99.00 97.00
GS
(101)
Canon CR-1
HFS Fundus Camera | 100.00 100.00 90.00 86.67
(30)

4.2 OD and OC Segmentation

The OD and OC segmentations are done by using
ADI-GVF snakes with the initial contour set to a cir-
cle that is centered at the OD returned by EM, with
a radius equal to one-third of the width of the retina.
We compared the segmentation results against three
state-ot-the-art methods: region growing [26], water-
shed transformation [27], and traditional GVF [24].
The performance is evaluated by calculating the pre-
cision, recall, and F-score. The precision estimates
the correctness of the algorithm’s segmented region.
The recall estimates the success rate of getting the
ground truth region. The F-score measures the over-
all performance of the algorithm. The formulas are

given in Equations (10) (11) and (12).
TP
Precision = <1—'_P—|—F1_P> (10)
TP
== 11
Reca (TP+FN> (11)

EM FP

Adaptive Thresholding

(a) Case 1

(b) Case 2

Fig.12: Selected cases of OD localization.
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. I
Fomeasure — 2 X (preczszon X reca ) (12)

precision + recall

TP, FP, TN, and FN are the numbers of true positive,
false positive, true negative, and false negative pixels,
respectively.

Fig. 13 illustrates the OD segmentation results for
the mobile phone dataset from all compared methods.
The ADI-GVF significantly outperforms other tech-
niques. Under-segmentation often occurs when using
region growing and traditional GVF. Those methods
normally segment only the OC region, which is the
brightest area in the OD. Watershed transformation
often encounters an over-segmentation problem due
to the low contrast between the retinal background
and the OD.

Fig. 14 illustrates the OC segmentation results
of the mobile phone dataset. ADI-GVF outperforms
the other compared techniques. Region growing suf-
fers from an over-segmentation problem. Watershed
transformation and the traditional GVF have both
over-segmentation and under-segmentation problems.

Table 2 shows the quantitative performance of
the OD and OC segmentation in the mobile phone
dataset. The ADI-GVF method achieves the high-
est recall and F-measure for OD segmentation, com-
pared to the other approaches. It underperforms the
traditional GVF about 5.14% in terms of precision.
However, the ADI-GVF significantly outperforms all
other compared methods for OC segmentation. The
recall of segmentation of the ADI-GVF is as high as
88.05% for the OD and 82.27% for the OC. For pre-
cision, the ADI-GVF performs as high as 80.04% and
77.74% for the OD and OC, respectively.

Table 2: Comparison of OD and OC segmentation
accuracies for the Mobile Phone Dataset using ADI-
GVF, region growing, watershed transformation, and
traditional GVF.

oD oC
Methods Recall | Precision s Recall | Precision =
Measure Measure
ADLGVF | 8850 | 8004 | 84.06 | 8227 | 7774 | 79.94
Region 68.50 | 7859 7320 | 7538 | 65.19 69.92
Growing
Watershed | g778 |  67.89 76.56 | 60.03 | 73.51 66.09
Transformation
GVF 7503 | 85.18 | 79.78 | 79.43 | 7583 | 7759

Tables 3 and 4 show the quantitative performances
of the OD and OC segmentation obtained from the
Drishti-GS and HFS datasets, respectively. For the
Drishti-GS dataset, the ADI-GVF underperforms the
traditional GVF in terms of recall for both OD and
OC segmentation, and it underperforms the region
growing in terms of precision for OD segmentation.
However, GVF and the region growing suffer from
under-segmentation. Most cases of watershed trans-
formation still encounter over-segmentation in the

ADI-GVF

Region Growing

(a) Case 1

ADI-GVF Region Growing

Watershed

Transformaﬁgn ove

(b) Case 2

Fig.13: Ezxzample results of OD Segmentation for the
Mobile Phone Dataset from ADI-GVF, region grow-
ing, watershed transformation, and traditional GVF
for two different cases. The black contour shows the
ground truth of the OD boundary. The dotted contour
represents the results from each approach.

OD and OC. The overall performance of the ADI-
GVF is the best. It achieves the highest F-score rate
of 81.57% for the OD and 82.05% for the OC. The
results of the OD and OC segmentation from the
Drishti-GS dataset are shown in Fig.15. and Fig.17,
respectively.

For the HF'S dataset, the most images have uneven
illumination around the OD boundary. All methods
encounter an over-segmentation. However, ADI-GVF
still provides the highest precision rate. The water-
shed transformation yields the lowest precision rate
of 58.27%. Fig. 16 and Fig. 18 show the results of
OD and OC segmentation for the HFS dataset.

In clinical applications, over-segmentation of
the OD causes worse consequences than under-
segmentation because it can yield a false negative.
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ADI-GVF Region Growing

Watershed
Transformation

(a) Case 1

Region Growing

LI

Watershed
Transformation

(b) Case 2

Fig.14: FEzample of results of OC Segmentation
for the Mobile Phone Dataset from ADI-GVF, re-
gion growing, watershed transformation, and tradi-
tional GVF for two different cases. The ground truth
is drawn with the black contour. The dotted contour
represents the results from each approach.

Table 3: Comparison of OD and OC segmentation
accuracies of Drishti-GS Dataset performed by ADI-
GVF, region growing, watershed transformation, and
traditional GVF.

oD ocC
Methods Recall | Precision ki Recall | Precision &2
Measure Measure
ADI-GVF 78.97 84.35 81.57 81.10 83.03 82.05
Region
Growing 59.39 91.98 72.18 77.52 79.04 78.27
Watershed
Transformation | 67.32 88.02 76.29 53.87 75.94 63.03
GVF 8981 | 6051 | 7231 | 9205| 4691 | 62.15

Table 4: Comparison of OD and OC segmentation
accuracies of HFS Dataset performed by ADI-GVF,
region growing, watershed transformation, and tradi-
tional GVF.

oD ocC
iethods Recall | Precision i Recall | Precision o
Measure Measure
ADI-GVF 85.28 7257 78.41 86.73 75.01 80.45
Region
Growing 87.51 69.97 7776 | 84.40 67.91 75.26
Watershed
Transformation | 83.95 63.91 72.57 91.43 47.54 62.55
GVF 7223 | 5827 | 6450 | 9278 | s0.62 | 6550
Region Growing

‘Watershed

Transformation GVF

Fig.15: FExample of results of OD Segmentation in
Drishti-GS Dataset from ADI-GVF, region growing,
watershed transformation, and traditional GVF. The
ground truth is drawn with the black contour.

ADI-GVF Region Growing

Watershed

Transformation

Fig.16: FExample of results of OD Segmentation in
HFS Dataset from ADI-GVF, region growing, wa-
tershed transformation, and traditional GVF. The
ground truth is drawn with the black contour.
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ADI-GVF Region Growing

Watershed

Transformation GVF

Fig.17: Example of results of OC Segmentation in
Drishti-GS Dataset from ADI-GVF, region growing,
watershed transformation, and traditional GVF. The
ground truth is drawn with the black contour.

ADI-GVF Region Growing

Watershed
Transformation

Fig.18: FExzample of results of OC Segmentation in
HFS Dataset from ADI-GVF, region growing, wa-
tershed transformation, and traditional GVF. The
ground truth is drawn with the black contour.

A false negative means that a (true) glaucoma pa-
tient does not meet an ophthalmologist. Overall, the
ADI-GVF performs the best for a pre-screening ap-
plication.

4.3 Glaucoma Classification

The performance of pre-screening for glaucoma is
evaluated in terms of the true positive rate (TPR),
the true negative rate (TNR), the false omission rate
(FOR), and the false discovery rate (FDR). The for-
mulas for these are shown in Equations (13), (14),
(15), and (16), respectively. A comparison is shown
in Table 4.

) (14
o ()
) (16)

TP is the number of glaucoma images predicted cor-
rectly as glaucoma. TN is the number of healthy
images predicted correctly as healthy images. FN is
the number of glaucomatous images which are classi-
fied as healthy images. FP is the number of healthy
images which are classified as glaucomatous images.
Note that the TPR and TNR are also known as sen-
sitivity and specificity. In clinical application, FOR
is the most crucial as this can cause the most trouble
when glaucomatous patients are predicted as healthy
and consequently do not get treatment.

Table 5 represents the confusion matrix of the case
prediction of glaucoma from our algorithm for the
mobile phone dataset. There are 42 cases out of 45
classified correctly as glaucoma, and 46 cases out of
49 classified correctly as healthy. Our algorithm mis-
classified 3 glaucoma cases as healthy and 3 healthy
cases as glaucoma. Only 6 images are classified in-
correctly in this experiment.

Table 5: Confusion Matriz of the prediction cases.

= Predicted Class

E’ Positive Negative

= Positive 42 3

[

&} Negative 3 46
(49

Table 6 shows the performance for detecting glau-
coma for the mobile phone dataset. Our proposed
method achieves high sensitivity and specificity. The
algorithm can classify 42 glaucomatous images and 46
healthy images correctly, resulting in a sensitivity of
93.33% and a specificity of 93.87%. In addition, the
proposed method yields the lowest false omission rate
(FOR) and false discovery rate (FDR) of 6.66% and
6.12%, respectively. For the misclassification rate, the
false omission rate is significant in a clinical environ-
ment. Region growing and watershed transformation
are worst choices for clinical assessment. We can con-
clude that our proposed method is the best for pre-
screening glaucoma. Moreover, this work improves
the TPR, TNR, FOR, and FDR of our previous work
of glaucoma prescreening that uses ADI-GVF for OD
and OC segmentation and adaptive thresholding for
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OD initialization [1] by 4.45%, 4.08%, 4.08%, and
4.44%, respectively.

Table 6: Comparison of the glaucoma detection ac-
curacy for the mobile phone dataset.

Accuracy of glaucoma detection, %
Methods

TPR TNR FOR FDR
ADI-GVF 93.33 93.87 6.66 6.12
Region growing | 80.00 71.42 28.00 20.45
Wageshed | syag | 391 1666 | 28.00

transformation
GVF 88.88 75.51 23.07 9.75

Tables 7 and 8 show the evaluation of glaucoma
detection for the Drishi-GS and HFS datasets. Our
method also yields the highest true positive rate of
95.71% and lowest false omission rate of 10.71% for
the Drishi-GS dataset. As mentioned earlier, region
growing and watershed transformation suffer an over-
segmentation in the OC. That causes the high false
discovery rate for the HF'S dataset. From all datasets,
it can be concluded that our method can be used in
various kinds of retinal images, not only for the mo-
bile phone dataset. In cases of insufficient quality
images, ADI-GVF can work efficiently and provide
higher performance than the other techniques. Addi-
tionally, the retinal images of the public datasets nor-
mally contain strong and clear blood vessel. EM can
localize the OD centers correctly 100% of the time.

Table 7: Comparison of the glaucoma detection ac-
curacy for the Drishti-GS dataset.

Accuracy of glaucoma detection, %
Methods

TPR TNR FOR FDR
ADI-GVF 95.71 80.64 10.71 8.21
Region Growing | 88.57 61.29 29.62 16.21
Watershed 97.14 51.61 11.11 18.07

Transformation
GVF 92.85 54.83 22.72 17.72

Table 8: Comparison of the glaucoma detection ac-
curacy for the HFS dataset.

Accuracy of glaucoma detection, %
Methods

TPR TNR FOR FDR
ADI-GVF 80.00 86.66 18.75 14.28
Region Growing | 66.66 26.66 5555 52.38
Watershed 73.33 26.66 50.00 50.00

Transformation
GVF 73.33 86.66 23.52 15.38

There are 6 images in the mobile phone dataset
that the algorithm classified images incorrectly. The
unsuccessful cases from all datasets are caused by

two main issues: unsuccessful OC segmentation and
unsuccessful OD localization. For unsuccessful OC
segmentation, over-segmentation in a healthy case is
usually the cause. The ADI-GVF algorithm over-
segments the cup region because ranges of intensity of
the OD and the OC are too close together. Thus, this
causes the CDAR to be higher than the actual rate,
resulting in a wrong prediction. The second cause is
the under-segmentation of the OC in glaucoma cases
due to a large region of blood vessels within the OC.
The OC region is then segmented with a smaller size
than the actual size. In some cases, the OC inten-
sity is not uniform. Thus, when intensity histogram
equalization is used, it can cause under-segmentation
of the OC. In those cases, the system classifies those
images as healthy. Examples of those problems in the
OC are shown in Fig. 19.

Under-Segmentation in OC

(© (d)
Over-Segmentation in OC

Fig.19: FExamples of unsuccessful OC segmentation.
The black solid contour is the ground truth. The red
dotted contour is the segmented OC from our algo-
rithm.

The last issue is a result of the OD locations. Fig.
20 illustrates an example of this problem. The blue
cross symbols are the OD locations returned by the
EM. The OD is located close to the rim of the OD,
and the ADI-GVF method uses a circle with a radius
equal to one third of the width of the retina as the
initial contour. Thus, it starts with an initial con-
tour that doesn’t cover the OD region, resulting in
a wrong final OD region. In those cases, it reports
an incorrect prediction. We have tried to enlarge the
initial curve to ensure that the curve covers the OD
regions. However, we still cannot completely solve
this problem. When the initial curve is larger, our
method still does not work well due to uneven illumi-
nation of the background. For all of those problems,
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we plan to investigate ways to solve and improve our
work in the future.

Unsuccessful OD segmentation

Fig.20: FEzxamples of unsuccessful OD segmentation
due to an OD location too close to the rim of the OD.

5. CONCLUSION

In this work, ADI-GVF snakes for image segmen-
tation is combined with the exclusion method (EM)
for localizing the OD. This was to enhance our pre-
vious work [1] for pre-screening glaucoma by using
mobile phone retinal images. The EM works well for
OD localization. It achieves 100% accuracy. Overall,
ADI-GVF with EM yields great performance. For
the mobile phone dataset, the ADI-GVF with the
EM for OD localization is better than other segmen-
tation techniques, including our previous work. The
F-measures for OD and OC segmentation are 84.06%
and 79.94%, respectively. The performance of glau-
coma detection using our methods has the best TPR
and TNR, which are 93.33% and 93.87%, respectively.
Our new method has the lowest FOR rate of less than
6.66%. The TPR and TNR of glaucoma prescreening
increase by 4.45% and 4.08% and the FOR and FDR
decreases by 4.08% and 4.44% compared to those of
our previous work [1] for the mobile phone dataset.

The proposed method achieves the best F-measure
rates of 81.57% and 78.41% for the OD segmentation,
and 82.05% and 80.45% for the OC segmentation us-
ing the standard datasets Drishi-GS and HFS respec-
tively. In addition, it shows the best performance of
glaucoma assessment for these datasets, obtaining the
highest TPR, the highest TNR, the lowest FPR, and
the lowest FOR rates. Our work has proven to work
well for the standard datasets.

Our work could be improved and extended to seg-
ment other regions in retinal images such as fovea,
macula, or exudates. Thus, it could be helpful
in related ophthalmological applications. Our sub-
algorithm, for example, ADI-GVF for segmentation
of the optic disk and cup, can also be applied gen-
erally in the research area of object segmentation in
a low contrast environment. The concept of EM for
OD localization can be applied generally in the field of
object localization based on pattern recognition from

an object’s edges.
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