
162 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

Boundary Bit: Architectural Bound Checking
for Buffer-Overflow Protection

Sirisara Chiamwongpaet1 and Krerk Piromsopa2 , Members

ABSTRACT

We propose Boundary Bit, a new architectural
bound-checking approach that detects and prevents
buffer-overflow attacks. Boundary Bit extends an ar-
chitecture by associating a bit to each memory en-
try. Software can set a (boundary) bit to delimit
an object. On each memory access, the hardware
will dynamically validate the object’s bound using
the boundary bit. With minimal hints from the com-
piler, our architectural design eliminates most (if not
all) types of buffer-overflow attacks. These include at-
tacks on non-control data (variables and arguments)
and array-indexing errors. We evaluated the perfor-
mance of Boundary Bit using simulation, and the
results show that the majority of performance over-
heads lies in bit scanning operations. To mitigate per-
formance overhead, we introduce a hardware bitmap
to act as a cache. The results from our simulation
show that the hardware bitmap can absorb most of
the overhead from bit scanning, which in the best-
case scenario was 30 times faster than the version
that does not utilize a bitmap cache.

Keywords: Buffer overflow, Invasive software, Se-
curity kernels, Security and protection, System ar-
chitectures, Unauthorized access

1. INTRODUCTION

Since the creation of the infamous MORRIS worm
[35] in 1988, buffer-overflow vulnerabilities have been
used by malicious worms and viruses to exploit nu-
merous computer systems. Though it is possible to
write secure code, no program is guaranteed to be free
from bugs. There have been a lot of buffer-overflow
vulnerabilities continuously detected and reported.
For example, even the well-known operating system’s
libraries still suffer from buffer-overflow attacks [10].
Moreover, the well-known WannaCry ransomware at-
tack in May 2017 exploits a buffer-overflow vulnera-
bility in the most Microsoft Windows versions, in-
cluding Microsoft Windows 10 SP1 [22].

Many solutions have been proposed [13,31]. How-
ever, they have mostly focused on control data (e.g.

Manuscript received on August 28, 2019 ; revised on January
15, 2020.

Final manuscript received on January 16, 2020.
1,2 The authors are with the Department of Computer Engi-

neering, Chulalongkorn University, Bangkok 10330, Thailand,
E-mail: sirisara.c@gmail.com and krerk.p@chula.ac.th

DOI: 10.37936/ecti-cit.2020142.212338

return addresses and function pointers). Few of them
can prevent buffer overflow on arbitrary data (e.g.
pointers, arrays and function arguments). We be-
lieve the existence of buffer overflow is a result of an
insufficient foundation at the architectural level.

1.1 Concept

Boundary Bit provides bound checking at the ar-
chitectural level by ensuring that transferred data
cannot exceed the allocated capacity of buffers.
While many hardware solutions (such as segmenta-
tion [25] and tag architecture [12]) exist, some of them
(e.g. segmentation) are, however, not common to all
architectures. In supported systems, the mechanism
is usually ignored in favor of performance or compati-
bility. We believe a light-weight architectural solution
is the key to the success of buffer-overflow protection.

To enforce bound checking without sacrificing per-
formance, Boundary Bit associates an extra bit with
each memory entry. This bit is similar to those of
Secure Bit’s [27] (as well as tag architecture [12]). It
can do everything Secure Bit does. In addition, it can
handle another whole class of attacks that Secure Bit
cannot.

2. BACKGROUND: BUFFER-OVERFLOW
ATTACKS

A buffer-overflow attack can be described as an at-
tack in which a buffer is overflowed beyond its bounds
into another buffer with an intent to cause malicious
behavior in a program [4,29,40].

2.1 Classification by Attack Locations

• Stack Overflows These attacks are conducted by
copying data larger than the size of an allocated
buffer in the stack. As a result, the overflowed data
will overwrite the return address. The eventual re-
turn instruction at the end of a function will return
to execute attackers’ code instead of the normal
process flow. However, this stack area may con-
tain control data and non-control data. Although
the return address is the major target, this type of
overflow attack can occur arbitrarily.

• Heap Overflows Similarly to stack-overflow at-
tacks, heap-overflow attacks can modify data by
overwriting adjacent memory. The heap memory
stores function pointers and dynamically-allocated
data. Such allocation is done by calling the “mal-

Boundary Bit: Architectural Bound Checking for Buffer-Overflow Protection 163

loc” function in C language (or a new operation in
modern object-oriented programming languages).
For example, a function pointer can be changed to
point to attacker’s code.

• Array Indexing Errors This type of attack is
different from the other types in that it is a result of
indexing beyond the boundary of an array. Thus,
the attackers can theoretically write to arbitrary
memory locations.

2.2 Classification Using Characteristics

There is another classification method based on
characteristics, defined by [2], with some precondi-
tions as follows.
• Direct Executable The target is to change the

control flow of the process. This class is comparable
to Stack overflows on control data. (dir:exec =

{len:buff, con:addr, con:inst, mod:radd,

jmp:stack, exe:stack}
• Indirect Executable The difference from “Direct

Executable” is that the process state information,
such as a return address, is not altered, but a func-
tion pointer is indirectly altered instead. When the
function pointer is invoked, attacker’s code will be
executed. This class is comparable to Heap over-
flows on control data. ind:exec = {len:buff,
con:addr, mod:fptr, jmp:heap, exe:heap}

• Direct Data Buffer-overflow attacks are differ-
ent from executable buffer-overflow attacks in that
no new instructions (attacker’s code) are exe-
cuted. Direct data buffer-overflow attacks modify
some data which make the execution path change.
This class is comparable to the Stack overflows
on non-control data. dir:data = {len:buff,
con:ctrl, mod:cvar, flow:ctrl}

• Indirect Data These attacks are similar to the
direct data overflows. The target of indirect
data buffer-overflow attacks is a pointer refer-
ring to the data that can change the execution
path. This class is comparable to Heap overflows
on non-control data. ind:data = {len:buff,
con:addr, mod:cptr, flow:ctrl}

2.3 Summary of buffer-overflow attack types

From the patterns of buffer-overflow characteris-
tics and the taxonomy of buffer-overflow solutions,
the relationships between characteristics and existing
solutions can be summarized as shown in Figure 1.
From the table, the symbol Xmeans this solution can
prevent this characteristic. The symbol “?” means
the solution may prevent this characteristic (depend-
ing on the implementation).

The protection solutions in the table are as fol-
lows: Segmentation [25], Integer Analysis to De-
termine Buffer Overflow [39], STOBO [14], Type-
Assisted Buffer Overflow Detection [19], C Range Er-
ror Detector (CRED) [32], Jump Pointer [36], Stack-
Guard [7], MemGuard [7], PointGuard [6], Smash-

Guard [6], Minezone RAD [37], Read-only RAD [37],
Efficient Dynamic Taint Analysis Using Multicore
Machines [3], HeapDefender [20], Secure Bit [27], and
Secure Canary Word [29] [4]. For comparison, we also
include our proposed solution, Boundary Bit, in this
table.

In conclusion, a buffer-overflow protection sum-
mary table with types of buffer-overflow attacks is
provided as Figure 2. The symbol Xmeans this so-
lution can prevent this attack type. The symbol “?”
means this solution may prevent this attack type.

However, the tables show only types of buffer-
overflow attacks that can be prevented without con-
sidering the performance or the limitations.

3. BOUNDARY BIT

Boundary Bit [5] is a hardware-assisted runtime
bound-checking method that aims to prevent buffer-
overflow attacks on both control and non-control
data.

To enforce bound checking, Boundary Bit asso-
ciates an extra bit with each byte of memory. These
bits are similar to those of Secure Bit’s [27], the Tag
architecture [12], as well as the bound information
used by various software-based bound-checking ap-
proaches [1,23,24], and are used to delimit boundaries
of buffers. At runtime, these extra bits are used to
check whether an access to a buffer is out-of-bounds.
If an out-of-bounds access is detected, the offending
program is terminated. Specifically, given a buffer
at address a, if an attempt is made to access data
at index i, Boundary Bit will scan bits from the ad-
dress min(a,a+i) to max(a,a+i) - 1 in order to de-
termine whether an access is within the bounds. If,
during the scan, Boundary Bit encounters a set bit
(which signifies an end of the buffer), then it will ter-
minate the program with an error. In case the ending
address (max(a,a+i) -1) is less than the beginning
address (max(a,a+i)), no scanning is required.

The following examples further illustrate how
Boundary Bit works in practice.

3.1 Stack-Overflow Detection

The following function contains a potential buffer-
overflow bug caused by the usage of the unsafe
strcpy() function.

void func1 (char ∗p) {
int i ; // 4 by t e s
char b [8] ; // 8 by t e s
char ch ; // 1 by te
s t r cpy (b , p) ;

}

Assuming that each variable in the above function
has an address in memory as shown in Figure 3a and
3b, if the length of input is 8 bytes (the maximum
index of the input is 7), the system will scan bits
starting at address 0x28ac58 and ending at address
0x28ac5e (from 0x28ac58 + 7 - 1), as per the earlier

164 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

Fig.1:: Summary with buffer-overflow characteristics

Fig.2:: Summary with types of buffer-overflow attacks

described scheme). Since there is no set bit in this
range, as shown in Figure 3a, the execution will finish
without any error.

On the other hand, if the length of input is 9 bytes,
the system will scan bits starting at address 0x28ac58
and ending at address 0x28ac5f. As shown in Fig-
ure 3b, there is a set bit at address 0x28ac5f which

means that we have gone beyond the boundary of the
array b[]. In this case, Boundary Bit will abort the
execution of the function with an error.

3.2 Detection of Array-Indexing Errors

In this example, the following function contains a
potential array-indexing error (bug).

Boundary Bit: Architectural Bound Checking for Buffer-Overflow Protection 165

(a) An example of scanning for Boundary Bit when the
access is within the bounds of an object.

(b) An example of scanning for Boundary Bit when the ac-
cess goes out of bound and an buffer-overflow is detected.

Fig.3:: Mechanism of Boundary Bit

void func2 (int j) {
int i ; // 4 by t e s
char b [8] ; // 8 by t e s
char ch ; // 1 by te
b [j] = 1 ;

}

If one assumes that the variables in the function
func2() have the same addresses in memory as their
counterparts in the function func1() in Section 3.1
, and the input (j) to the function func2() is 7, the
system will scan bits starting at address 0x28ac58

and ending at address 0x28ac5e (0x28ac58 + 7 - 1).
There is no set bit in this range, which is expected
since this index is within the object’s bounds.

If instead the input (j) is 8, the system will scan
bits starting at address 0x28ac58 and ending at ad-
dress 0x28ac5f. In this case, there is a set bit at ad-
dress 0x28ac5f which signifies that an array-indexing
error has occurred.

If the input value j is -1, the system will scan bits
starting at address 0x28ac57 and ending at address
0x28ac57 (0x28ac58 - 1). There is a set bit at address
0x28ac57 which signifies that an array-indexing error
has occurred.

Thus, Boundary Bit can check both the upper
bound and the lower bound of buffers.

For a 1-byte variable, the following function also
contains a potential array-indexing error (bug).

void func3 (int j) {
int i ; // 4 by t e s
char b [1] ; // 1 by te
char ch ; // 1 by te
b [j] = 1 ;

}

If the input (j) is 0, the system will scan bits
starting at address 0x28ac58 and ending at address
0x28ac57 (0x28ac58 - 1). In this case, there is no
scanning because the ending address 0x28ac56 is less
than the starting address 0x28ac57.

If the input (j) is -1, the system will scan bits
starting at address 0x28ac57 and ending at address
0x28ac57 (0x28ac58 - 1). In this case, there is a
set bit at address 0x28ac57 which signifies that an
array-indexing error has occurred.

4. IMPLEMENTATION

There are two components of the Boundary Bit im-
plementation: hardware runtime support, and a com-

piler modified to insert special instructions needed by
the runtime.

4.1 Hardware Runtime Support

Two modifications to the hardware are needed to
implement the runtime support of Boundary Bit:
1. A modification to the processor that adds the fol-

lowing 3 new primitive instructions:
setbb – set a boundary bit of a given address
clrbb – clear a boundary bit of a given address
scnbb – scan a given range of addresses for a set
bit and terminate the running program if a set bit
is found within the range

2. Extend the memory chipset with a Boundary Bit
memory interface hardware subsystem for fetching
and setting boundary bits.
Figure 4a shows a rough sketch of the design of

the Boundary Bit memory interface. As can be seen
in our proposed design, there is no need to mod-
ify the memory subsystem to support Boundary Bit.
Instead, a portion of existing memory is used to
store boundary bits. Figure 4b presents the internal
schematic of the Boundary Bit interface and shows
how the interface partitions the memory address (in
a 32-bit system) of a byte (or word) into groups of
29 high-order bits and 3 bits and using them to lo-
cate the boundary bit that is associated with that
particular byte.

4.2 Compiler

In addition to the aforementioned hardware mod-
ification, another important component of Boundary
Bit is a compiler that has been modified to emit the
setbb, clrbb, and scnbb instructions needed by the
runtime during compilation.

For example, the following C code:

void func3 (char ∗p) {
int i ; // 4 by t e s
char b [8] ; // 8 by t e s
char ch ; // 1 by te
b [7] = p [0] ;

}

Which translates directly into the following assembly:

push ebp
mov ebp , esp
sub esp , 1Ch
xor eax , eax

166 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

(a) Boundary Bit Memory Interface (b) Boundary-Bit Memory
Interface Controller

Fig.4:: Memory Interface of Boundary Bit

; i n i t va lue o f ch
mov dword ptr [ebp 1 4 h] , eax
; i n i t va lue o f i
mov dword ptr [ebp 1 8 h] , eax
; i n i t va lue o f b []
mov dword ptr [ebp 4] , 9DC86C9Bh
; i n i t va lue o f ∗p
mov dword ptr [ebp 1 0 h] , ecx
cmp dword ptr ds : [01474288 h] , 0
j e 00000026
c a l l 5B013C60
; get address from ∗p
mov eax , dword ptr [ebp 1 0 h]
; get va lue in memory o f that address
movsx eax , byte ptr [eax]
; get address o f b [0]
l e a edx , [ebp 0 Ch]
; copy value from p [0] to b [7]
mov byte ptr [edx +7] , a l

During the compilation, our modified compiler will
insert the setbb instruction after each memory al-
location operation in the program. Sample code is
shown in the following snippet:

. . .
mov dword ptr [ebp 1 4 h] , eax
setbb dword ptr [ebp 1 4 h] ; s e t bb o f ch
mov dword ptr [ebp 1 8 h] , eax
setbb dword ptr [ebp 1 5 h] ; s e t bb o f i
setbb dword ptr [ebp 5] ; s e t bb o f b []
mov dword ptr [ebp 4] , 9DC86C9Bh
mov dword ptr [ebp 1 0 h] , ecx
setbb dword ptr [ebp 0 Dh] ; s e t bb o f ∗p
. . .

The compiler must also insert the scnbb instruc-
tion before each operation, such as mov, that writes
to memory as shown in the following code snippet:

. . .
mov eax , dword ptr [ebp 1 0 h]
movsx eax , byte ptr [eax]
l e a edx , [ebp 0 Ch]
scnbb [edx] , 8 ; scan bb o f b []
mov byte ptr [edx +7] , a l
. . .

Similarly, the compiler inserts the clrbb instruc-
tions after each memory deallocation operation.

5. OPTIMIZATION

As a consequence of the design of Boundary Bit,
the larger the size of an array or struct, the longer it

takes to scan for a boundary bit. To mitigate this run-
time overhead, we introduce hardware bitmaps to act
as a cache for storing boundary bits. With an m-to-1

bitmap, a single bit in the bitmap cache can represent
m boundary bits from a range of addresses, essentially
replacing a scanning operation that has O(n) runtime
complexity with a table lookup operation with a con-
stant (i.e., O(1)) runtime complexity, given a large
enough value of m. For example, Figure 5 shows an
example of a 16-to-1 bitmap, where one bit in the
bitmap represents 16 boundary bits. If all 16 bits are
0, the bit in the bitmap will be 0. If at least one bit
is one, the bit in the bitmap is set to 1. After that, it
scans only 16 bits in the boundary bit section to find
the set bit. Figure 6a shows a Boundary Bit mem-
ory interface that has been extended with a hardware
bitmap that uses the boundary bit’s address (which
is up to 46 bits for the maximum of 248 bytes in mod-
ern x86 64 architecture.) to index into the bitmap.
As shown in Figure 6b, with a 16-to-1 bitmap, the
boundary bit’s address will be partitioned into groups
of 42 bits and 4 bits, where the 42 bits portion will be
used as the bitmap address while the 4 bits portion
will be used to offset into the bitmap.

Fig.5:: Boundary Bit Bitmap Diagram

Boundary Bit: Architectural Bound Checking for Buffer-Overflow Protection 167

(a) Boundary Bit Memory Interface (b) Boundary-Bit Memory Interface
Controller

Fig.6:: Memory Interface of Boundary Bit with 1-Level Hardware Bitmap

Additionally, we can also implement multiple levels
of bitmaps to further improve scanning speed. Figure
7 shows one possible configuration, where 2 bitmaps
are layered on top of one another, with the level 1
bitmap functions as a cache for the level 2 bitmap.

The overall speed of the boundary bit technique
depends on the cache. We strongly believe that cache
can be redesigned and optimized to meet the perfor-
mance required. Previously, Secure Bit [?] has shown
that the cache can be redesign to accommodate its
boundary bits. The hit and miss in the boundary bit
is likely to be a subset of the standard data cache.
Furthermore, additional dedicated hardware can also
be added to support the boundary scan.

6. EVALUATION

We have shown in our conceptual design that the
boundary bit is designed to protect against buffer
overflow. A simulation was conducted to show the
effect of our design on overall performance.

We only evaluated the effect on the performance
because the architectural-level simulation has been
validated in previous work [4]. There is no need for
low-level simulation here. Though it is not shown
in our paper, we believe that hardware optimization
can be implemented to cover the overhead of bitmap
hardware. We have initially shown in our previous
work [30] that caching the bit is possible. In addition,
we have a pure software (compiler) implementation
that uses a helper thread to function as a bitmap
subsystem as well.

Therefore, we evaluated our proposed Boundary

Fig.7:: Boundary-Bit Memory Interface with 2-
Level Bitmap

Bit design by implementing a Boundary Bit proto-
type in a custom simulator we created which was
written in Microsoft Visual C++. The simulator has
the following performance characteristics:
• Setting a single bit takes 1 cycle
• Clearing a single bit takes 1 cycle
• Scanning for a single bit in a byte (or a word) takes

1 cycle
• Reading one byte of memory takes 1 cycle [11]
• Writing one byte of memory takes 1 cycle [11]

The simulator was hosted on a 64-bit Windows
10 machine with 8 GB of RAM. Two programs were
used to evaluate the performance of the Boundary
Bit prototype: Intensive Read/Write Buffer (Bub-
ble Sort), and Random Write with inputs generated
from a trace file generator. It is worth clarifying that
the base program is modified with instrumentation
to capture only the memory (boundary bit) activity.
This is not a full architecture simulation.

Slowdown percentage is calculated as follows:

Slowdown(%) =
Overhead

ReadWrite
× 100%

• ReadWrite means instruction cycles from
read/write memory instruction

• Overhead means instruction cycles from
set/clear/scan boundary bit instructions

6.1 Intensive Read/Write Buffer (Bubble
Sort)

The bubble sort program is used to evaluate how
the Boundary Bit prototype performs under intensive
read and write scenarios.

As the results from the simulation in Tables 1 and
2 and Figure 8a show, in the case where the input
consists of 10,000 elements, the Boundary Bit (BB)
enabled version of the bubble sort program is 36 times
slower than the base version of the program that has
no protection. The majority of the overhead came
from the scanning operation (scnbb). Fortunately,
most of this overhead can be eliminated by adding
a bitmap cache, with the 16-to-1 bitmap cache aug-
mented Boundary Bit being 11 times faster than the
Boundary Bit version that does not have the bitmap

168 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

0

2× 1010

4× 1010

6× 1010

8× 1010

1× 1011

1.2× 1011

N
o

P
rotection

B
oundary

B
it(B

B
)

B
B
/16:1

B
itm

ap

B
B
/256:1

B
itm

ap

B
B
/16:16

B
itm

ap

B
B
/32:16

B
itm

ap

In
st

ru
ct

io
n

C
y
cl

es
(I

C
s)

ICs used by Bubble Sort
ICs used by Boundary Bit’s setbb, clrbb, and scnbb

(a) Bubble-sort with 10,000 inputs

0

5× 109

1× 1010

1.5× 1010

2× 1010

2.5× 1010

3× 1010

3.5× 1010

4× 1010

N
o

P
rotection

B
oundary

B
it(B

B
)

B
B
/16:1

B
itm

ap

B
B
/256:1

B
itm

ap

B
B
/16:16

B
itm

ap

In
st

ru
ct

io
n

C
y
cl

es
(I

C
s)

ICs used by Random Write
ICs used by Boundary Bit’s setbb, clrbb, and scnbb

(b) Random write over 10,000,000 iterations

Fig.8:: Simulation results showing the performance overheads of Boundary Bit and the effect of using various
configurations of hardware bitmaps to reduce the overhead

Table 1:: Overall Instruction Cycles in the Bubble
Sort Program

Version Cycles Slowdown (%)

Original 3.146×109 -

Boundary Bit (BB) 113.991×109 3523.82

BB/16:1 Bitmap 10.271×109 226.53

BB/256:1 Bitmap 3.765×109 19.71

BB/16:16 Bitmap 3.890×109 23.67

BB/32:16 Bitmap 3.770×109 19.86

Table 2:: Overhead Cycles in the Bubble Sort Pro-
gram

Version BB
Bitmap

Level 1 Level 2

BB 110.845×109 - -

BB/16:1 0.125×109 7.001×109 -

BB/256:1 0.099×109 0.520×109 -

BB/16:16 0.125×109 0.520×109 0.100×109

BB/32:16 0.125×109 0.297×109 0.203×109

cache, as can be seen in Figure 8a. Increasing the
size of the bitmap or using more than one level of
bitmap further reduces the overhead of Boundary Bit,
with the 256-to-1 bitmap being 30 times faster than
the non-bitmap version, the 2-level 16-to-1 bitmaps
(16:16) being 29 times faster, and the 2-level 32-to-1
(as level 1) and 16-to-1 (as level 2) bitmaps (32:16)
being 30 times faster. One of the things to note from

the results is how increasing the size of the bitmap
to a certain threshold and using multiple levels of
bitmap can achieve similar levels of performance im-
provement.

6.2 Random Write

This program simulates intensive write to memory
by randomly choosing to perform one of the following
operations:
• write to character, integer, and double variables
• access a big array (100,000 entries)
• access a big memory block using a pointer (100,000

bytes)
• write data in various sizes to a big array (100,000

entries)

Table 3:: Overall Instruction Cycles in the Random
Write Memory Program

Version Cycles Slowdown (%)

Original 23.651×109 -

Boundary Bit (BB) 39.881×109 68.62

BB/16:1 Bitmap 24.786×109 4.80

BB/256:1 Bitmap 23.838×109 0.79

BB/16:16 Bitmap 23.995×109 1.46

We ran the Random Write program 10,000,000
times for each configuration. Tables 3 and 4 and
Figure 8b show the results, where the Boundary-Bit-
enabled version of Random Write was roughly 1.69
times slower than the base version. Adding a 16-to-1
bitmap cache to the Boundary Bit version resulted
in the 16-to-1 bitmap version being 1.60 times faster

Boundary Bit: Architectural Bound Checking for Buffer-Overflow Protection 169

Table 4:: Overhead Cycles in the Random Write
Memory Program

Version BB
Bitmap

Level 1 Level 2

BB 16.230×109 - -

BB/16:1 0.065×109 1.070×109 -

BB/256:1 0.065×109 0.122×109 -

BB/16:16 0.065×109 0.122×109 0.197×109

than the version that lacks the bitmap cache. Like
in the case of the Bubble Sort program, increasing
the size of bitmap and using more than one level of
bitmap further reduces the overhead, with the 256-to-
1 bitmap version being 1.67 times faster compared to
the version of Boundary Bit that lacks bitmaps, and
the 2-level 16-to-1 bitmaps being 1.66 times faster.

7. ANALYSIS

In this section, we will analyze the advantages and
the disadvantages of Boundary Bit. In particular, we
will also address the performance issue of Boundary
Bit.

7.1 Advantages

First, Boundary Bit prevents many traditional
buffer-overflow attacks, for example when the size of
the input is larger than the size of the receiving buffer.
It blocks attacks that utilize array-indexing errors.

Second, our approach uses little memory for stor-
ing metadata. Besides using less memory than most
software solutions, boundary bit uses less memory for
metadata compared to most hardware solutions as
well. For example, for each variable, Segmentation
[25] uses 3 words for metadata, one for starting ad-
dress, another ending address (or limit), and the last
word for current address. In contrast, Boundary Bit
uses only one bit of metadata for each variable/array.
Even for a large array, it uses only one bit.

Finally, the bit scanning operation can be acceler-
ated using additional hardware so that the operation
can be performed in parallel.

7.2 Disadvantages

Although the hardware-oriented approach has
many strengths, it also has several weaknesses. One
of which is the fact that current hardware cannot
leverage Boundary Bit. However, since hardware
has a life expectancy, it might be possible to replace
machines with Boundary-Bit-enabled hardware when
the time comes to replace obsolete hardware.

Another issue is the backward binary compatibil-
ity (transparency). As a result of the design, pro-
grammers or compilers must tell the system to set
a bit at the end of any variable or buffer to mark

the boundary. Thus, Boundary Bit is not completely
transparent. It requires users to recompile programs
using a compiler that has been modified to add the
instructions needed by Boundary Bit.

7.3 Performance Analysis

Using a hardware bitmap cache can improve the
efficiency of the bit scanning operation of Boundary
Bit. As a result, the memory access time of bit-
scanning can be greatly reduced. Moreover, the scan-
ning can also be done in parallel with accessing asso-
ciated data by modifying the processor. However, a
hardware/software optimization is beyond the scope
of this paper. Given that there are several hardware-
level parallelisms that can be implemented to hide
the overhead of boundary scanning, we conclude that
very little performance penalty would be introduced.

7.4 Cost Analysis

To implement our boundary bit approach, we need
to modify both hardware and software. In the hard-
ware, additional memory usage is a fixed cost. In
other words, the memory usage does not vary with
the program size because the system allocates the
block of memory for storing all boundary bits. Next,
a processor must be modified to add instructions re-
quired by the boundary bit mechanism. These in-
structions can be made to execute in parallel. Thus,
this should incur only a small performance penalty.
It is a trade-off between performance and security.
Lastly, the boundary bit instructions must be called
in the software. This can be implemented by modify-
ing a compiler. This is not transparent to the current
software, but we believe this cost is acceptable for
more security.

7.5 The Impact of Virtual Memory

In this section, we will describe how virtual mem-
ory impacts the boundary bit management when us-
ing virtual addresses in any modern systems. The
information on how to manage the virtual memory is
explained.

Virtual memory extends physical memory capacity
by using swap space from a non-volatile direct access
storage device (SSD, hard disk). It separates mem-
ory into “pages”, which makes a program relocatable.
The block of the Boundary Bit section can simply be
managed by following the page of the data section.
When the page is swapped out from memory to hard
disk, all boundary bits in the range of the page’s ad-
dresses are swapped out to hard disk as well. In the
same way, when the page is swapped into memory
from hard disk, its boundary bits are swapped back
into memory too.

170 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

7.6 Boundary Bit Protection

The boundary bit storage is not only desgined to
store boundary bits, but also to protect them. Only
a privileged user can modify boundary bits by us-
ing the clrbb instruction. To clarify, suppose an at-
tacker wants to attack the system by bypassing the
boundary bits to exploit a buffer-overflow vulnerabil-
ity. Their target is to modify boundary bits stored in
the memory and bitmap. The attacker may write the
code for clearing all boundary bits. Then he or she
will want to execute the code. However, the attacker
must have already obtained the root privilege in or-
der to execute such code. If they have that privilege,
they already own the system and they do not need to
clear the boundary bit.

Although the additional instructions execute in
user mode, they can still prevent buffer-overflow at-
tacks. This is possible because the hint from software
will use the instructions to prevent writing beyond the
boundary. Most buffer-overflow attacks occur from
writing beyond the buffer. These are not privilege
escalation attacks. Unless the attacker has already
gained privileged mode access on the system, this is
not an issue.

8. RELATED WORK : PROTECTIONS
AGAINST BUFFER-OVERFLOW AT-
TACKS

A taxonomy of buffer-overflow protection schemes
was established by Piromsopa [28, 31]. There are
three broad categories: static analysis, dynamic solu-
tions, and isolation. Static analysis schemes prevent
the problem before deploying programs by parsing
source code and warning the programmers of poten-
tial threats. Dynamic solutions verify the integrity
of data during the execution of programs by creat-
ing meta data. Solutions in the isolation classes only
limit the damage from the attacks.

Some approaches, similar to our work, are summa-
rized in the following sections.

8.1 Bounds Checking at Runtime

Among these solutions, dynamic solutions can dy-
namically detect and prevent problems in run-time
environments. Dynamic solutions can also be par-
titioned into many subclasses, such as address pro-
tection, input protection, bounds checking, and ob-
fuscation. Boundary Bit is a member of the bounds
checking subclass of dynamic solutions.

Since the 1980s, two major approaches dominate
the runtime bounds checking approach. These are
the pointer-based approach and the object-based ap-
proach.

8.2 Pointer-Based Approach

Early work [16, 18, 26, 38, 41] in the pointer-based
approach associated bounds information with each

pointer by modifying the pointer representation into
what is typically called a fat pointer. While conve-
nient, the major downside of this approach is the in-
compatibility between the code that uses fat pointers
that the code that does not. This is a major concern
because in practice it is not possible to recompile all
programs and libraries to use the same pointer rep-
resentation as the instrumented code.

8.3 Object-Based Approach

In this approach, each object is stored in a separate
data structure and the address of an object is used to
look up its associated bounds information. One of the
earliest works in the object-based approach is [15],
with subsequent works [9, 32] improving upon the
concept by reducing overhead, increasing protection
coverage, and further improving compatibility. No-
table work in the object-based approach is the work
by Akritidis et al. [1], which stores allocation bounds
instead of precise bounds of each object. These al-
location bounds are usually larger than the actual
bounds of an object, while their size and alignment
are constrained to facilitate efficient bounds lookups,
which results in significantly lower overhead during
runtime.

However, despite solving the incompatibility issue,
the object-based approach has its own set of issues.
One issue is the fact that it cannot detect buffer over-
flows in nested objects [23], such as an array inside a
struct. This problem stems from the fact that in C,
an address of an element inside a struct is the same as
the address of the struct itself. This issue prompted
the development of what we call the second genera-
tion pointer-based approach.

8.4 Pointer-Based Approach: the Second
Generation

The second generation pointer-based approach
aims to solve the aforementioned inability to detect
overflows in nested objects inherent in the design
of the object-based approach. In addition, it must
avoid the incompatibility problem that plagued the
old pointer-based works that utilized the fat pointer
representation. It does this by borrowing the disjoint
metadata concept from the object-based approach.
Specifically, the second generation pointer-based ap-
proach stores the bounds information of each pointer
inside a data structure, and uses the address of the
pointer itself (and not the object) to look up the
bounds information. This approach offers the same
advantage as the object-based approach, namely com-
patibility between instrumented and uninstrumented
code, while also being able to detect overflow in
nested objects [23, 24].

Boundary Bit: Architectural Bound Checking for Buffer-Overflow Protection 171

8.5 Recent Architectural Approaches

Buffer-overflow attacks and memory access viola-
tion are still interesting issues, but the trade-off is
also a discussed topic. Some proposed approaches
are hardware solutions, because their main goal is to
reduce runtime overheads in software by improving
the hardware. Most of them use pipelines for parallel
processing. Differences in details in implementations
result from different assumptions and scope/limita-
tions. However, they may not cover all types of
buffer-overflow attacks.

For example, Low-Fat Pointers [17] and SMOV
[21] modify the processor instructions for bound-
checking. SMOV adds micro-operations to each stage
of the secure mov instructions. Low-Fat Pointers is
also a pointer-based approach implemented by adding
hardware-managed tags to the pointer.

Programmable Unit for Metadata Processing
(PUMP) [8] processes metadata tags, which are prop-
agated with data or memory address, by modify-
ing some related hardware (registers, caches, and
pipelines) and deals with compilers.

A work on adaptive pipeline [34] allows a transpar-
ent solution to programmers/compilers and has very
low overhead. However, it mainly focuses on stack-
based buffer-overflow attacks during runtime.

8.6 Comparison

Compared to the aforementioned bounds checking
approaches, Boundary Bit can be considered a hard-
ware implementation of the object-based approach.
The bounds information is stored as a single bit in
an isolated region inside memory. The first obvi-
ous advantage of Boundary Bit compared to other
software-oriented approaches is speed, since the hard-
ware that handles the lookup and bounds checking
operation can be made to run in parallel with other
operations. A second advantage is improved security,
since the region where the Boundary Bit stores its
metadata is isolated by the MMU itself, making it
substantially harder to tamper with. Another advan-
tage of Boundary Bit compared to other object-based
bounds checking approaches is the amount of memory
required to store the bounds information. In the tra-
ditional object-based approach, bounds information
usually consists of a base and a bound of an object,
both of which are usually the same size as the pointer.
In contrast, in Boundary Bit the bounds information
of each object is just 1 bit. With that said, the obvi-
ous disadvantage of Boundary Bit is that since it is a
hardware solution, it is significantly harder to develop
and deploy compared to software solutions. Also, in
this work we still have not addressed the inability to
detect buffer overflows in nested objects that plagued
many works in the object-based approach.

8.6.1 Comparison of protection coverage

In the view of the coverage of buffer-overflow at-
tack types, most of the former buffer-overflow pro-
tection schemes cannot protect the system from all
types.

For example, Segmentation [25], Type-Assisted
Buffer Overflow Detection [19], C Range Error De-
tector (CRED) [32], Integer Analysis to Determine
Buffer Overflow [39], STOBO [14] and MemGuard
[7] can detect stack/heap overflows on both control
and non-control data, but some cannot detect ar-
ray indexing errors. Jump Pointer [36] and adaptive
pipeline [34] focus on stack overflows. StackGuard [7],
SmashGuard [7], Minezone RAD [37] and Read-only
RAD [37] can detect stack overflows, but focus on
control data only. PointGuard [6] and HeapDefender
[20] focus on heap overflows.

Secure Bit [27], Canary Bit [33], Secure Canary
Word [4,29], and Boundary Bit [5] form a series of
related research work with each new project building
upon its predecessors. Secure Bit can detect all types,
but focuses on only control data, similar to Efficient
Dynamic Taint Analysis Using Multicore Machines
[3]. Canary Bit extends Secure Bit to focus on con-
trol data by marking control address/data. Secure
Canary Word based on Secure Bit can detect most
types except array indexing errors on non-control
data. Boundary Bit extends Canary Bit to prevent
all types, both on control data and non-control data.

Low-Fat Pointers [17] and SMOV [21] have the
same goal as Boundary Bit. However, these architec-
tural approaches mainly aim for high performance,
but the coverage of detected error types is not ex-
plained in detail.

9. CONCLUSION

The main concept of Boundary-Bit is checking to
ensure that transferring of data does not exceed the
allocated capacity of variables or buffers. Its goal is
to provide a hardware solution that protects against
all types of buffer-overflow attacks, including non-
control data attacks and array-indexing errors, with
lower overhead than other solutions. We trade some
performance and additional hardware complexity for
more security. The performance of Boundary Bit
can be improved by using bitmaps as boundary-bit
caches.

Moreover, Boundary Bit is simple to implement.
Few software modifications are required to deploy this
scheme. We have demonstrated viability at the archi-
tectural level. This solution can also be implemented
in a software run-time environment such as Java Vir-
tual Machine or .NET framework.

Boundary Bit provides bound checking at the ar-
chitectural level. This mechanism is able to pro-
vide protection against future buffer-overflow attacks.
Given the security provided, we believe Boundary

172 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.2 November 2020

Bit is a viable solution for protection against buffer-
overflow attacks.

ACKNOWLEDGMENTS

The authors would like to thank the Graduate
School of Chulalongkorn University for awarding a
Chulalongkorn University Graduate Scholarship to
Commemorate the 72nd Anniversary of His Majesty
King Bhumibol Adulyadej, and the department of
Computer Engineering, Chulalongkorn University, for
providing a Graduate Scholarship.

References

[1] P. Akritidis, M. Costa, M. Castro, and S.
Hand, “Baggy bounds checking: An efficient
and backwards-compatible defense against out-
of-bounds errors,” in 18th USENIX Security
Symposium (USENIX Security ’09), pp.1-10,
USENIX, August 2009.

[2] M. Bishop, S. Engle, D. Howard and S. Whalen,
“A Taxonomy of Buffer Overflow Characteris-
tics,” in IEEE Transactions on Dependable and
Secure Computing, vol. 9, no. 3, pp. 305-317,
May-June 2012.

[3] M. Chabbi, S. Perianayagam, G. Andrews, and
S. Debray, “Efficient dynamic taint analysis us-
ing multicore machines,” Report, The University
of Arizona, 2007.

[4] S. Chiamwongpaet and K. Piromsopa, “The im-
plementation of Secure Canary Word for buffer-
overflow protection,” 2009 IEEE International
Conference on Electro/Information Technology,
Windsor, ON, 2009, pp. 56-61.

[5] S. Chiamwongpaet, Buffer-overflow Protection
using Boundary Bit, Thesis, 2017.

[6] C. Cowan, S. Beattie, J. Johansen, and P. Wa-
gle, “PointguardTM: protecting pointers from
buffer overflow vulnerabilities,” in Proceedings of
the 12th conference on USENIX Security Sym-
posium, vol.12, pp. 7, 1251360.USENIX Associ-
ation, August 2003.

[7] C. Cowan, C. Pu, D. Maier, H. Hintony, J.
Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, and Q. Zhang, “Stackguard: automatic
adaptive detection and prevention of buffer-
overflow attacks,” in Proceedings of the 7th con-
ference on USENIX Security Symposium, vol. 7,
pp. 5, 1267554. USENIX Association, January
1998.

[8] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis,
S. Chiricescu, J. M. Smith, T. F. Knight, Jr.,
B. C. Pierce, and A. DeHon, “Architectural
support for software-defined metadata process-
ing,” in Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’15, pp. 487–502, New York, NY, USA,
2015. ACM.

[9] D. Dhurjati and V. Adve, “Backwardscompati-
ble array bounds checking for c with very low
overhead,” in Proceedings of the 28th Inter-
national Conference on Software Engineering,
ICSE ’06, pp. 162–171, New York, NY, USA,
2006. ACM.

[10] Nicolas Economou. Microsoft windows up to
8.1 memory object win32k.sys buffer over-
flow. http://www.scip.ch/en/?vuldb.11444,
04/07/2017 2013.

[11] Agner Fog. Instruction tables. http://www.

agner.org/optimize/instructiontables.

pdf, 2017-05-02 2017.

[12] Edward F. Gehringer and J. Leslie Keedy,
“Tagged architecture: how compelling are its ad-
vantages?,” SIGARCH Comput. Archit. News,
vol.13, no.3, pp.162–170, June 1985.

[13] R. Gil, The undefined quest for full memory
safety, Thesis, 2017.

[14] E. Haugh, “Testing c programs for buffer over-
flow vulnerabilities,” in Proceedings of the Net-
work and Distributed System Security Sympo-
sium, pp. 123–130, 2003.

[15] Richard W M Jones and Paul H J Kelly,
“Backwards-compatible bounds checking for ar-
rays and pointers in c programs,” in Distributed
Enterprise Applications. HP Labs Tech Report,
pp. 255–283, 1997.

[16] S. Kaufer, R. Lopez, and S. Pratap, “Saber-C —
an interpreter-based programming environment
for the C language,” in USENIX Association, ed-
itor, Summer USENIX Conference Proceedings,
pp. 161–171, Berkeley, CA, USA, Summer 1988.
USENIX.

[17] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight,
G. Bioworks, and A. Dehon, “Low-fat pointers:
compact encoding and efficient gate-level imple-
mentation of fat pointers for spatial safety and
capability-based security,” CCS’13: Proceedings
of the 2013 ACM SIGSAC conference on Com-
puter & communications security, pp.721-732,
November 2013.

[18] J. L. Steffen, “Adding run-time checking to the
portable c compiler,” Software: Practice and Ex-
perience, vol.22, issue 4, pp.305–316, April 1992.

[19] Kyung-Suk Lhee and S. J. Chapin, “Buffer over-
flow and format string overflow vulnerabilities,”
Software: Practice and Experience, vol.33, issue
5, pp.423–460, April 2003.

[20] D. Li, Z. Liu, and Y. Zhao, “Heapdefender:
A mechanism of defending embedded systems
against heap overflow via hardware,” in 2012
9th International Conference on Ubiquitous In-
telligence and Computing and 9th International
Conference on Autonomic and Trusted Comput-
ing, pp. 851–856, 2012.

[21] A. Maia, L. Melo, F. M. Q. Pereira, O. P. V.
Neto, and L. B. Oliveira, “Smov: Array bound-

Boundary Bit: Architectural Bound Checking for Buffer-Overflow Protection 173

check and access in a single instruction,” in 2016
13th IEEE Annual Consumer Communications
Networking Conference (CCNC), pp. 745–751,
Jan 2016.

[22] Sean Dillon (Microsoft). Microsoft windows up
to server 2016 smb buffer overflow. https://

vuldb.com/?id.98018,07/14/2017 2017.

[23] S. Nagarakatte, J. Zhao, M. M.K. Martin, and S.
Zdancewic, “Softbound: Highly compatible and
complete spatial memory safety for c.,” in Pro-
ceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Imple-
mentation, PLDI ’09, pp. 245–258, New York,
NY, USA, 2009. ACM.

[24] S. Nagarakatte, J. Zhao, M. M.K. Martin, and S.
Zdancewic, “Cets: Compiler enforced temporal
safety for c,” in Proceedings of the 2010 Inter-
national Symposium on Memory Management,
ISMM ’10, pp. 31–40, New York, NY, USA,
2010. ACM.

[25] Elliot I. Organick. A programmer’s view of the
Intel 432 system. McGraw-Hill, Inc., 1983.

[26] H. Patil and C. Fischer, “Low-cost, concur-
rent checking of pointer and array accesses in
c programs,” Software—Practice & Experience,
vol.27, issue 1, pp.87–110, January 1997.

[27] K. Piromsopa and R. J. Enbody, “Secure Bit:
Transparent, Hardware Buffer-Overflow Protec-
tion,” in IEEE Transactions on Dependable and
Secure Computing, vol. 3, no. 4, pp. 365-376,
Oct.-Dec. 2006

[28] K. Piromsopa, SECURE BIT: BUFFEROVER-
FLOW PROTECTION, Thesis, 2006.

[29] K. Piromsopa and S. Chiamwongpaet, “Secure
Bit Enhanced Canary: Hardware Enhanced
Buffer-Overflow Protection,” 2008 IFIP Interna-
tional Conference on Network and Parallel Com-
puting, Shanghai, 2008, pp. 125-131.

[30] K. Piromsopa and R. J. Enbody, “Architect-
ing security: A secure implementation of hard-
ware buffer-overflow protection,” in Proceedings
of the Third Conference on IASTED Interna-
tional Conference: Advances in Computer Sci-
ence and Technology, ACST’07, pp. 17–22, USA,
2007. ACTA Press.

[31] K. Piromsopa and R. J. Enbody, “Survey of pro-
tections from buffer-overflow attacks,” Engineer-
ing Journal, vol.5, no.2, pp.31–52, Feb. 2011.

[32] O. Ruwase and M. S. Lam, “A practical dynamic
buffer overflow detector,” in Proceedings of the
11th Annual Network and Distributed System Se-
curity Symposium, pp. 159–169, 2004.

[33] M. S. Kirkpatrick, Canary bit: Extending secure
bit for data pointer protection from buffer over-
flow attacks, Thesis, 2007.

[34] L. K. Sah, S. A. Islam and S. Katkoori, “An
Efficient Hardware-Oriented Runtime Approach
for Stack-based Software Buffer Overflow At-

tacks,” 2018 Asian Hardware Oriented Secu-
rity and Trust Symposium (AsianHOST), Hong
Kong, 2018, pp. 1-6.

[35] Charles Schmidt and Tom Darby. The what,
why, and how of the 1988 internet worm. http:
//www.snowplow.org/tom/worm/worm.html,
1988.

[36] Z. Shao, Q. Zhuge, Y. He and E. H. -. Sha, “De-
fending embedded systems against buffer over-
flow via hardware/software,” 19th Annual Com-
puter Security Applications Conference, 2003.
Proceedings., Las Vegas, NV, USA, 2003, pp.
352-361.

[37] Tzi-Cker Chiueh and Fu-Hau Hsu, “RAD: a
compile-time solution to buffer overflow at-
tacks,” Proceedings 21st International Confer-
ence on Distributed Computing Systems, Mesa,
AZ, USA, 2001, pp. 409-417.

[38] D. W. Plater, Y. Yesha and E. K. Park, “Ex-
tensions to the c programming language for en-
hanced fault detection,” Software: Practice and
Experience, vol.23, issue 6, pp.617–628, June
1993.

[39] D. Wagner, J. S. Foster, E. A. Brewer, and A.
Aiken, “A first step towards automated detec-
tion of buffer overrun vulnerabilities,” in NET-
WORK AND DISTRIBUTED SYSTEM SECU-
RITY SYMPOSIUM, pp.3–17, 2000.

[40] Webopedia. buffer overflow. http://www.

webopedia.com/TERM/B/bueroverow.html.

[41] Marvin V. Zelkowitz, Paul R. McMullin, Keith
R. Merkel, and Howard J. Larsen, “Error check-
ing with pointer variables,” in Proceedings of the
1976 Annual Conference, ACM ’76, pp. 391–395,
New York, NY, USA, 1976. ACM.

Sirisara Chiamwongpaet received
her B.Eng and M.Eng degrees in Com-
puter Engineering from Chulalongkorn
University in 2008 and 2010, respec-
tively. She is now working toward her
Ph.D. in Computer Engineering at Chu-
lalongkorn University.

Krerk Piromsopa received his B.Eng.
and M.Eng. degrees in computer en-
gineering from Chulalongkorn Univer-
sity, Thailand, in 1998 and 2000, respec-
tively. He has been a faculty member at
this school since 2001. In 2003, he was
awarded a scholarship from the Royal
Thai Government for pursuing his Ph.D.
degree in computer science at Michigan
State University, where he received the
degree in 2006. He is currently an asso-

ciate professor in computer engnieering at Chulalongkorn Uni-
versity. His research interests are in computer security, com-
puter architecture, distributed systems, and data analytics in
healthcare. He is a member of the ECTI, the IEEE, and the
IEEE Computer Society.

